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Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs; together PPGLs) are uncommon neuroendocrine 
tumors arising from adrenal medullary chromaffin cells and sympathetic/parasympathetic paraganglia. 
Though PPGLs predominate in adult populations, pediatric cases of PPGLs represent more aggressive 
disease outcomes with 12% being diagnosed as metastatic. Metastatic disease (spread to bone, lung, lymph 
nodes, or liver) occurs in a subset of PPGLs, ranging from 15% to 17% depending on the underlying 
pathogenic variants. Historically, pulmonary metastases present clinically as multiple small lesions; 
however, cases of PPGLs with innumerable small metastases (a miliary pattern) overwhelming lung 
parenchyma define a novel yet exceptionally challenging disease presentation. This pattern of pulmonary 
lesions upon treatment and/or cellular lysis may lead to both respiratory decompensation as well as 
prolific catecholamine release, incurring significant morbidity and mortality if not appropriately managed. 
Of the 2,649 PPGL patients enrolled in our protocol from January 1, 2000, to April 30, 2023, 500 had 
metastatic disease, 122 were children/adolescents, and 3 of the 122 children/adolescents had extensive 
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pulmonary metastatic disease. All three adolescent patients with extensive pulmonary metastases had 
cluster 1 PPGLs and suffered hypoxemia (due to pulmonary metastases) leading to overactive hypoxia 
signaling and catecholamine-induced signs and symptoms [among them hypertension and/or 
tachyarrhythmia(s)]. Interventions including surgery, chemotherapy, and radiotherapy were pursued. Two 
patients achieved disease stability, while one patient succumbed to disease. Ultimately these divergent 
outcomes emphasize the importance of recognizing poor prognostic factors and aggressive disease early, to 
select appropriate treatments. Optimal management of these patients must consider complications of 
catecholamine excess and the profound influence of hypoxia. Herein, we describe three adolescent cases of 
extensive pulmonary metastatic PPGL and the unique clinical challenges faced in treating these tumors 
alongside relevant literature to provide guidance on appropriate interventions (ClinicalTrials.gov identifier: 
NCT00004847).
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Introduction
Pheochromocytomas (PCCs) and paragangliomas (PGLs; together PPGLs) are rare neuroendocrine tumors 
that arise from the medulla of the adrenal gland or extra-adrenal chromaffin tissue, respectively. Those 
arising from sympathetic paraganglia are often characterized by catecholamine production and secretion—
often in excess—and catecholamine-induced signs and symptoms [1–3]. In contrast, head and neck PGLs 
(HNPGLs) found along the parasympathetic chains rarely secrete catecholamines [4, 5]. Although most 
PPGLs will not develop metastatic lesions, approximately 20% behave aggressively and ultimately develop 
metastatic disease influenced by the underlying pathogenic variant(s), tumor location, and size, as well as 
secretory status [6–11]. Metastatic lesions are commonly found in bones (64%), lungs (47%), lymph nodes 
(36%), and the liver (32%) [6, 12–17]. Lung lesions are usually found as solitary masses ranging from a few 
millimeters to several centimeters and are often surgically resected. When multiple pulmonary lesions are 
present, surgical resection cannot be attempted, but must be treated via systemic therapy.

Nonetheless, various therapeutic options must be considered when treating patients with extensive 
pulmonary metastatic disease as some treatments may be contraindicated. The presence of innumerable 
lung lesions can result in hypoxia, which can drive the progression of cluster 1 PPGLs. Within cluster 1 
PPGLs the hypoxia signaling pathway is already overactive (see Figure 1) while also being a stimulus for 
further catecholamine release, resulting in adverse cardiovascular events and compensatory polycythemia 
[18–20]. Thus, treatment should be initiated in a monitored environment as rapid tumor cell lysis and 
consequent pulmonary edema can lead to catecholamine surges or respiratory decompensation 
respectively [21, 22]. Patients should also be serially monitored as treatment may suppress compensatory 
polycythemia/hematopoiesis. Therefore, chemotherapies or systemic radiotherapies must be rationally 
selected in these patients [23].

Catecholamine excess heightens morbidity and mortality. Nearly all PPGL patients experience 
hypertension (92%) while 10–20% suffer life-threatening complications (e.g., myocardial infarction, stroke, 
multiple organ failure) with adverse cardiovascular events being the main cause of death (up to 71%) [20, 
24]. Therefore, treating both pediatric (< 18 years old) and adolescent (10 to 19 years old) metastatic PPGL 
with extensive pulmonary metastases presents clinical challenges (such as higher incidence of symptoms) 
which are discussed alongside demonstrative cases and relevant literature [9, 25, 26].

Case report
The case presentations for all patients are summarized below. For further information pertaining to 
biochemical laboratory data and the extent of tumor/metastatic involvement refer to Tables 1, 2 and 3, and 
Figures 2, 3 and 4, respectively. Alternatively, the patient cases are generally summarized in Figure 5 
(timeline).
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Figure 1. The interplay between hypoxia, catecholamine excess, and pulmonary tumor burden. PPGL: pheochromocytomas 
and paragangliomas

Table 1. Patient 1: serial biochemistries

Times the URL 3/12/2020 plasma 5/28/2021 plasma 9/24/2021 plasma Normal values* pg/mL [nmol/L]

Normetanephrine 15.6 (1,743) 0.6 [0.52] 0.6 [0.55] 18–112 [< 0.90]
Metanephrine 1.5 (91) U U 12–61 [< 0.50]
Norepinephrine 0.8 [563] 0.5 [400] 112–750
Dopamine U 0.9 [25] 0–29
Epinephrine U U 0–50
Chromogranin A 4.9 (453) 0.9 [80] < 93
Elevated values are bolded. * Note fractionated plasma values (e.g., fractionated metanephrines) are provided in picograms per 
milliliter in parenthesis (pg/mL) while total values (e.g., total metanephrines) are provided in nanomoles per liter in brackets 
[nmol/L]. Blank cells indicate an absence of laboratory data for the respective time point. URL: upper reference limit; U: 
undetectable/below the lower limit of the reference range

Table 2. Patient 2: serial biochemistries

Times the URL 7/23/2019 urine 7/23/2019 plasma 9/13/2019 plasma Normal values* pg/mL [μg/24h]

Normetanephrine 1.8 [683] 0.2 (25) 0.5 (58) 18–112 [103–390]
Metanephrine 1.1 [204] 0.4 (22) 0.3 (18) 12–61 [35–180]
Norepinephrine 0.7 [56] 0.3 (191) 0.3 (251) 112–750 [15–80]
Dopamine 1.2 [462] U U 0–29 [65–400]
Epinephrine 0.1 [1.7] U U 0–50 [< 21]
Chromogranin A 1.0 (92) [< 93]
Elevated values are bolded. * Note fractionated plasma values (e.g., fractionated metanephrines) are provided in picograms per 
milliliter in parenthesis (pg/mL) while 24-hour urine values are provided in micrograms over 24 hours in brackets [μg/24h]. Blank 
cells indicate an absence of laboratory data for the respective time point. URL: upper reference limit; U: undetectable/below the 
lower limit of the reference range

Table 3. Patient 3: serial biochemistries

Times the URL 08/11/2016 plasma 2/9/2017 plasma 02/10/2017 urine 3/23/2018 plasma Normal values* pg/mL [μg/24h]

Normetanephrine 37.6 (4,209) 43.6 (4,883) 31.4 [12,238] 4.8 (538) 18–112 [103–390]
Metanephrine U U U U 12–61 [35–180]
Norepinephrine 9.9 (7,434) 13.2 (9,928) 25.9 [2,068] 1.6 (1,200) 112–750 [15–80]
Dopamine U 1.1 (33) 0.2 [96] U 0–29 [65–400]
Epinephrine U 0.6 (29) 0.2 [4.1] 0.5 (23) 0–50 [< 21]
Chromogranin A 6.5 (605) 5.6 (520) 2.8 (263) [< 93]
Elevated values are bolded. * Note fractionated plasma values (e.g., fractionated metanephrines) are provided in picograms per 
milliliter in parenthesis (pg/mL) while 24-hour urine values are provided in micrograms over 24 hours in brackets [μg/24h]. Blank 
cell indicates an absence of laboratory data for the respective time point. URL: upper reference limit; U: undetectable/below the 
lower limit of the reference range
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Figure 2. Patient 1 (14-year-old female, VHL pathogenic variant), serial images throughout the course of treatment: Anterior 
maximum intensity projection images of 18F-FDOPA PET/CT (A) and 68Ga-DOTATATE PET/CT (B) demonstrate a 4.4 cm right 
PCC (red arrow), left parapharyngeal neck mass (red arrowhead), and widespread metastatic lesions in the lungs and bones. 
Axial contrast CT images (C–H) in the same plane at various time points (03/2020, 05/2021, 09/2021, 02/2022, 04/2022, and 
01/2023) show the patient’s progression (increase in number of lung lesions and tumor volume) despite therapy (3 cycles of 
CVD between 12/2021 and 2/2022; 3 cycles of axitinib between 3/2022 and 10/2022; and pembrolizumab and axitinib between 
10/2022 and 02/2023). CVD: cyclophosphamide, vincristine, and dacarbazine; PCC: pheochromocytoma

Figure 3. Patient 2 (23-year-old female, SDHD pathogenic variant), serial images throughout the course of treatment: Anterior 
maximum intensity projection images of 68Ga-DOTATATE PET/CT (A) and 18F-FDG PET/CT (B) demonstrate a 7.1 cm complex 
left jugular mass (red arrowhead) and a 2.5 cm right carotid body paraganglioma (red arrow) with widespread metastatic lesions 
in the lungs, mediastinum, liver, and bones. The axial contrast CT images (C–F) in the same plane at various time points 
(09/2019, 04/2020, 07/2020, and 10/2020) show the patient’s response (decrease in number of lung lesions and tumor volume) 
after 4 cycles of CVD therapy (between 10/2019 and 03/2020) with resolution of hypoxemia. CVD: cyclophosphamide, 
vincristine, and dacarbazine

Patient 1: At the age of 12 (2018) the patient was found to have a solitary left neck PGL measuring 
7.5 cm. At the age of 14 (2020), the patient had elevated plasma normetanephrine, chromogranin A, and 
metanephrine (15.6, 4.9, and 1.5 times the upper reference limit, URL, respectively; Table 1) with a 
recurrent left neck mass, right PCC, and significant pulmonary metastases (miliary pattern) on imaging. 
Following tumor resection of the 4.4 cm right PCC subsequent immunohistochemical (IHC) staining of the 
primary tumor was positive for synaptophysin, chromogranin, and S100 in surrounding sustentacular cells 
with a Ki-67 proliferation rate of 10% consistent with PGL. Germline genetic testing confirmed a VHL 
pathogenic variant (VHL c.250G>T, p.Val84Leu).

The patient’s biochemistries normalized post-operatively, but at the age of 15 (2021), she developed 
hypoxemia requiring (2L) of supplemental oxygen and was found to have a progression of extensive 
multifocal lung metastases (Table 1, Figure 2). She was then treated with 3 cycles of cyclophosphamide, 
vincristine, and dacarbazine (CVD), complicated by multiple cytopenias and a 5-kg weight loss with 
progression of disease on imaging. Her disease progressed despite being transitioned to axitinib (3 mg, 
twice daily for 7 months) and then pembrolizumab (25 mg, twice daily for 5 months) (Figure 2). She was 
transitioned to hospice care and succumbed to disease at the age of 17 (2023).
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Figure 4. Patient 3 (26-year-old female, VHL pathogenic variant), serial images throughout the course of treatment: Anterior 
maximum intensity projection images of 68Ga-DOTATATE PET/CT (A and G) and 18F-FDOPA PET/CT (B–F) with a history of a 
right adrenalectomy (4.2 cm), right nephrectomy, and left periaortic- and aortocaval mass resection in 2016 [resection(s) prior to 
imaging] demonstrate widespread metastatic lesions in the lungs, retroperitoneal adenopathy, and a few bone metastases. 18F-
FDOPA PET/CT images before (B), during (C), and after (D) treatment with CAPTEM. 18F-FDOPA PET/CT (E and F) imaging 
demonstrate disease stability with temozolomide monotherapy. 18F-FDOPA PET/CT on 03/2023 (F) shows a significant 
decrease in the number of lung lesions and a reduction in tumor volume compared to prior imaging. The axial contrast CT 
images (H–M) in the same plane at various time points (08/2016, 02/2017, 01/2018, 05/2018, 03/2019, and 09/2023) show 
progression of disease prior to chemotherapy (H and I) followed by stable disease (J–L) and a marginal decrease in tumor 
size(s) on 09/2023 (compared to 03/2019). However, a more robust response was appreciated on 18F-FDOPA PET/CT [02/2017 
(B) vs 03/2023 (F)] and 68Ga-DOTATATE PET/CT [08/2016 (A) vs 12/2023 (G)]

Figure 5. Patient clinical courses. The intensity of red color in the timelines on the x-axis represents the disease status. The 
darker shade represents worse disease status. B/L: bilateral; CAPTEM: capecitabine and temozolomide; CVD: 
cyclophosphamide, vincristine, dacarbazine; HNPGL: head and neck paraganglioma; 131I-MIBG: 131I-metaiodobenzylguanidine; 
LNs: lymph nodes; Lt: left; PCC: pheochromocytoma; PPGL: pheochromocytoma and paraganglioma; Rt: right; Sx: symptoms; 
Tx: treatment
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Patient 2: At the age of 17 (2013) the patient was diagnosed with a left glomus jugulare PGL. After 
5 years of pursuing alternative treatment, she presented to an outside institution at the age of 22 (2018) 
with visible outgrowth from her left ear with bleeding and was found to have an extension of the primary 
tumor, a right carotid body tumor, and extensive pulmonary metastases (miliary pattern) (Figure 3). She 
then underwent partial resection/debulking of the left glomus jugulare PGL (2018). IHC staining of the 
tumor was positive for synaptophysin, chromogranin, and S100 in surrounding sustentacular cells 
consistent with PGL. Genetic testing of the primary tumor revealed a pathogenic variant in SDHD 
c.124_127delinsATA (SDHD p. Glu42Ilefs*44).

The patient presented to our institution at the age of 23 (2019) and was found to have elevated urine 
normetanephrine, metanephrine, and dopamine (1.8, 1.1, and 1.2 times the URL, respectively; Table 2) and 
soon developed hypoxemia requiring (1L) supplemental oxygen. She responded to treatment with 4 cycles 
of CVD with reduced pulmonary tumor burden and resolution of hypoxemia (Figure 3). She then 
discontinued treatment and gave birth to two children at the age of 26 and is clinically stable.

Patient 3: At the age of 19 (2009) the patient was found to have a right 4.2 cm PCC upon evaluation for 
hypertension and headaches. Following resection, IHC staining was positive for synaptophysin, 
chromogranin, and S100 in surrounding sustentacular cells consistent with PCC. Germline genetic testing of 
the primary tumor (PCC) confirmed a VHL pathogenic variant (VHL c.439C>G, p. Leu147Val). At the age of 
21 (2011), with elevated plasma biochemistries and metastatic PGL noted on 123I-metaiodobenzylguanidine 
(123I-mIBG) scintigraphy she underwent tumor resection (left periaortic tumor resection, right 
nephrectomy, and aortocaval mass resection) followed by 131I-mIBG radiotherapy (691 mCi total in 1 year).

The patient was referred to our institution at the age of 26 (2016) with signs and symptoms of 
catecholamine excess and hypoxemia requiring (2–3L) supplemental oxygen and was found to have 
elevated plasma norepinephrine and normetanephrine (37.6 and 9.9 times the URL respectively; Table 3) 
with extensive pulmonary metastases on imaging metastases (miliary pattern) (Figure 4). She was then 
treated with 4 cycles of capecitabine and temozolomide (CAPTEM, in 2017) then temozolomide (180 mg 
twice daily PO for 5 days every 28 days) for 6 years until the age of 32 (2022). At age 33 (2023) she was 
clinically stable and had a slight reduction in tumor burden (Figure 4).

Discussion
This study describes three female adolescent patients with metastatic PPGL and extensive lung 
involvement. Each patient had catecholamine excess and hypoxemia with common complications (e.g., 
hypertension) [3, 20, 24]. In this small series, surgical intervention of isolated PPGLs was the first-line 
treatment in all patients followed by adjuvant chemotherapy and/or systemic radiotherapy. Two patients 
had a favorable outcome, while one succumbed to metastatic disease. Thus, early intervention that 
considers the consequences of tumor progression associated with severe hypoxia and catecholamine excess 
is important in these cases. This is especially true when considering how these conditions are interrelated 
(Figure 1), as hypoxia worsens catecholamine release and drives the progression of PPGLs (or other 
cancers) with pseudohypoxia-associated pathogenic variants (like VHL and SDHD) [27]. As such, any 
systemic therapy must be carefully selected to avoid further complications when a risk of rapid tumor lysis 
is present (leading to pulmonary edema and respiratory failure and/or concurrent catecholamine surges) 
and/or to avoid treatment-induced pulmonary sequelae (like lung fibrosis) [23, 27, 28]. Therefore, all 
patients with metastatic disease, including patients with extensive pulmonary metastases, should have 
guideline-compliant and frequent re-evaluation consisting of (1) measurement of plasma or urine 
metanephrines and (2) anatomic (e.g., CT) as well as functional imaging [e.g., most often 68Ga-DOTA(0)-
Tyr(3)-octreotate (68Ga-DOTATATE PET/CT)] [22, 29–31].

Pediatric hereditary PPGL

Pediatric cases of PPGL are exceptionally rare with an incidence of 0.45 cases per million in childhood/ad-
olescence as opposed to 4.6 cases per million in adults which is a 10-fold greater incidence [2, 32, 33]. The 
most common cause of PPGLs in children and adolescents are pathogenic variants in cluster 1 genes: VHL 
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(27–51%) and SDHD (8–10%). These PPGL variants are quite prevalent and on average present at the age 
of 9 (for VHL-associated tumors) and 10 (for SDHD-associated tumors), respectively [32–38]. In children, 
metastases may be synchronous (present at the time of diagnosis), but are more likely to develop over time, 
further emphasizing the need for lifetime surveillance so that providers can identify the signs and symp-
toms of progressive disease [32]. Recognition of these indicators allows for appropriate selection of treat-
ment; the risk of metastasis in children (due to disease going undetected) is higher than in adults and may 
have catastrophic implications if stored catecholamines are suddenly released (by surgery, induction of an-
esthesia, and or interfering medications) [33]. Poor prognostic indicators include extra-adrenal tumor loca-
tion (PGL compared to PCC), size (≥ 5 cm) at presentation, familial inheritance (in these cases often cluster 
1A PPGLs), non-secretory status (as tumors are considered less differentiated), metastasis (especially meta-
stases to the lung and liver), and metastatic interval (patients with a shorter metastatic interval are 
younger and more likely to have soft tissue metastases) [13, 16, 33, 38–40]. In contrast, favorable pro-
gnostic indicators include cluster 2 PPGLs (e.g., well-differentiated and often lower grade) and small tumors 
(preferably found in the adrenal gland) [13, 16, 32, 38–40].

Evaluation and screening

Evaluation for PPGL in pediatric patients tends to be prompted by symptoms (hypertension: 64–93%, 
headache: 39–95%, diaphoresis: 90%, palpitations: 53%) in 90% of patients or by detection of an 
incidentally noted mass [2, 13]. Subsequent biochemical analysis may be performed—taking care to avoid 
interfering agents—with plasma metanephrines, which are the most sensitive, or urinary metanephrines 
which are less sensitive but avoid the difficulties of venipuncture in children [3, 29, 41, 42]. Beyond 
metanephrine and normetanephrine, plasma 3-methoxytyramine (3-MTY, the metabolite of dopamine) or 
chromogranin A may reveal clinically silent/non-secretory tumors [3, 41, 43–46].

Whole-body imaging (e.g., CT and/or MRI) should be obtained when PPGL(s) are suspected with CT 
providing superior diagnostic sensitivity in identifying metastatic pulmonary lesions [13, 47]. Alternatively, 
MRI avoids radiation exposure but often requires sedation and endotracheal intubation while gadolinium 
(if used) has been shown to accumulate in the CNS with unclear significance [35]. The imaging modality (CT 
vs MRI) with the best benefit and least risk should be chosen on a case-by-case basis.

In general, anatomic imaging usually precedes functional imaging; but is lacking in its ability to 
characterize small nodules or bony lesions [47]. Functional imaging in PPGLs utilizes radiopharmaceuticals 
that target functional receptors/proteins for precise localization of these tumors within the body [13, 23, 
47–49]. Radiopharmaceuticals such as 68Ga-DOTATATE, 18F-flurodopa (18F-FDOPA), 18F-fluorodopamine 
(18F-FDA), and 18F-fluorodeoxyglucose (18F-FDG) are used for PPGL imaging. However, 68Ga-DOTATATE, 
along with the non-specific radiopharmaceutical 18F-FDG are used most often to screen for PPGL [47, 49, 
50]. Particularly, 68Ga-DOTATATE PET/CT has excellent sensitivity in cluster 1A (e.g., SDHx) PPGLs 
including in pediatric patients, HNPGLs, and metastatic lesions [10, 17, 49–60]. In comparison, 18F-FDOPA 
PET/CT has excellent sensitivity for tumors in cluster 1B (VHL, EPAS1/HIF2A) and cluster 2 (RET, MAX, NF1, 
etc.) PPGLs and apparently sporadic PCC [61–67]. 123I-mIBG scintigraphy is mainly performed along with 
68Ga-DOTATATE to establish whether treatment with 131I-mIBG or 177Lu/225Ac-DOTATATE (respectively) 
would be suitable [23, 48–52, 68].

PET imaging is often used as a surrogate for invasive procedures in patients with metastatic or 
progressive disease. Where surgery or biopsy is avoided for fear of inducing the release of stored 
catecholamines resulting in catecholamine-induced hypertensive crisis, especially in children [24, 33]. 
Patients who can undergo resection or biopsy qualify for histopathological analysis to verify molecular 
pathogenesis active in tissues through IHC staining (with biochemical markers such as chromgogranin, 
synatophyosin, and Ki-67). A component of this analysis may include the Grading Systems for Adrenal PCC 
and PGL (GAPP) and/or the PCC of the Adrenal Gland Scales Score (PASS) validation systems which assist in 
the classification of metastatic PPGL. However, both systems have shown a lack of utility in the clinical 
environment displaying limited predictive ability [8].
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Treatment

Treatment consists of operative and non-operative interventions. Notably, adrenoceptor blockade is 
advisable in secretory tumors before any intervention (operative or non-operative) that may cause tumor 
disruption. α-Adrenoceptor blocking agents followed by β-adrenoceptor blocking agents should be 
administered to avoid unbalanced adrenoceptor blockade which may precipitate (or worsen) hypertension 
or tachyarrhythmias and lead to PPGL crisis [1].

In operable patients with PPGL, resection is the first line of treatment for solitary lesions and is 
sometimes indicated for lesions causing mass effect or to decrease catecholamine excess associated with 
various symptoms/signs. Therefore, surgery (in those that qualify) collectively increases overall survival by 
24% [69].

In inoperable patients with PPGL (due to poor performance status or location, for example, HNPGLs 
abutting eloquent neurologic structures, thus precluding surgery) systemic and/or local radiotherapies are 
the treatments of choice [33, 34].

Rate-of-growth (fast versus slow growing) in progressive disease, guides subsequent management. In 
more rapidly progressive inoperable disease, patients are most often treated with CVD chemotherapy, 
followed by tyrosine kinase inhibitors (TKIs), and finally, in some selected patients, immunotherapy [22, 
69]. Immunotherapy using pembrolizumab, a humanized anti-PD-1 receptor antibody, is being investigated 
in clinical trials evaluating patients with cluster 1 and 2 tumors with PD-L1 expression but must be further 
reviewed [69–71]. Chemotherapy can elicit a response (defined as decreased or normalized blood 
pressure/decreased number and dosage of antihypertensive medications and/or reduced tumor size) in a 
few weeks as opposed to radionuclide therapies that may require 6–12 months [69]. CVD chemotherapy is 
usually the first line of treatment and is especially effective in patients with cluster 1 tumors (complete 
response: 11%, partial response 44%) [6, 69]. Chemotherapy with temozolomide (TMZ) is a common 
second line of treatment, due to its efficacy as a short-term treatment, or in conjunction with capecitabine 
(CAPTEM), which has been shown to prolong survival in advanced neuroendocrine tumors, but requires 
further study in PPGLs [70, 71]. TKIs are also being studied in the treatment of PPGL and may be an 
alternative if CVD and/or CAPTEM are ineffective or implemented as a first-line therapy [72–74]. Current 
TKIs under ongoing investigation include: sunitinib, pazopanib, cabozantinib, axitinib, and anlotinib which 
have been shown to elicit very promising responses in various cohorts overall [73, 75, 76]. Notably, both 
CVD and systemic radiotherapy may lead to cell lysis, consequent catecholamine release, and associated 
complications; therefore, close monitoring upon initiation of treatment is advisable.

In more indolent inoperable disease, patients are treated with targeted peptide receptor radionuclide 
therapies (131I-mIBG: low-specific-activity or high-specific-activity) or 177Lu-DOTATATE (Lutathera©) if 
their corresponding functional imaging (123I-mIBG or 68Ga-DOTATATE) demonstrates radiotracer uptake 
within their tumors. Previously, some treatment options included either high-specific-activity 131I-mIBG or 
177Lu-DOTATATE (Lutathera©). Patients with sufficient bone marrow reserve, high catecholamine burden, 
and avidity on 123I-mIBG scintigraphy qualify for the FDA-approved high-specific-activity 131I-mIBG therapy 
(Azedra©), however, its production has been discontinued [23, 68, 77]. So, in such cases, low-specific-
activity 131I-mIBG therapy is a suitable alternative [23, 68]. Lutathera© (177Lu-DOTATATE) is best suited for 
patients who are avid on 68Ga-DOTATATE or 64Cu-DOTATATE [23, 58, 68]. It is often well-tolerated with a 
disease control rate of up to 90% and can be given to patients greater than 65 years of age or patients with 
compromised bone marrow reserve [23, 68]. Thus, in hypoxic patients with disease that is avid on both 
studies (123I-mIBG and 68Ga-DOTATATE), perhaps Lutathera© may be preferable as it imposes less of a risk 
in suppressing erythropoiesis (an essential compensation in hypoxic patients), especially if high 131I-mIBG 
doses are considered for treatment [23]. However, endocrinopathies may be seen with Lutathera© [78, 79]. 
Other options for inoperable patients with 68Ga-DOTATATE avid disease include somatostatin analogs, such 
as lanreotide or octreotide, often in those with cluster 1 tumors, especially SDHx PPGLs [80–82]. Currently, 
a phase II trial evaluating lanreotide in inoperable/metastatic PPGL is ongoing (LAMPARA, NCT03946527) 
and its results would be pivotal in determining its efficacy in this cohort.
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Therefore, in short, these imaging modalities have a two-fold benefit as they bind to and highlight 
somatostatin receptors upon tumors, allowing them to be imaged, while simultaneously demonstrating that 
therapy directed toward somatostatin receptors is effective [7, 82–84]. Alternatively, if patients progress on 
chemotherapy and radionuclide therapy, or cannot qualify for radionuclide therapy (because the disease is 
not avid on 123I-mIBG scintigraphy or 68Ga-DOTATATE PET), these patients may be treated with TKIs or 
chemotherapy with CVD or TMZ, as described above.

Avidity on various imaging modalities is a significant indicator of treatment viability and certain 
pathogenic variants have a higher incidence of positive response on certain therapies. CVD therapy has 
been shown to elicit continued tumor reduction in SDHB-mutated tumors. This positive response with CVD 
can also be extended to subsequent treatment with TMZ which has higher susceptibility due to increased 
methylation in the O6-methylguanine-DNA methyltransferase (MGMT) promoter region in SDHB-mutated 
tumors [6]. As such, a similar response is elicited in SDHx pathogenic variants due to similar 
pseudohypoxia-driven increases in succinate and DNA hypermethylation [6]. For those patients with fast-
growing metastatic disease SDHx pathogenic variants that demonstrate sensitivity to 68Ga-DOTATATE 
PET/CT usually have a positive response to somatostatin analogs [23]. A trial at the NIH evaluating patients 
that underwent treatment with Lutathera© demonstrated a 6-month progression-free survival of 
19.1 months (22.7 in sporadic cohorts, and 15.4 in SDHx cohorts) further demonstrating that differences in 
treatment efficacy can be observed with different pathogenic variants [23, 85]. If these, more therapeutic, 
treatment options do not suffice, experimental options (as discussed below) can be pursued.

On the horizon

Currently, promising therapies include antagonists of the hypoxia signaling pathway (such as belzutifan), 
which is overactive in cluster 1 pathogenic tumors, PRRT with somatostatin antagonist, and α-emitter 
based targeted radiotherapy [86–89]. Clinical trials assessing the utility of belzutifan (NCT04924075), a 
HIF-2α inhibitor currently approved for the treatment of tumors harboring a VHL pathogenic variant, are 
ongoing [86–88]. Belzutifan could be a promising treatment modality carefully selected for patients with 
lung metastases given its efficacy, tolerability, and mechanism as it opposes the overactive hypoxia 
signaling pathway. Nevertheless, caution must be exercised in patients with hypoxemia as belzutifan 
decreases erythropoietin production resulting in anemia and potentially worsening tissue hypoxia [87, 88, 
90, 91]. Providers that encounter non-hypoxic pediatric patients with lung metastases from cluster 1 
tumors and suitable bone marrow reserve should consider enrollment on a clinical trial if available. 
Alternatively, an initial pilot study with 225Ac-DOTATATE suggests that α-emitter therapy could control 
metastatic disease and improve the quality of life in PPGL patients [23, 89].

Conclusions

Pediatric patients with PPGL are predisposed to more aggressive disease presentations (multifocal/meta-
static, extra-adrenal, and recurrent) over their lifespan compared to adult patients. If PPGLs metastasize to 
the lungs the risk of mortality may increase, especially when lesions are innumerable and secretory, as rep-
resented by patient 3 presented in this report. Despite these clinical challenges, by rationally considering 
the context of hypoxia, catecholamine excess, genetic background, and age, early intervention can minimal-
ize morbidity and offer a favorable prognosis.
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