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Abstract
Aim: This study evaluated the impact of retinal extracellular matrix (ECM) and key biomaterial substrates 
on the motility of transplantable retinal cells with genomic manipulation, using the therapeutic molecule, 
Topoisomerase II beta (Top2b), as a model.
Methods: Tests first applied in ovo electroporation to examine the effects of a pharmacological Top2b 
inhibitor (ICRF-193) on progenitor motility and development of embryonic retina. Complementary qRT-
PCR tests measured changes in select cadherin molecules in response to treatment. In vitro transfection 
produced cultured retinal progenitor cell groups with Top2b overexpression and Top2b knockdown. 
Differences in the adhesion and motility of Top2b altered groups, compared to wildtype cells, were 
measured upon biomaterial substrates used in emerging transplantation matrixes.
Results: Data illustrated significant differences in the number and spacing of retinal ganglion cells when 
retina was treated with ICRF-193, as well as downregulation of several key cadherin molecules. Cultured 
retinal progenitors with Top2b knockdown and Top2b overexpression exhibited different expression of 
chemotactic receptors, adhesion parameters, and modalities of migration upon substrates of laminin, poly-
L-lysine, and collagen IV. Significant changes in cell morphology and surface area were also measured 
compared to wildtype cells.
Conclusions: Corroborating in vivo and in vitro data support Top2b as a therapeutic target for retinal 
progenitor motility but indicate significant differences in the migration of Top2b altered cells upon 
substrates used in transplantation. These data highlight the therapeutic advantages of bioinspired materials 
developed to aid the motility of replacement cells with modified genetic expression to improve 
transplantation outcomes across the nervous system.
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Introduction
Adult vision loss is a growing and worldwide public health challenge with degenerative disorders, such as 
age-related macular degeneration, diabetic retinopathy, and glaucoma, expected to increase dramatically 
within aging populations [1, 2]. Regenerative medicine offers promising strategies to treat adult retinal 
disorders through cell replacement therapy, where specialized biomaterials are used to transplant groups 
of donor stem-like cells to replace degenerated or dysfunctional neurons (reviewed in [3]). Contemporary 
usage of hydrogels [4–6], decellularized matrix [7, 8], and scaffolds [9–11] for donor cell delivery has 
significantly increased cell survival to enable quantitative bioengineering study of transplantation 
processes. In complement, replacement cells have become increasingly genetically manipulated to replicate 
desired properties of highly specialized neurons [12, 13]. Indeed, modern genomic editing has achieved 
selective gene expression within native cell groups to alleviate the well-known challenges of immune 
rejection and inadequate differentiation reported when adding new genetic material [14]. While this novel 
biotechnology provides newfound opportunities for therapeutic genomic targets, the downstream 
implications of gene editing, silencing, or manipulation on cell-cell and cell-matrix behaviors remain 
underexplored. Significantly, changes to these fundamental cell processes can be positively or negatively 
amplified when combined with matrix substrates used in transplantable biomaterials.

Bioinspired materials designed to support replacement cells with specialized gene expression hold 
great promise for transplantation therapy [15], as the donor cells must adhere and migrate within the 
delivery matrix prior to their infiltration into damaged host [16, 17]. Our group has previously applied in 
vitro modeling to report that principal matrix proteins can directly impact cell communication [18], as well 
as stimulate collective and individual cell migration [19, 20]. Abilities to regulate distinct and/or hybrid 
modalities of cell cohesion and motility using biomaterials are exciting tools with which to promote the 
infiltration of replacement cells.

Transplantation in the retina is an excellent model to develop bioinspired materials in synergy with 
genomic editing because the eye is a self-contained and largely immune-privileged system. Moreover, 
practical surgical procedures in the eye have been developed for a variety of animal models [21], while 
established imaging techniques facilitate monitoring of donor cell behaviors over time [22]. The human 
retina is a multi-laminated structure that is populated by interconnected networks of neurons and glia 
across three principal layers, as per Figure 1. In brief, light refracted into the eye is first absorbed by rod 
and cone photoreceptors of the outer nuclear layer (ONL) that synapse with secondary neurons of the inner 
nuclear layer (INL), i.e., horizontal, amacrine, and bipolar cells shown. Secondary neurons then synapse 
with retinal ganglion cells of the ganglion cell layer (GCL), which are projection neurons that deliver 
photochemical signals to the brain through the optic nerve. Importantly, retinal homeostasis is facilitated 
by Muller glia cells that maintain osmotic and ionic balance for neuronal synapse [23] as well as by the 
inner (IPL) and outer plexiform layers (OPL) that serve as retinal extracellular matrix (ECM) to facilitate 
synaptic communication across the specialized groups of neurons [24].

Novel biomaterials are heavily investigated for the transplantation of retinal ganglion cells in the GCL 
[26, 27] significant to progressive vision loss in adults. Recent genomic targets for these cell replacements 
include DNA topoisomerases that regulate conformational changes in DNA topology during cell growth to 
affect migration, differentiation, and synapse (reviewed in [28]). The Topoisomerase II beta (Top2b) 
enzyme is important to the transcriptional regulation of genes needed in retinal development and has 
become an attractive regenerative target for its impacts on progenitor motility [29, 30]. Independent 
studies have demonstrated the mechanistic role of Top2b in the regulation of migration-targeted pathways, 
including via Rho GTPase signaling, and integrin-mediated adhesion (reviewed in [30–32]). The previous 
study from our group has demonstrated involvement of Top2b in the proper development and survival of 
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Figure 1. Schematic of the healthy adult retina. The human retina is a complex structure composed of specialized retinal 
neurons and Muller glia (MG) connected across three synaptic layers. The retinal pigment epithelium [9] is a single cell layer 
that lies between the neuroretina and choroid. Rod and cone photoreceptors interdigitate with RPE (retinal pigmented 
epithelium) but reside in the outer nuclear layer (ONL). Photoreceptors synapse across the outer plexiform layer (OPL) with 
secondary neurons in the inner nuclear layer (INL), i.e., the horizontal, amacrine, and bipolar cells shown. These secondary 
neurons then synapse across the inner plexiform layer (IPL) to communicate with retinal ganglion cells within the ganglion cell 
layer (GCL). These final, projection neurons transmit signals to the brain through the optic nerve. Modified from [25], CC-BY 4.0

postmitotic, retinal neurons [33, 34], suggesting that biomaterials developed to guide the adhesive and 
migratory behaviors of donor cells with modified Top2b expression have novel potential to promote the 
infiltration of replacement cells.

This study examined how changes in the expression of Top2b impacted in vivo motility in developing 
retina as well as in vitro cell migration upon transplantable matrix and protein substrates. Pharmacological 
inhibition of Top2b was observed to decrease cell-to-cell communication and cell alignment within GCL 
layers at early differentiation stages in embryonic day 6 (E6). Cultured replacement cells with persistent 
Top2b knockdown (Top2b-KD) and Top2b overexpression (Top2b-OE) exhibited varied expression of 
chemotactic receptors and significant differences in migration. Data additionally illustrated preferential 
attachment of Top2b-KD and Top2b-OE cell groups upon different matrix components, as measured by 
changes in the cell surface area and adhesive morphology. These corroborating results highlight the 
advantages of developing bioinspired materials to guide the infiltration of cell replacements with modified 
gene expression to improve transplantation outcomes.

Materials and methods
Chick embryos

Fertilized specific pathogen-free (SPF) white leghorn chicken eggs (Charles River Laboratories, Wilmington, 
MA, USA) were maintained at room temperature (25°C) for 2 h before being placed in an incubator at 
37.5°C with 60% humidity. The eggs were incubated for 96–100 hr (~4 days) to procure chick embryos at 
developmental stage embryonic day 1–4 (E1–E4) or Hamburger-Hamilton stages (HH) 12–22.

In ovo retinal injections and electroporation of reagents

Subretinal injections and in ovo electroporation of embryos at E4 were performed as per the literature [35, 
36] and shown in Figure 2. Briefly, the amnion and vitelline membranes were carefully removed with fine, 
sterile forceps to expose the embryo. For retinal injection, capillary glass pipettes (1.4 mm diameter; 
Drummond Scientific Company, Broomall, PA, USA, 2-000-001) were pulled with a microelectrode puller to 
get a 20 mm taper tip. The tip was broken under a dissecting microscope using a tweezer to obtain a tip 
opening approximately 0.1 μm in diameter. The microneedle was loaded with a mixture of 500 μM of the 
Top2b inhibitor ICRF-193 (Santa Cruz Biotechnology, Dallas, TX, USA, 21416-68-2) dissolved in 
HIBERNATE® media (Gibco, Thermo Fisher Scientific, Waltham, MA, USA, A1247501). Many contemporary 
studies have applied the commercial molecule tested to inhibit both Top2b and Top2a [37, 38]. However, 
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our study focused on cell migration, which is a cell process known to be regulated by Top2b rather than 
Top2a [39, 40]. Further, Top2a expression is mainly observed in proliferating cells, rather than in the post-
mitotic cells used in this study [41]. Hence, the inhibitory effect of ICRF-193 in postmitotic cells that 
undergo migration is largely specific to Top2b. This commercial inhibitor was chosen because of its 
widespread usage in both in vivo and in vitro projects [40, 42, 43]. Further, the concentration used in 
testing was selected to corroborate published studies [40, 42, 43].

Figure 2. Summary of in ovo retinal injection and electroporation used to deliver pharmacology. (A) A microneedle is 
loaded with the Top2b inhibitor (blue) within a GFP plasmid solution for visualization. (B) The microneedle is inserted within an 
E4 chick embryo. (C) Electroporation of the eye is performed using a pulse generator (arrows point to electrodes) to (D) deliver 
reagent within the retina. Scale bar = 1 mm. E4: embryonic day 4

The reporter pCAG-GFP plasmid solution with a concentration ranging 3–6 μg/μL and 0.2 μL of fast 
green (0.025%) (MilliporeSigma, Burlington, MA, USA, 2353-45-9) was attached to a 0.1 mL syringe 
(Hamilton Company, Reno, NV, USA, Gastight Model 1710) for visual confirmation of solution delivery and 
mounted onto a manual micromanipulator (WPI, Sarasota, FL, M3301-M3-R) with a small piece of 
masterflex silicone tubing on the syringe needle. The mixture was injected directly into the embryonic 
subretinal space, and the embryo was electroporated with 5 square pulses of 15 V for 50 ms with 950 ms 
intervals using a pulse generator (BTX Harvard Apparatus, Boston, MA, USA, ECM 830). GFP expression was 
used as a marker to locate retinal tissue affected by the Top2b inhibitor ICRF-193.

Processing and sectioning of retinal tissue

Chick embryos post-E4 retinal injections were harvested from the shell and euthanized by decapitation at 
E6 and E12. The eyes were harvested and transferred to a petri dish of cold 1× PBS (phosphate buffer 
saline; Thermo Fisher Scientific, Waltham, MA, USA, BP3994). The retinal pigmented epithelium [9] was 
carefully dissected using fine forceps, and the cornea, lens, and vitreous were removed. The retinal tissue 
was then fixed in 4% paraformaldehyde (PFA) (Thermo Fisher Scientific, Waltham, MA, USA, AA433689L) 
in 1× PBS overnight at 4°C, followed by three times cold PBS wash for 10 min at 4°C and then infiltrated 
overnight in 30% sucrose (in 1× PBS). Embryos injected with the GFP-reporter plasmid constructs were 
verified for successful transfection via retinal inspection with a fluorescent dissection microscope (Leica 
Microsystems, Wetzlar, Germany, Leica MZ16FA), before embedding the retinal tissues in a solution of 
optimal cutting temperature compound (OCT, Electron Microscopy Sciences, Hatfield, PA, USA). Tissues 
embedded in OCT were stored at –80°C until ready for sectioning. Embedded tissue samples were sectioned 
using a cryostat to obtain sections of 12-μm-thickness (Thermo Fisher Scientific, Waltham, MA, USA, 
0620E) and mounted on super-frost slides (Thermo Fisher Scientific, Waltham, MA, USA, 12-550-15S24), 
followed by air-drying. Immunohistochemistry using cell-specific markers was performed immediately 
afterwards.

Immunohistochemistry of retinal tissue

Immunostaining was performed using Shandon Slide Rack (Thermo Fisher Scientific, Waltham, MA, USA). 
Slides containing tissue sections were placed on a warming plate for 15 min to remove excess OCT medium 
(Fisher Healthcare, Waltham, MA, USA, 23-730-571). Sections were then fixed with drops of 4% PFA, 
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followed by 3 washes of 1× PBS for 10 min. Retinal sections were incubated for 1 hr in blocking solution 
[0.05% Triton X-100, 3% BSA, 10% goat serum or donkey serum (VWR, Radnor, PA, USA, 80054-446), in 1× 
PBS] at room temperature, followed by primary antibody overnight. Primary antibodies and dilutions used 
were as follows: mouse anti-Brn3a (1:200; MilliporeSigma, Burlington, MA, USA, AB5945) mouse, mouse 
Tuj1 (1:1,000; Abcam, Cambridge, UK, ab18207), mouse Calretinin (1:2,000; Chemicon, Rolling Meadows, 
Illinois, USA, MAB1568) and mouse Parvalbumin (1:1,000; Millipore, Burlington, MA, USA, MAB1572). 
Opposing control slides were not applied with any primary antibody. All slides were then washed with 1× 
PBS followed by the application of a secondary antibody carrying fluorescence from the appropriate host 
(mouse 594 nm, 1:300 dilutions; Jackson Immuno Research, West Grove, PA, USA, 715-585-150) for 1 hr. 
The slides were washed with 1× PBS and air dried, and a coverslip was placed on top to seal the samples 
using Cytoseal-60 (Thermo Fisher Scientific, Waltham, MA, USA, 50-252-72) for image analysis.

Cultured retinal progenitor cells

Retinal progenitor cells were commercially purchased (R28; Kerafast, Boston, MA, USA, EUR201) and 
cultured for testing. Growth media was prepared under sterile conditions using 89% Dulbecco’s Modified 
Eagle’s Medium (DMEM; ATCC, Manassas, VA, USA, 30-2002), 10% fetal bovine serum (FBS; Thermo Fisher 
Scientific, Waltham, MA, USA, 26140087), and 1% Pen-Strep (Gibco, Thermo Fisher Scientific, Waltham, MA, 
USA, 15-140-122). Cells were grown in ventilated, T-25 flasks (VWR, Radnor, PA, USA, 29185-300) for 
4–5 days until near confluency. Growth medium was then aspirated, and cells were incubated with 3 mL of 
Trypsin (Gibco, Thermo Fisher Scientific, Ontario, CA, 25200-072) at 37°C for 5 min to dislodge adherent 
cells. Trypsin was then neutralized with 8 mL of R28 media and cells were pipetted into a 15 mL centrifuge 
tube and centrifuged at 1,500 rpm for 5 min. The supernatant was aspirated, and the cell pellet was 
resuspended in 3 mL of fresh R28 growth medium. The cells were then re-seeded in a new T-25 flask at 106 
cells per mL and incubated at 37°C and 5% CO2 until confluency.

Production of Top2b-KD and Top2b-OE cells

A series of 24-well plate (VWR, Philadelphia, PA, USA, 29442-044) were coated with 15 μg/mL laminin 
(LM) (Corning, NY, USA, 354239) and incubated for 24 hr. Confluent cells were plated at a density of 0.5 × 
105 cells/mL with MEM media. Cells were incubated for 24 hr and allowed to attach. Transductions were 
performed using a lentiviral vector (Origene, Rockville, MD, USA, TL516385V, labeled with GFP) with a 
multiplicity of infection (MOI) of 1.5. The lentiviral vector was mixed with the medium, added to the cells, 
and incubated for 24 hr. The media was replaced after 24 hr and cells were fixed with 4% PFA (Thermo 
Fisher Scientific, Waltham, MA, USA, AA433689L) and stained for the desired receptor expression. 
Transfections were performed using the Lipofectamine™ 3000 Transfection Kit (Thermo Fisher Scientific, 
Carlsbad, CA, USA, L3000015, labeled with GFP). The Lipofectamine 3000 agent was diluted in MEM media. 
The master mix was prepared by diluting the DNA (VectorBuilder, Chicago, IL, USA, VB900007-6027zju) 
with MEM media and adding the P3000 reagent and was incubated for 10–15 min. The master mix was 
added to the cells and incubated for 4 days. Live transfected cells were then selected for antibiotic 
resistance using a 2.5 mg/mL solution of puromycin dihydrochloride (Gibco, Thermo Fisher Scientific, 
Waltham, MA, USA, A1113803), as per Figure S1.

Immunocytochemical staining of cell reporters

Cells were seeded in 24-well plates (VWR, Philadelphia, PA, USA, 29442-044) at a concentration of 2.5 × 105 
cells/mL and allowed to attach for 24 hr. Solutions of media from each well were removed, wells were 
washed 3 times with Dulbecco’s phosphate-buffered saline (DPBS; Sigma-Aldrich, Allentown, PA, USA, 
D8537), and cells were fixed with cold PFA (4%) for 5 min. Then, wells were washed with DPBS for 5 min 
twice at room temperature. Blocking buffer solution (0.05% Triton X-100, 2% donkey serum, and 3% BSA 
in DPBS) was added to each well for 15 min at room temperature. Following, wells were washed twice with 
DPBS for 2 min, and a primary antibody for the receptors was added to each well for overnight incubation: 
CXC chemokine receptor 4 (CXCR4; Invitrogen, Carlsbad, CA, USA, PA5-19856), fibroblast growth factor 
receptor (FGFR1; Invitrogen, Carlsbad, CA, USA, PA5-104788), and vascular endothelial growth factor 
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receptor (VEGFR1; Proteintech, Rosemont, IL, USA, 13687-1-AP). The next day, each well was washed 3 
times with 1× DPBS for 2 min, followed by the addition of secondary antibodies (Alexa Fluor 647 
AffiniPure; ImmunoResearch Laboratories, Inc., West Grove, PA, USA, 711-605-152) 1 hr at room 
temperature. Wells were washed 3 times with 1× DPBS for 2 min before addition of DAPI (1:1,000; Thermo 
Fisher Scientific, Carlsbad, CA, USA, D1306) into each well for 5 min at room temperature. Each well was 
washed with DPBS 3 times for 2 min.

Transwell assays and chemotactic agents

Boyden chamber assays (Sigma-Aldrich, St. Louis, MO, USA, ECM506) were used to examine the motility of 
each cell group toward a given concentration of different growth factors. Cells were seeded in the upper 
chamber of the well assay and allowed to settle on the upper surface of the membrane overnight. Growth 
factor solutions were then added to the media in the lower reservoir, and cells were left to migrate for 6 hr 
to through the transwell membrane, as described previously by our group and many others (Reviewed in 
[44]).

Transwell inserts used a polyester (PET) membrane (VWR, Radnor, PA, USA, 89235-020) of 10 μm 
thickness and 8.0 μm pore size. Approximately 600 μL of each growth factor vascular endothelial growth 
factor (VEGF; R&D Systems, Minneapolis, MN, USA, 564-RV), fibroblast growth factor-8 (FGF-8; Invitrogen, 
Carlsbad, CA, USA, PHG0184), and stromal derived factor 1-a (SDF-1a; Sigma Aldrich, St. Louis, MO, USA, 
SRP3276) was added to the bottom of separate transwell assays. Cells were seeded on the membrane at a 
concentration of 2.5 × 105 cells/mL within media at 5% CO2 and 37°C and left to incubate for 6 hr. After 
incubation, cells remaining on the top membrane were removed using a wet cotton swab. Control cells 
were stained with calcein-AM (Thermo Fisher, Burlington, ONT, CA, C1430) and reconstituted in PBS. Only 
live, fluorescent cells validated via optical microscopy were used for experiments.

A parameter called the Cell Migration Index, CMI, was defined to numerically compare the results of 
motile cells in response to different chemoattractants and control experiments (medium only). CMI is 
defined as the ratio of average numbers of motile cells in response to an exogenous growth factor and the 
average number of motile cells in control wells, as shown:

where the subscript i denotes the reagent in a specific well measured, ni represents the number of motile 
cells in that well, and “Ncontrol” is the average number of motile cells in control wells, per experiment.

Adhesion upon extracellular matrix and cell shape index

Concentrations of 15 μg/mL LM (Corning, Corning, NY, USA, 354239), 20 μg/mL poly-L-lysine (PLL) (Sigma 
Aldrich, St. Louis, MO, USA, P4707), and 20 μg/mL collagen IV (CIV) (Sigma Aldrich, St. Louis, MO, USA, 
C6745-1ML) were used to coat inner surfaces of 24-well plates (Falcon Corning, Corning, NY, USA, 353047). 
Uncoated polystyrene wells (VWR, Philadelphia, PA, USA, 29442-044) were used as a control. The plate was 
incubated at 37°C for 1 hr. Then, cells were seeded at 45,000 cells/mL in a 24-well plate. Five images were 
taken of each well using brightfield. This was repeated every 4 hr for 24 hr. A parameter called Cell Shape 
Index (CSI) was used to evaluate cell morphology, defined as:

where P is the cell perimeter and A is the cell area. A CSI value of 0 represents a purely circular cell while a 
value of 1 represents a purely elongated cell [45].

Gene primers and PCR analyses

Expression levels of four genes encoding adhesion molecules were measured using quantitative, real time 
polymerase chain reaction (qT-PCR): cadherin 2 (Cdh2), cadherin 6B (Cdh6B), cadherin 7 (Cdh7), and 
cadherin 8 (Cdh8). Primer specificity was verified using Basic Local Alignment Search Tool (BLAST), which 
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confirmed the selected forward and reverse primers listed. A FASTA sequence of desired species specific 
(Gallus gallus) mRNA was acquired from NCBI nucleotide database as shown in Table 1.

Table 1. Design of specific primers for qRT-PCR of chick retina

Name PCR product (bp) Primer sequence

Cdh2 426 Forward: AGCTGACCAACCTCCAACAG
Reverse: TGTACTTTCTCTCTGTCGAGCC

Cdh6B 269 Forward: CCCCCAGAGCACCTACCAAT

Reverse: ATCGAGGGTCCACGTGAGTA
Cdh7 319 Forward: GACCCTTCAGCGACATGACA

Reverse: TGTGCTGGATTCTGACTCTCC
Cdh8 289 Forward: TGGTGATTTGCGTAGCTTGTG

Reverse: TCTGTATGTAACCGGCCAACT

Primer pairs were selected based on PCR product size (200–300 bp) and analyzed using IDT’s oligo 
analyzer tool. Primers were examined for hairpin loop structures, high ∆G values and annealing 
temperature range Tm values for specificity and reliability. Relative gene expression data were analyzed 
using the conventional 2–ΔΔCt (DDCT) method [46].

Imaging and analyses

Microscopic images were analyzed using an upright fluorescence microscope (Zeiss Axio Imager A1) with a 
monochrome digital camera Axiocam MRM (Zeiss, Oberkochen, Germany). Images were acquired to 
confirm cell-specific markers in 549 nm, 594 nm, and 647 nm channels. Images were captured at the same 
exposure and threshold, and at the same intensity per condition. Cells that were modified to overexpress or 
knockdown Top2b expression were evaluated for CSI, surface area, and migration if they displayed a GFP 
tag after 24 hr of incubation. Each well was imaged five times, and ImageJ software was used to evaluate 5 
cells per image for CSI, surface area, and migration distance. Fluorescing cells were counted using ImageJ.

Statistical analyses

Each in vitro data set was collected from replicates using n = 4 per condition, with five images collected per 
well containing at least five cells per image. A Shapiro-Wilks test was performed to assess the normality of 
the data. Cell migration was analyzed with two-way ANOVA with Tukey’s post-hoc test. Surface area index 
and CSI were analyzed with two-way ANOVA with Dunnett’s post-hoc test. Cell receptor expression was 
evaluated using Kruskal-Wallis rank test with Dunn’s multiple comparisons post-hoc test. Significance was 
denoted as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, and (****) p < 0.0001.

Results
Top2b inhibition delays the development and alignment of the ganglion cell layer

The first set of tests examined the effects of pharmacological Top2b inhibition using the well-established 
chick model of retinal embryonic development [47]. Tests combined our previous methodology of in ovo 
retinal injection with electroporation to deliver ICRF-193, a known potent topoisomerase II inhibitor [48]. 
Figure 3 depicts histological sections of developing chick retina at embryonic day E6 and E12, treated and 
untreated with the Top2b inhibitor ICRF-193. Images of E6 illustrate the nuclei (DAPI staining in blue) of 
neuronal cells within the outer (ONBL) and inner neuroblastic layer (INBL), which are early developmental 
stages of the ONL, INL, alongside the GCL. Tests first examined differences in the neuronal marker beta 
tubulin III (Tuj1), a structural component of the microtubule network expressed during the earliest stages 
of neuronal differentiation in the chick retina [49]. As shown (Figure 3A, 3B), both the number and intensity 
of Tuj1+ retinal cells (red) in the INBL were significantly reduced via Top2b inhibition compared to control 
retina. Top2b inhibition additionally disrupted cellular arrangement of the INBL layer at E6, as its thickness 
was significantly reduced compared to control and INBL cell arrangement depicted wide spacings not 
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observed in control retina. Images gathered at the later differentiation stage of E12 illustrate nuclear 
staining of neuronal cells (DAPI in blue) within the developed retinal ONL, INL, and GCL. In addition, OPL 
and IPL separate the cell layers at this developmental stage, as marked. Data (Figure 3C, 3D) illustrate no 
significant differences observed in the number of Tuj1+ cells between Top2b-treated and control retinas at 
E12. Moreover, differences in the thickness of GCL layers were insignificant (as shown by arrows).

Figure 3. Inhibition of Top2b delays the development and alignment of the ganglion cell layer (GCL). Representative 
fluorescence images of immunostained sections of chick embryonic retina treated with a commercial Top2b inhibitor (ICRF-193) 
against control at embryonic developmental day E6 and E12. Neurofilaments of the developing inner plexiform layer (IPL) were 
stained with anti-Tuj1 (A–D), and retinal ganglion cells were stained using anti-Brn3a (E–H). All cell nuclei were stained with 
DAPI (in blue). At E6, Tuj1+ labeled processes of retinal ganglion cells (RGCs) in the control retinas (A), but its expression was 
widespread and reduced in the ICRF-193 treated sections (i.e., Top2b inhibited) (B). Brn3a+ cells were located in the GCL of 
control retinas (E) but were more widely dispersed and formed grouped cell masses in the inner neuroblastic layer (INBL) and 
outer neuroblastic layer (ONBL) in ICRF-193 treated retinas. At E12 no significant differences (D) in Tuj1+ expression or in (H) 
numbers of Brn3a+ cells were observed. Arrowheads indicate Tuj1+ or Brn3a+ cells. Scale bar = 50 μm. E6, E12: embryonic day 
6, day 12; GCL: ganglion cell layer; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner 
plexiform layer

Retinal slices were next examined for differences in expression of the marker Brn3a, a transcription 
factor critical to the differentiation of dendritic arbors that regulate function in retinal ganglion cells [50, 
51]. Images at E6 (Figure 3E, 3F) reveal that Brn3a+ cells (red) were located uniformly along the INBL in 
control retinas but observed to be unevenly dispersed along the INBL of Top2b-inhibited retina. Moreover, 
Brn3a+ cells were highly clustered in ICRF-193 treated retinas, but not in control (denoted by arrows). By 
E12, however, Top2b-inhibited retinas and illustrated no significant differences in cell clustering within the 
GCL compared to control (Figure 3G, 3H).

Top2b inhibition disrupted calcium signaling across retinal ganglion cells

Control and Top2b-inhibited retina were additionally studied for changes in the expression of calretinin 
and parvalbumin, two calcium-binding proteins that regulate calcium transport and neuronal excitability 
[52, 53]. Figure 4 illustrates decreases in the expression of calretinin (red) across cells of the INBL between 
control and ICRF-193 treated retina at E6. As shown, decreased levels were observed along a significantly 
thinner INBL (Figure 4A, 4B). However, no difference in calretinin expression or GCL thickness was 
observed by E12 (Figure 4C, 4D). Retinas stained for parvalbumin similarly showed lowered expression in 
cells of the INBL between control and ICRF-193 treated retina at E6. Moreover, arrows point to significant 
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reduction of INBL thickness with lower expression of parvalbumin (Figure 4E, 4F). By E12, however, 
changes in parvalbumin expression within the GCL were insignificant across control and treated retina 
(Figure 4G, 4H).

Figure 4. Top2b inhibition disrupted calcium signaling across retinal ganglion cells (RGCs). Representative fluorescence 
images of immunostained sections of chick embryonic retina treated and untreated with a commercial Top2b-inhibitor (ICRF-
193) at E6 and E12. Neurofilaments were stained with anti-calretinin (A–D) and intracellular calcium-binding proteins with anti-
parvalbumin (E–H; in red). Cell nuclei were stained with DAPI (in blue). At E6, calretinin-labeled neurofilaments in both the GCL 
and outer neuroblastic layer (ONBL) (A), while its expression was dramatically reduced in ICRF-193 treated (Top2b inhibited) 
retinas (B). Arrowhead indicates the inner neuroblastic layer (INBL). Parvalbumin expression was detected in the RGCs at the 
INBL-ONBL boundary (E, arrowheads), but not detected in ICRF-193 treated retina (F). At E12, the control and ICRF-193 
treated samples showed no significant differences in calretinin (C, D) or parvalbumin expression (G, H). Scale bar = 50 μm. E6, 
E12: embryonic day 6, day 12; GCL: ganglion cell layer; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear 
layer; IPL: inner plexiform layer

Top2b inhibition downregulated cell adhesion molecules

Our study next examined differences in the gene expression of adhesion molecules known to be significant 
to cell to cell signaling and GCL formation [54]. Tests applied qRT-PCR between developing retina treated 
and untreated with Top2b inhibitor ICRF-193 to illustrate relative changes in the gene expression of four 
critical cadherin molecules in E6–E12 retina: Cdh2, Cdh6B, Cdh7, and Cdh8. Figure 5 illustrates that levels 
of gene expression for all cadherin molecules were lower for Top2b-treated retina than control from 
E6–E10. However, the relative expression of Cdh2, Cdh6B, Cdh7, and Cdh8 was insignificant (p > 0.05) 
between control and Top2b-inhibited retina by E12.

Cultured Top2b-KD and Top2b-OE cell groups produced different expression levels of chemotactic 
receptors

Experiments next manipulated a heterotypic, retinal progenitor cell line previously reported to contain a 
majority of retinal ganglion cells [55] to develop two distinct cultured cell groups with different profiles of 
Top2b expression. Top2b-KD were produced through in vitro transfection with a Top2b-shRNA (shTop2b) 
plasmid construct previously established by our group [29], and Top2b-OE were developed via transfection 
with a plasmid encoding Top2b cDNA. Retinal progenitor cells with unaltered Top2b expression are 
denotes as wildtype or Top2b-WT. Figure 6 illustrates Top2b-induced differences measured in the 
expression of 3 chemotactic receptors of interest to retina: VEGFR (receptor for VEGF ligand), FGFR 
(receptor for FGF-8 ligand), and CXCR4 (receptor for SDF-1a, also known as CXCL12). As seen, no significant 
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Figure 5. Relative expression of genes for cadherin molecules as determined by qRT-PCR using the 2–ΔΔCt (DDCT) 
method. Relative expressions of (A) Cdh2, (B) Cdh6B, (C) Cdh7, and (D) Cdh8 are shown at E6 through E12 for embryonic 
chick retina treated with a commercial Top2b inhibitor (ICRF-193) against control. E6–E12: embryonic day 6–12

differences (p > 0.05) were measured in the expression of VEGFR between Top2b-WT, Top2b-KD, and 
Top2b-OE cell groups. However, expression of FGFR was significantly higher for Top2b-WT than Top2b-KD 
(p < 0.01), while FGFR expression of Top2b-KD cells was not significantly different against Top2b-OE (p > 
0.05). By contrast, Top2b-OE cells exhibited dramatic increases in the expression of CXCR4, with average 
intensity values that were 2.5× higher than Top2b-WT (p < 0.05). VEGFR and FGFR expressions in Top2b-
OE cells were only slightly higher than Top2b-WT (p > 0.05).

Cultured Top2b groups exhibited different migratory behaviors to selected cytokines

Top2b-KD, Top2b-OE, and Top2b-WT cell groups were next exposed to external growth factors to examine 
the effects of Top2b expression on chemotaxis. Cell migration was evaluated using the Cell Migration 
Factor, CMI (Eq. 1), which normalized the number of motile cells of the Top2b-WT group towards the media 
only condition (no added growth factors, CMI = 1.0). Figure 7 shows that Top2b-WT cells migrated with a 
lower CMI value to FGF than to media control (p < 0.05), with a larger CMI value to VEGF relative to media 
control (p < 0.05). Cells of the Top2b-WT group exhibited migration with comparable CMI between SDF-1a 
and the media control (p > 0.05). Motile Top2b-KD cells produced lower CMI values than Top2b-WT cells, 
with a CMI value of 0.02 ± 0.058 compared to media control. Top2b-KD cells migrated in lower numbers to 
all growth factors studied, with a CMI of 0.13 ± 0.155 to FGF (p < 0.05), CMI of 0.15 ± 0.295 to VEGF (p < 
0.05), and CMI of 0.08 ± 0.185 to SDF-1a (p = 0.05). Lastly, smaller total numbers of Top2b-OE cells 
migrated toward media control than those of the Top2b-WT cell group, with a CMI value of 0.56 ± 0.42. 
Top2b-OE cells migrated in higher numbers than Top2b-KD cells but in lower numbers than Top2b-WT 
cells to all growth factors relative to media control. Motile Top2b-OE cells displayed an average CMI of 0.19 
± 0.009 to FGF (p < 0.01), CMI of 0.32 ± 0.216 to VEGF (p < 0.05), and a CMI of 0.35 ± 0.151 to SDF-1a (p < 
0.05).
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Figure 6. Cultured retinal progenitor cell groups with Top2b overexpression (OE) and knockdown (KD) illustrate altered 
expression of select chemotactic receptors compared to wildtype cell groups with no Top2b manipulation (WT). Cell 
groups illustrated significant differences in the expression of selected chemotactic receptors: vascular endothelial growth factor 
receptor (VEGFR1), fibroblast growth factor receptor (FGFR1), and c-x-c chemokine receptor 4 (CXCR4, receptor for the 
stromal cell-derived factor 1, SDF-1a, ligand). Statistical significance across the cell groups is denoted by p-value: * < 0.05, ** < 
0.01, **** < 0.0001 as via two-way ANOVA tests followed by Dunnett’s post-hoc test

Figure 7. Top2b manipulation altered the measured chemotactic migration of cultured progenitor cell groups. The 
migration of cells with Top2b overexpressed (OE) and knockdown (KD) was measured against wildtype cells without 
manipulation, Top2b-WT (WT). Data is represented using the cell migration index, CMI, which normalized the number of motile 
cells by the number of WT motile cells to the control (media solution only). Statistical significance is denoted by p-value: * < 
0.05, ** < 0.01, *** < 0.001, **** < 0.0001 as per Kruskal-Wallis with Dunn’s post-hoc test

Top2b targeting induced differences in cell matrix adhesion

The final set of experiments measured morphological differences between Top2b-KD, Top2b-OE, and 
Top2b-WT cell groups attached upon LM, PLL, CIV, and polystyrene (PST, used as control). These materials 
were selected for study because they (a) have each been well studied in mechanisms of cell adhesion [56], 
(b) are components of many contemporary biomaterials [26], and (c) have been examined previously by 
many groups with retinal progenitors for applications in transplantation [15, 18, 57].

Data represents cell morphology using the parameter of CSI commonly applied to denote varying levels 
of cell elongation significant to functional matrix adhesion [58]. Figure 8A shows that average CSI values of 
Top2b-WT cells were observed to decrease over 24 hr for all surface polymers used. As seen (Figure 8A-1), 
values of CSI upon PST (as control) were highest immediately after plating, with an initial value of 0.95 ± 
0.06 that decreased to a minimum value of 0.49 ± 0.09 at 24 hr. CSI of Top2b-WT cells adhered upon CIV 
followed a similar pattern, with a maximum value of 0.87 ± 0.05 after plating and a minimum CSI of 0.44 ± 
0.11 at 24 hr. By contrast, cells of the Top2b-WT group adhered upon LM with an initial CSI of 0.86 ± 0.09, 
but then decreased sharply after 12 hr. The CSI of these cells upon LM reached a minimum of 0.36 ± 0.15 
after 24 hr. Lastly, the CSI values of Top2b-WT cells adhered upon PLL illustrated the largest and sharpest 
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decrease in values, with a maximum of 0.77 ± 0.09 upon plating and a minimum of 0.36 ± 0.08 after 24 hr. 
In all cases, groups of Top2b-WT cells exhibited large changes in adhesion within the first 12 hr of 
overnight attachment, and illustrated small changes in the proceeding 12 hr. Statistical significance is 
shown per time point against PST (used as control).

Figure 8. Substrates stimulate different adhesion responses from progenitor cell groups with modified Top2b 
manipulation. Calculations for the Cell Shape Index (CSI) of retinal progenitors with wildtype Top2b (WT) expression (A1), 
Top2b overexpression (OE) (A2), and Top2b knockdown (KD) modified (A3) illustrate different morphologies upon substrate 
proteins of control (glass, polystyrene), laminin, poly-L-lysine (PLL), and collagen IV. Changes in cell surface area (SA) are 
similarly denoted for retinal progenitors with wildtype Top2b expression (WT) (B1), Top2b overexpression (OE) (B2), and Top2b 
knockdown (KD) (B3) upon the same substrate molecules. Statistical significance against control is denoted by p-value: * < 
0.05, ** < 0.01, *** < 0.001, **** < 0.0001 as per two-way ANOVA followed by Tukey’s post-hoc test

The adhesion of Top2b-KD cells exhibited similar patterns of adhesion upon PST (control) surfaces 
with average CSI values of ~0.95 for all conditions. CSI values decreased upon each matrix substrate over 
24 hr, with the lowest CSI of 0.42 ± 0.15 measured upon PLL (p < 0.05). In contrast to the group of Top2b-
WT cells, adhesion of Top2b-KD cells upon LM illustrated slower changes over time. Further, adhesion of 
Top2b-OE cells displayed similarly decreasing values of average CSI upon matrix substrates but 
demonstrated a dramatic decrease for adhesion upon LM. As seen, while all CSI values approached 1.0 upon 
initial plating, the CSI of Top2b-OE cells upon LM decreased sharply after only 8 hr and reached a minimum 
value of 0.47 ± 0.09 after 24 hr (p < 0.05). Top2b-OE cells also exhibited increased CSI during adhesion 
upon PLL and CIV compared to PST (control).

Lastly, cell adhesion was assessed via changes in the average surface area of each cell group, as shown 
in Figure 8B. Top2b-WT cells exhibited the largest average surface area upon LM (p < 0.05), with 
statistically insignificant changes (p > 0.05) upon PLL or CIV (Figure 8B-1). By contrast, the highest average 
surface area of Top2b-KD cells was measured upon PLL (p < 0.05) (Figure 8B-2) and highest upon PST for 
Top2b-OE cells (Figure 8B-3), with insignificant differences on all other surface matrices (p > 0.05).

Discussion
Regenerative medicine offers promising treatment for adults with degenerative vision loss through cell 
replacement therapy, which transplants donor stem cells to replace dysfunctional and apoptotic neurons. 
Contemporary replacement cells have become increasingly bio-engineered using genomic editing to 
recapitulate explicit responses of specialized retinal neurons [59]. How these novel, edited cells interact 
with the biomaterials developed for their transplantation is critical, as migratory responses upon and 
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within the biomaterial initiate the infiltration of replacement cells needed within the retinal host. The 
current study evaluated how bioinspired materials can be developed to support the transplantation of cells 
with manipulated gene expression of Top2b as a model target for retinal cell replacements.

Top2b has received renewed interest in transplantation therapy because of its well-established 
regulation of genes critical to the differentiation and motility of retinal progenitors [33, 34]. Recent studies 
demonstrated that knock out models of Top2b resulted in the systemic death of both vertebrate and 
invertebrate animals [30, 60], while selective deletion of Top2b was able to alter the lamination of 
developing retina in mice [33, 34] and zebrafish [61]. This project first examined the impact of 
pharmacological Top2b inhibition on early retinal development (E6) using the commercial molecule ICRF-
193, a known catalytic inhibitor widely used in cancer therapy [62, 63]. Treatment with ICRF-193 produced 
lower numbers of cells in the retinal GCL, an overall thinner GCL layer with irregular cellular spacing, and 
reduced levels of differentiation (Figure 3). While ICRF-193 has been widely used as a Top2b inhibitor in 
prior studies, the molecule may exhibit partial activity against other topoisomerases (e.g., Top2a) to 
confound mechanistic interpretations. However, our study focused on the migration of postmitotic cells, 
which preferentially express Top2b, rather than Top2a [39–41]. Hence, the inhibitory effect of ICRF-193 in 
postmitotic cells that undergo migration is largely specific to Top2b. This effect is consistent with observed 
migration defects in Top2b knockout mice studies [29, 30, 34]. Moreover, Top2b inhibition reduced calcium 
signaling between cells within the GCL (Figure 4), suggesting dysregulation in neuronal signaling due to 
reduced cell interactions with plexiform layers. This comprehensive data highlights Top2b as a therapeutic 
target for cell replacement therapy with understudied impacts on cell-to-matrix interactions able to alter 
cell motility.

Pharmacological inhibition of Top2b additionally downregulated expression of cadherin molecules 
significant to cell-to-cell cohesion (Figure 5). This result is novel because it points to the roles of cell-to-cell 
adhesion molecules in promoting different modalities of migration. De/differentiated cells are well-known 
to respond to external stimuli via collective behaviors, such as clustering and organoid formation [64–66] 
that can lead to collective migration. Downregulation of Top2b may, therefore, inadvertently promote 
individual cell migration, which may be beneficial or detrimental to the migration of replacement cells upon 
selected biomaterials for transplantation. Interestingly, few studies have considered the collective 
responses of replacement cells upon transplantation matrix or within adult host ECM [67, 68]. These results 
validate the interplay of Top2b regulation with ECM components in retina, as each of these fundamental 
processes depends upon cell interactions with developing plexiform layers, which serve as retinal ECM for 
their constituent, structural proteins essential to synaptic connections between neurons. Our data 
highlights new opportunities for development and/or application of bioinspired materials able to attenuate 
or promote these behaviors to improve transplantation outcomes.

As the effects of pharmacological inhibition were predictably depleted by later embryonic stages (in 
this study E12), we next examined effects of Top2b regulation in transfected cells to selected cytokines 
significant to retinal development [69, 70]. Top2b-OE cells illustrated significantly higher expression of 
FGFR1 and CXCR4, while expression of all receptors in Top2b-KD cells was less than Top2b-WT (i.e., no 
Top2b modifications) cell groups (Figure 6). As expected, Top2b-KD cells were then observed to migrate in 
the lowest numbers towards all growth factors. However, Top2b-OE cells failed to exhibit higher migratory 
responses than the wildtype group (Figure 7) despite the higher expression of cognate cell receptors. We 
note that existing data support the specificity of Top2b knockdown and knockout in migration phenotypes 
[30, 33, 34] and also address concerns about off-target effects. Future work will perform mechanistic study 
to explore Top2b rescue and downstream effectors. We hypothesize that this result is due to collective cell 
migration, where motile clusters with an average size larger than the pores of the transwell membrane 
were unable to migrate across the assay. Our group has previously reported the upregulation of cadherin in 
cultured wildtype progenitors with higher expression of CXCR4, as well as demonstrated the clustering and 
collective motility responses of de/differentiated retinal cells [19, 20, 71]. Our current results are 
consistent with published data and underscore future studies to apply our microfluidic devices to image 
clustered cell migration [20].
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Our final set of tests examined how Top2b regulation impacted cell adhesion upon substrates used for 
transplantable biomaterials, as Top2b-KD cells exhibited elongated morphology upon PLL while Top2b-OE 
cells exhibited the most elongation upon LM (Figure 8). The larger values of CSI measured from the 
different adhered cell groups suggest that modification of Top2b expression impacts the selection of 
constituent substrates needed to develop biomaterials that promote infiltration. These underexplored 
impacts of gene manipulation provide new opportunities for development of bioinspired materials to aid 
the migration of replacement cells into retinal host. This has high clinical relevance because it indicates that 
biomaterials can be paired to genetically modified Top2b cells to augment cell migration into host retina. 
This is a highly underexplored first step in achieving the integration desired via transplantation. We also 
note that while Top2b was used as a model in our study, the data highlight selective pairing of ECM 
components with cells modified for specific characteristics, in complement to development of compound 
biomaterials with properties that better mimic physiological conditions. Future study will apply established 
microfluidics-approach to visualize gene edited cell groups for the average size and distribution of cell 
clusters [25] and to evaluate how this collective modality can be enhanced or attenuated upon different 
biomaterial substrates. Future experiments will also utilize CRISPR technology to produce retinal 
progenitor cell groups with altered Top2b regulation for long term culture and transplantation study.

In summary, development of transplantable materials is a crucial aspect of cell replacement therapy 
that must incorporate the modalities of cell behavior upon matrix substrates. Stem cell replacements for 
dysfunctional retinal neurons are increasingly gene-edited and/or manipulated, which often impacts cell-
to-cell and cell-to-matrix responses needed to stimulate infiltration into retinal host. Bioinspired materials 
able to modulate the nature and modalities of adhesion and migratory responses of transplanted cells have 
great potential to advance transplantation outcomes.
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