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Abstract
Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide, highlighting the 
necessity for better diagnostic modalities. Artificial intelligence (AI) and machine learning (ML) are 
increasingly being used with multimodal cardiovascular diagnostic testing to provide standardized and 
reproducible assessment methodologies that have been shown to detect subtle signals beyond human 
recognition. This state-of-the-art review will summarize the various applications of AI across key 
modalities: describing its use in electrocardiography to risk-stratify patients; in coronary computed 
tomography angiography (CCTA) for quantitative plaque and stenosis measurements as well as measuring 
fractional flow reserve (FFR) derived from imaging; in cardiac magnetic resonance imaging (MRI) to 
automatically segment cardiac chambers and characterize tissue; and in intracoronary imaging [specifically 
intravascular ultrasound (IVUS) and optical coherence tomography (OCT)], where automation is evolving. 
We will also discuss combining these sources of data through clinical decision support systems (CDSS) that 
can enhance the comprehensive evaluation of IHD. We anticipate several issues for implementation, 
including validation, regulation, transparency, and clinical integration. Overall, AI can help reduce the 
number of time-consuming manual measurements used to augment quantitative features of an assessment 
and improve physiology-based decision-making. However, there were marked differences in performance 
based on the task and dataset, and AI was not always better than the human experts. Ultimately, AI must be 
validated prospectively, must be generalizable, and reported transparently for safe adoption in IHD care 
globally.
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Introduction
Ischemic heart disease (IHD) is still the leading cause of death and morbidity around the world, affecting 
millions of patients and contributing to significant healthcare costs [1]. IHD is presented in different ways: 
stable angina and acute coronary syndromes fall on a spectrum of coronary artery disease (CAD), making 
the selection of appropriate diagnostic pathways challenging and patient-specific. The latest European 
Society of Cardiology (ESC) 2024 guidelines on chronic coronary syndromes emphasize a tailored 
approach—including identification of patients with very low likelihood of obstructive CAD who may not 
require testing, and the use of noninvasive imaging [computed tomography (CT) or functional tests] as first-
line diagnostics based on pre-test probability [2]. Historically, the diagnosis of IHD has relied on clinical 
assessment (including history and examination) and various procedures and tests, such as 
electrocardiography, biochemical markers, and imaging. The limitations of traditional paradigms of 
diagnostic assessment include inter-observer variability between researchers, subjective inference, and the 
inability to adequately describe the complexity of IHD. These limitations have led to a renewed interest in 
enhancing the diagnostic evaluation methods for IHD [3].

This review surveys the current state-of-the-art algorithmic methods for diagnosing IHD [4], exploring 
the combination of artificial intelligence (AI)/machine learning (ML) and multimodal imaging, advanced 
intracoronary assessment, and new-age diagnostic platforms that could revolutionize modern 
cardiovascular practice in the future.

While contemporary diagnostic pathways for chronic coronary syndromes have advanced since the last 
guideline update, emphasizing pre-test clinical likelihood, appropriate use of anatomic and functional 
testing, and the incorporation of risk modifiers, we accordingly position AI/ML advances within the context 
of the current pathways’ logic to better delineate where algorithmic tools can supplement, rather than 
supplant standard approaches. Thus, in this context, we examine task-specific applications: an AI-
electrocardiogram (ECG) for risk stratification [e.g., reduced left ventricular ejection fraction (LVEF) 
screening] [5, 6]; coronary computed tomography angiography (CCTA) for quantitative plaque/stenosis 
analysis and machine-learning-enabled fractional flow reserve (FFR)-CT [7–9]; cardiovascular magnetic 
resonance (CMR) for automation of chamber/function/tissue characterization [10, 11]; and certain 
intracoronary uses [intravascular ultrasound (IVUS)/optical coherence tomography (OCT)] where 
automation is emerging [12–14]. Finally, we clarify considerations related to validation, implementation, 
and regulation to highlight demonstrated clinical utility from aspirational prototypes.

Algorithmic shift in cardiovascular imaging
ML basics in cardiology

ML applications in cardiovascular medicine employ various algorithmic approaches, each with its 
advantages for specific diagnostic questions. Supervised learning algorithms, such as support vector 
machines, random forests, and neural networks, have demonstrated excellent performance in classification 
tasks related to pattern identification, particularly in detecting CAD [15].

Deep learning (DL) architectures such as convolutional neural networks (CNNs) have changed medical 
image analysis by automatically extracting differentiating features from complex imaging data without 
significant manual feature engineering. CNNs can simultaneously process large amounts of imaging data 
and identify subtle patterns and relationships that are beyond human perception [16].

An overview of supervised, reinforcement, and unsupervised learning across ECG, magnetic resonance 
imaging (MRI), and echocardiography (ECHO) is shown in Figure 1, which illustrates how multimodal 
inputs feed algorithmic pipelines to generate diagnostic outputs.

AI in electrocardiography

AI-facilitated electrocardiographic interpretation exemplifies a modern achievement of effective 
identification in the cardiovascular sphere. Early studies are also exploring AI-enabled ECG models to 
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Figure 1. Algorithmic approaches in cardiovascular diagnosis. Schematic overview showing how multimodal inputs—ECG, 
cardiac magnetic resonance (MRI), and transthoracic echocardiography (ECHO)—feed algorithmic pipelines to produce 
diagnostic outputs. The figure contrasts three learning paradigms: (1) supervised learning (labeled data → model training → 
predictions and model update with new data); (2) reinforcement learning (agent-environment loop using state, action, and 
reward to improve policy); and (3) unsupervised learning (clustering/structure discovery from unlabeled data). The end-point is a 
workstation rendering of a cardiac diagnosis. ECG: electrocardiogram; MRI: magnetic resonance imaging. Created in 
BioRender. Tomala, M. (2025) https://www.biorender.com/7ykr1qa.

identify patients with silent ischemia or obstructive CAD despite normal ECG findings; however, this 
approach is not yet validated for routine practice [17–19]. DL networks have learned patterns from millions 
of ECG recordings and can detect subtle changes potentially associated with CAD, in some cases achieving 
performance comparable to experienced clinicians [16].

Advances in noninvasive imaging
Advances in CCTA

CCTA has evolved from an anatomical imaging modality to a diagnostic tool through algorithmic 
advancements. Modern AI-based CCTA analysis platforms can determine the presence, quantity, and type of 
coronary plaque with high accuracy and reproducibility [20, 21].

ML algorithms applied to CCTA data can identify high-risk plaque features, such as positive remodeling, 
low-attenuation plaques, spotty calcifications, and the napkin-ring sign—all of which are linked with 
increased risk of acute coronary syndromes. These systems exhibit high consistency compared to human 
interpretation, saving time on analysis [8].

The clinical workflow and system architecture for AI-enabled CCTA analysis are summarized in 
Figure 2.

By integrating FFR derived from CT (FFR-CT) with ML algorithms, the diagnostic capabilities of CCTA 
have advanced further. AI-enhanced FFR-CT analysis can determine the hemodynamic significance of 
coronary stenosis with similar diagnostic accuracy to invasive pressure wire measures, but non-invasively 
[9]. For example, the commercially available HeartFlow FFR-CT platform has been shown in multicenter 
studies to improve CCTA’s diagnostic performance by correctly reclassifying non-significant lesions and 
matching invasive FFR measurements [9].

https://www.biorender.com/7ykr1qa
https://www.biorender.com/7ykr1qa
https://www.biorender.com/7ykr1qa
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Figure 2. AI-enhanced CCTA analysis protocol. Panel A—Clinical workflow & AI processing pipeline. Image acquisition 
(premedication as required; heart-rate control; ECG-gated CCTA with contrast; standard technical parameters and quality 
control) is followed by AI processing (automated coronary segmentation; plaque and stenosis detection/quantification using 
convolutional neural networks). Clinical output includes CAD-RADS 2.0 grading (categories 0–5), stenosis/severity assessment, 
risk stratification (e.g., MACE prediction with calibrated probabilities and confidence intervals), and structured reporting; 
integration options include HL7/FHIR and accelerated reporting. Panel B—System integration architecture. CT scanner 
(DICOM) → AI processing service → validation/quality check → structured report (DICOM SR TID 1500) → PACS archive → 
EMR for the finalized clinical report. AI: artificial intelligence; CAD-RADS: Coronary Artery Disease Reporting and Data System; 
CCTA: coronary computed tomography angiography; EMR: electronic medical record; FHIR: Fast Healthcare Interoperability 
Resources; HL7: Health Level Seven; MACE: major adverse cardiac events; PACS: picture archiving and communication 
system; CT: computed tomography; DICOM: Digital Imaging and Communications in Medicine; ECG: electrocardiogram.

Advances in cardiac MRI

By incorporating AI enhancements, CMR imaging enables the comprehensive assessment of myocardial 
anatomy, function, and tissue characteristics on a broader scale than previously possible. More recent 
automated analysis programs can segment cardiac chambers with minimal user input, measure ejection 
fraction, and detect myocardial scarring (e.g., myocarditis) with accuracy and timeliness [11].

Moving outside the typical CMR anatomical analysis, new DL models applied to CMR perfusion imaging 
identify subtle perfusion abnormalities associated with CAD, with improved sensitivity compared to visual 
analysis. These algorithms examine dynamic sequences of perfusion, including quantitative perfusion 
mapping, and quantify regional perfusion defects with high diagnostic accuracy [10].

The AI-integrated pipeline for chamber segmentation, tissue characterization, and perfusion mapping 
is depicted in Figure 3, which summarizes the CMR preprocessing, DL analysis, and standardized reporting 
steps.
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Figure 3. Automated cardiovascular magnetic resonance (CMR) analysis workflow with AI integration. Stage 1—DICOM 
download of multi-sequence CMR (cine, LGE, T1/T2 mapping, perfusion, etc.). Stage 2—AI preprocessing (denoising, motion 
correction, intensity normalization, quality assurance). Stage 3—DL analysis for automated LV/RV chamber and myocardial 
segmentation, feature extraction, perfusion, and strain metrics. Stage 4—Clinical parameters: ejection fraction, ventricular 
volumes, mass, strain, and flow/valve quantification. Stage 5—Clinical report: automated, standardized, and structured. System 
performance/implementation notes: processing designed to complete within minutes per study, supports batch processing, 
exhibits high segmentation accuracy and reproducibility, is DICOM-compatible, and integrates with HL7/FHIR and electronic 
medical record (EMR) systems. DICOM: Digital Imaging and Communications in Medicine; DL: deep learning; LV/RV: left/right 
ventricle; LGE: late gadolinium enhancement; AI: artificial intelligence; HL7: Health Level Seven; FHIR: Fast Healthcare 
Interoperability Resources.

Key AI applications, typical performance ranges, and primary use cases are summarized in Table 1. 
Table 1 provides a modality-by-modality overview relevant to screening, anatomic, and physiologic 
assessment.

Table 1. Imaging modalities and AI applications.

Modality Algorithm type Diagnostic accuracy Main applications References

ECG DL neural network 
(AI-ECG)

AI-ECG models demonstrate AUROC 
0.85–0.94 for CAD phenotypes

CAD detection and risk 
stratification from resting ECG

[17]

CCTA CNN, ML 
algorithms 
(automated plaque 
analysis)

DL plaque/stenosis: Sens ~ 84–89%, Spec 
~ 85–96% (Han et al. [20] 2020; Jin et al. 
[21] 2022); FFR-CT: accuracy ~ 85–87% vs. 
invasive FFR (MACHINE)

Automated plaque quantification; 
identification of high-risk plaque 
features; non-invasive FFR-CT

[7, 9, 20, 
21]

CMR DL (fully 
convolutional 
networks)

High accuracy of automated segmentation; 
AI-perfusion with improved sensitivity vs. 
visual assessment

LV/RV segmentation; quantitative 
tissue characterization of 
ischemic scar

[10, 11]

HD-IVUS ML, neural 
networks

High concordance with experts; lumen ~ 
85%, stent area ~ 97%

Automated lumen/media 
segmentation; plaque 
composition; PCI optimization in 
IHD

[22, 23]

OCT ML algorithms 
(high-resolution 
wall analysis)

Comparable to expert analysis (task-
specific)

TCFA identification; macrophage 
assessment; stent implantation 
optimization (lumen 
segmentation, landing zone 
selection)

[12–14]

FFR 
(image-
derived)

ML, 3D 
reconstruction

Accuracy ~ 85% vs. invasive FFR 
(CT/FFR/angiography-derived)

Non-invasive hemodynamic 
assessment of stenosis 
significance; potential reduction 
in pressure wire use

[9, 14]
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AI: artificial intelligence; CAD: coronary artery disease; CCTA: coronary computed tomography angiography; CMR: 
cardiovascular magnetic resonance; CT: computed tomography; ECG: electrocardiogram; FFR: fractional flow reserve; FFR-CT: 
FFR derived from CT; HD-IVUS: high-definition intravascular ultrasound; ML: machine learning; OCT: optical coherence 
tomography; AUROC: area under the ROC curve; CNN: convolutional neural network; DL: deep learning; LV/RV: left/right 
ventricle; PCI: percutaneous coronary intervention; TCFA: thin-cap fibroatheroma; 3D: three-dimensional; IHD: ischemic heart 
disease.

Advances in intracoronary imaging
High-definition IVUS (HD-IVUS)

HD-IVUS represents a significant advancement in intracoronary visualization strategies, providing an 
unprecedented understanding of coronary vessel wall morphology and plaque features. The integration of 
AI algorithms with HD-IVUS has transformed our understanding of plaque analysis and procedural 
guidance [24].

State-of-the-art HD-IVUS systems with ML capabilities can automatically identify vessel boundaries, 
quantify plaque burden, and characterize plaques in terms of their components. These algorithms can 
differentiate fibrous, fibro-fatty, necrotic core, and dense calcium features, providing a more thorough 
plaque analysis to guide therapy decisions [25].

The end-to-end AI pipeline for HD-IVUS acquisition, analysis, and reporting is shown in Figure 4. 
Figure 4 illustrates automated lumen/media segmentation, plaque characterization, and decision-support 
outputs.

Figure 4. HD-IVUS algorithm analysis platform. HD-IVUS: high-definition intravascular ultrasound.
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End-to-end workflow for automated analysis of HD-IVUS, showing:

Data acquisition—HD-IVUS scanner with automatic pullback, ECG-gated acquisition, Digital 
Imaging and Communications in Medicine (DICOM) interface, and storage of raw/RF frames.

1.

Pre-processing pipeline—noise filtering, speckle reduction, image enhancement, temporal 
alignment, artefact suppression, motion compensation, and quality assessment.

2.

AI analysis engine DL models (e.g., CNN, U-Net, ResNet, Transformer) performing lumen/media 
segmentation, plaque characterization, disease/stenosis detection, quantitative metrics (e.g., 
minimum lumen area, plaque burden), and risk-prediction algorithms.

3.

Clinical output—three-dimensional (3D) vessel reconstruction, automated stenosis report, 
decision-support summaries for risk stratification and treatment guidance, picture archiving and 
communication system (PACS)/electronic medical record (EMR) integration, and structured 
reporting.

4.

Continuous learning feedback loop—expert validation/annotation, quality-metrics monitoring, 
dataset curation, model versioning, clinical-outcomes tracking, and automated model updates.

5.

Key performance domains. Segmentation accuracy, processing speed (per pullback/real-time 
capability), diagnostic performance [sensitivity/specificity/negative predictive value (NPV)/positive 
predictive value (PPV) by task], and clinical agreement with experts.

Platform infrastructure ( implementation example):  c loud-native deployment with 
containerization/orchestration for scalability, RESTful APIs with Health Level Seven (HL7)/Fast Healthcare 
Interoperability Resources (FHIR) interoperability, and DICOM connectivity to PACS systems.

The AVVIGO+ Automated Lesional Assessment platform is an example of the integration of AI with HD-
IVUS imaging. This platform provides automated measurement of luminal area, vessel area, and plaque 
burden in real-time, with 85% agreement for lumen assessments and 97% agreement for stent area 
measurements [22].

Advanced neural networks applied to HD-IVUS data can predict procedural outcomes related to 
optimal stent size, expansion characteristics, and potential complications. These predictive models can 
analyze the overall geometry of the vessel, the distribution of plaque, and the characteristics of the 
underlying tissue to recommend personalized procedural strategies for each patient [26].

Enhancements to OCT

OCT is currently the highest-resolution imaging modality for coronary vessels, providing detailed 
information on plaque microstructure and the characteristics of the vessel wall. The advent of AI to enhance 
the analysis of images derived from OCT has enabled OCT to become a powerful diagnostic and therapeutic 
guidance tool [12].

ML applications to OCT data have automated the identification and quantification of thin-cap 
fibroatheromas (TCFAs), lipid pools, macrophage infiltration, and other components of high-risk plaque 
with greater accuracy than expert human analysis. Furthermore, these ML algorithms are capable of 
analyzing terabytes of data across thousands of OCT cross-section images in seconds, leading to a robust 
assessment of the entire vessel [13].

As shown in Figure 5, the OCT AI engine automates lumen and wall segmentation, feature extraction, 
and high-risk plaque characterization. Figure 5 displays the processing steps and clinical outputs used for 
percutaneous coronary intervention (PCI) planning and follow-up.

The Ultreon OCT software is a clinical example of AI-enabled software for OCT-guided interventions. 
The Ultreon system uses ML algorithms that automate lumen segmentation, make stent sizing 
recommendations, and identify optimal landing zones, with the aim of improving clinical outcomes.
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Figure 5. AI-enhanced optical coherence tomography (OCT) analysis platform: automated intracoronary image 
processing workflow. Input—OCT acquisition. High-resolution intracoronary pullbacks in a DICOM-compatible format. 
Processing—AI engine (deep learning CNN). (1) Preprocessing & enhancement; (2) automatic lumen/wall segmentation; (3) 
feature extraction; (4) plaque characterization; optional (5) risk-score calculators and automated measurements. Screenshot—
user interface view showing automated lumen and wall segmentation overlays, plaque characterization outputs, and stent-
planning suggestions (sizing and landing zones). Output—clinical report. Automated identification of lesions and high-risk 
features (e.g., TCFA, macrophage signal, calcium burden), quantification, stent-planning suggestions, and longitudinal follow-up 
visualization. Clinical applications. PCI optimization (device sizing, landing-zone selection, post-stent assessment) and risk 
assessment (event prediction, restenosis monitoring). System performance & benefits. Fast processing, high 
reproducibility/standardization, improved measurement quality, and comprehensive structured reports. CNN: convolutional 
neural network; DICOM: Digital Imaging and Communications in Medicine; PCI: percutaneous coronary intervention; TCFA: 
thin-cap fibroatheroma; AI: artificial intelligence.

Sophisticated OCT AI algorithms have emerged that can predict stent under-expansion for calcified 
lesions based on pre-procedural imaging analysis, which enables the identification of the best methods to 
address calcifications and plan for procedural optimization strategies. The predictive models of stent 
expansion in calcified lesions analyze calcification geometry and patterns, plaque morphology, and vessel 
geometry to inform deployment decisions, demonstrating significant potential [27].

Physiological assessment algorithms (FFR)
The combination of AI with FFR assessment has significantly enhanced the accuracy and capability for 
performing physiological assessments of coronary arteries. ML algorithms can take angiographic image 
inputs to create 3D reconstructions of the vessels’ geometry to calculate pressure gradients across stenotic 
regions [28].

Recent AI-enabled FFR systems [including quantitative flow ratio (QFR) derived from angiography] 
demonstrate diagnostic accuracy in the mid-80% range for identifying hemodynamically significant 
stenoses when compared to invasive pressure-wire FFR, albeit with some variability depending on lesion 
complexity. Non-invasive techniques diminish the need for pressure wire introduction in many cases, 
thereby decreasing the complexity and risk of invasive procedures [29].
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Potential clinical applications:

Cathlab decision-making: immediate clinical assessment of the significance of stenosis and the 
option for transcatheter pressure wire measurement.

1.

Pre-procedure planning: possibility for simulated ex vivo effect of planned stenting on FFR.2.

Population-based ML: accumulating anonymized results for collective benefit in a shotgun effect to 
improve, train, and validate subsequent predictive models continually.

3.

The incorporation of FFR calculations with intravascular imaging data enables a multifaceted 
assessment that includes not only anatomic but also physiological characteristics. Advanced algorithms can 
connect the hemodynamic effect of plaques with their anatomical features and may ultimately result in 
tailored therapeutic approaches based upon variables specific to the lesion [30].

Clinical decision support systems
Integrated diagnostic platforms

Currently, clinical decision support systems (CDSS) are state-of-the-art solutions that integrate various 
diagnostic modalities and utilize advanced AI technology to provide a comprehensive evaluation of 
cardiovascular health. These CDSS include an analysis of electrocardiographic data, pathways, and scores 
based on biochemical markers, imaging characteristics, and clinical details, providing personalized risk 
evaluations and treatment recommendations for patients [31].

In such decision-support applications, AI recommendations were found to be feasible and concordant 
with expert interventional cardiologists’ plans, highlighting that AI can assist without compromising 
decision quality. However, the ultimate judgment remains with the physician. A side-by-side comparison of 
AI vs. standard practice is shown in Table 2. Table 2 details endpoints, throughput, and cost implications by 
modality.

Table 2. Comparison of AI and human performance across imaging modalities.

Modality Metric/Endpoint AI performance Human/Standard 
comparator

Throughput/Time 
(min)

Cost 
implications

References

ECG Detection of CAD 
phenotypes from 
resting ECG 
(obstructive CAD, high 
CAC, regional 
akinesia)

AUROC: CAC ≥ 
300 0.88; 
obstructive CAD 
0.85; regional 
akinesis 0.94

N/A (no direct 
human ECG 
comparator in cited 
study)

Not reported Lowest [17]

CCTA Automated plaque and 
stenosis quantification

High agreement 
with experts (ICC 
0.964 plaque; 
0.879 %stenosis); 
agreement with 
IVUS; predicts MI

Manual 
quantitative 
analysis typically 
requires tens of 
minutes

≤ 1 min (AI) vs. 
25–30 min (manual)

Medium-high [7]

SPECT 
MPI

Classification of 
ischemia/obstructive 
CAD (SPECT)

DL outperforms 
TPD (total 
perfusion deficit) 
(per-patient AUC 
0.80 vs. 0.78; per-
vessel 0.76 vs. 
0.73); explainable 
DL improves 
physician 
interpretation

Expert nuclear 
cardiology reading; 
TPD vs. standard 
software 
comparator

Not consistently 
reported; DL 
assistance can 
shorten review in 
practice

High [32, 33]

Cardiac 
MRI

Automated 
cine/LGE/T1 analysis

Strong 
performance on 
cine/T1/LGE tasks; 
substantial 
workflow speed-up

Expert manual 
reading is the 
reference standard

AI saves ~ 10 min 
per patient; manual 
30–90 min

Highest [11, 34, 35]
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Table 2. Comparison of AI and human performance across imaging modalities. (continued)

Modality Metric/Endpoint AI performance Human/Standard 
comparator

Throughput/Time 
(min)

Cost 
implications

References

FFR-CT 
(CT-
derived 
FFR)

Lesion-specific 
ischemia vs. invasive 
FFR

AUC 0.84; 
accuracy 78% per-
vessel & 85% per-
patient; improves 
over visual CCTA 
(historical 
58%/71%)

Visual CCTA 
accuracy 68–75% 
(historical)

AI processing ~ 
60 min (historical); 
invasive FFR during 
procedure (per 
lesion)

Intermediate 
(lower than 
full invasive 
work-up)

[9, 36, 37]

AI: artificial intelligence; AUROC: area under the ROC curve; CAC: coronary artery calcium; CAD: coronary artery disease; 
CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; CT: computed tomography; FFR-CT: FFR 
derived from CT; LGE: late gadolinium enhancement; MPI: myocardial perfusion imaging; SPECT: single-photon emission 
computed tomography; T1: T1 mapping; AUC: area under the curve; DL: deep learning; ECG: electrocardiogram; IVUS: 
intravascular ultrasound; MRI: magnetic resonance imaging.

Precision medicine applications

Precision medicine involves utilizing the capabilities of healthcare best practices to support individuals. AI-
supported diagnostic systems will enable us to receive individually tailored medicine through accurate 
phenotyping and risk-stratification algorithms. Predictive and prescriptive modeling can identify 
subpopulations of patients with similar features or presentations; each may have an idiosyncratic 
pathophysiology or require patient-specific therapeutics. It is not unreasonable to expect that ML 
algorithms, when applied to integrated clinical data, will have the ability to predict treatment outcomes for 
individual patients based on a specific intervention, create a personalized list for drug selection, or identify 
those at the highest risk for an unwanted outcome. Personally tailored medicine is the future of 
cardiovascular medicine [38].

Regulatory status, validation evidence, and implementation notes for representative systems are 
summarized in Table 3. Table 3 lists platforms, methods, and deployment characteristics.

Table 3. AI systems and platforms in clinical practice.

System/Platform Technology/Method AI performance Clinical validation Implementation 
time

Regulatory 
status

References

AVVIGO+ Automated HD-IVUS 
assessment with real-
time 
lumen/vessel/plaque 
morphology analysis

Accuracy: 85% 
(lumen 
boundaries), 
97% (stent 
area)

Validated against 
expert manual 
measurements in 
multicenter studies

Real-time (< 
1 min per 
pullback)

FDA cleared, 
CE marked

[22]

Ultreon OCT AI-powered lumen 
segmentation with 
automated stent sizing 
and landing zone 
recommendations

High 
concordance 
with expert 
analysis; 
automated 
workflow 
guidance

Clinical studies 
demonstrate 
improved 
procedural 
efficiency and 
standardization

Immediate 
(during 
procedure)

FDA cleared, 
CE marked

[39]

PROTEUS AI-assisted stress 
echocardiography 
interpretation with 
automated wall motion 
scoring

Non-inferior to 
standard 
practice 
(primary 
endpoint met); 
AUC 0.87–0.91

Randomized 
controlled trial; 
improved inter-
reader 
consistency, 
especially for less-
experienced 
operators

< 5 min 
additional 
analysis time

Under 
clinical 
investigation

[40]

AI: artificial intelligence; AUC: area under the curve; CE: Conformité Européenne; FDA: Food and Drug Administration; HD-
IVUS: high-definition intravascular ultrasound; iFR: instantaneous wave�free ratio; OCT: optical coherence tomography.

Emerging technologies and future directions
Progress in DL

Progress in DL architecture, particularly transformer networks and attention-based architectures, is being 
applied to cardiovascular applications. These types of models have the potential to learn and generate 
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sequential data, identify temporal dependencies, and incorporate multiscale information of unprecedented 
complexities [41].

Generative adversarial networks (GANs) have been explored for generating synthetic data to support 
robust algorithms with limited data availability. This, along with other technologies, may help accelerate 
the algorithm development process and facilitate its application to other populations [42].

Federated learning applications

Federated learning methods enable the collaborative development of algorithms across multiple 
institutions while safeguarding the privacy of patient data. These methods support the development of 
robust diagnostic models using a variety of data sources while precluding the necessity for centralized data 
sharing, all while addressing privacy concerns and complying with all relevant regulations [43].

Real-time implementation

The advancement of edge computing solutions will allow for the deployment of AI algorithms in real-time 
within clinical contexts. These designs can provide instant feedback on diagnostic outcomes, procedural 
assistance, and risk evaluation, eliminating the need for cloud-based processing functions [44].

Emerging methods and their potential advantages are summarized in Table 4. The table outlines 
technical descriptions and development stages.

Table 4. Emerging AI technologies in cardiac imaging.

Technology Technical description Potential benefits Development 
stage

References

Transformer 
networks

Advanced deep learning 
architectures using self-attention 
mechanisms for sequence 
modeling and temporal pattern 
recognition

Sequential data analysis; modeling 
temporal dependencies in cardiac cycles; 
multi-scale context integration; improved 
long-range feature extraction

Research [41]

GANs Synthetic data generation and 
augmentation frameworks using a 
generator-discriminator architecture

Algorithm development with limited data; 
robustness via augmentation; domain 
adaptation between imaging vendors; 
privacy-preserving data synthesis

Experimental [42]

Federated 
learning

Distributed training across 
institutions without centralizing 
patient data, using encrypted 
gradient updates

Privacy protection (HIPAA/GDPR 
compliance); multi-institutional 
collaboration; improved model 
generalizability; larger effective training 
datasets

Implementation [43]

Edge 
computing

On-device/near-sensor computation 
for low-latency inference using 
optimized models (quantization, 
pruning)

Real-time processing (< 100 ms); instant 
feedback in clinical workflow; reduced 
cloud dependence; enhanced data 
security; offline capability

Development [45]

AI: artificial intelligence; GANs: generative adversarial networks; GDPR: General Data Protection Regulation; HIPAA: Health 
Insurance Portability and Accountability Act.

Implementation challenges and real-world clinical considerations
Assessment of diagnostic accuracy and clinical validation

Meta-analyses indicate that AI-enhanced diagnostic systems can achieve diagnostic accuracies comparable 
to those of expert physicians in specific tasks. For example, pooled results for detecting CAD across various 
imaging modalities show sensitivities of ~ 85–95% and specificities of ~ 80–90%, which is on par with 
expert reader performance [46, 47].

The PROTEUS trial is the first prospective, randomized, controlled trial examining AI-assisted stress 
ECHO. This multicenter trial demonstrated the non-inferiority of AI-enhanced interpretation compared to 
standard clinical practice for coronary angiography referral decisions [40]. Notably, the PROTEUS results 
showed no significant difference in appropriate angiography referrals between AI-assisted and standard 
interpretations in the overall cohort, confirming non-inferiority. Significantly, AI support improved 
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decision-making consistency among less-experienced clinicians and in complex cases, suggesting that AI 
can help level the field in diagnostic accuracy across operators [40].

Clinical implementation issues and barriers

While there is evidence of technical efficacy, several barriers hinder the implementation of AI diagnostic 
systems in clinical practice. These include approval processes for healthcare systems, acceptance by 
physician groups, reimbursement considerations, and integration with existing clinical workflows [48].

Another significant hurdle is standardizing AI algorithms across vendor platforms and clinical contexts. 
Comprehensive establishment of standardized protocols and comprehensive validation frameworks is 
necessary to facilitate widespread clinical adoption [47]. Another barrier is the lack of interpretability of 
many AI models—so-called “black box” algorithms—which can hinder trust among clinicians and patients. 
Ensuring transparency and explainability in AI decisions is increasingly seen as crucial for acceptance in 
practice. Data privacy and security also pose challenges; large datasets are needed to train robust 
algorithms, raising concerns about patient consent and data protection, especially when integrating AI tools 
across different hospital systems.

Food and Drug Administration (FDA) approval pathways

The regulatory landscape for AI medical devices is evolving as various government agencies with differing 
perspectives attempt to develop specific pathways for approving ML-based diagnostic tools. The FDA’s 
Software as Medical Device framework outlines the recommendations for algorithm validation and 
approval processes. As of 2023, the FDA has cleared or approved numerous AI-based medical devices, 
including several in cardiology, but the regulatory framework is still evolving to address ongoing algorithm 
updates and real-world performance monitoring [49].

Recent approvals of AI-enhanced cardiovascular diagnostic tools, including automated ECG 
interpretation systems and imaging analysis systems, have laid the groundwork for regulatory 
considerations and evaluation of this technology [50].

Ethical implementation

Ethical questions surrounding the implementation of AI in cardiovascular medicine include algorithmic 
bias, transparency requirements, and physician liability. To ensure equitable healthcare delivery, training 
datasets must be diverse and representative. Moreover, mechanisms for algorithmic accountability should 
be in place—including providing at least partial explanations for AI decisions and continuous monitoring of 
performance across different patient populations—so that biases can be detected and corrected [51].

Cost-effectiveness analysis

Early economic analyses suggest that AI-assisted diagnostic systems could lower healthcare expenditures 
through more efficient diagnosis, avoidance of unnecessary procedures, and improved resource utilization. 
There are reports of cost savings from 20–40% in health systems that incorporate an AI system into their 
daily clinical workflows [52]. However, these projections assume optimal implementation; real-world cost 
savings will depend on integration costs, staff training, and the extent to which such systems are adopted.

The improved time to interpretation, better consistency of diagnoses, and reduced repeat examinations 
offer significant economic benefits for health systems adopting AI diagnostics, resulting in a decrease in 
non-value-added time across the clinical workflow [53].

Workflow improvement

AI-assisted systems now save seconds on image assessment for each imaging study, rather than minutes, 
which does offer an improvement to workflow. Still, the actual impact on overall clinical workflow depends 
on factors such as system interoperability and the need for manual review of AI outputs—gains in speed 
must be weighed against time for validation of AI findings by clinicians. Automated preliminary reads have 
previously opened up the ideals of prioritizing urgent cases, reducing turnaround times, and optimizing 
resources [54].
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Clinical and economic outcomes related to AI-assisted diagnostics are summarized in Table 5. Table 5 
presents diagnostic accuracy ranges, projected cost savings, and time benefits.

Table 5. Clinical and economic outcomes.

Aspect Value Details References

Diagnostic 
accuracy

Sensitivity 85–95%; 
Specificity 80–92%

Meta-analyses of ML for CAD detection across imaging modalities; AI 
performance comparable to expert readers

[9, 47]

Cost savings 20–40% (projected) Early economic analyses of health systems implementing AI diagnostics; 
the magnitude depends on integration, training, and adoption

[36]

Time savings Seconds vs. minutes 
per imaging study

Automated preliminary reads shorten per-study assessment; potential 
gains in triage and turnaround times

[35, 55]

Expert 
agreement

≥ 85% (task-specific) HD-IVUS agreement with experts: lumen 85% and stent area 97%; AI-
assisted stress ECHO non-inferior, with improved consistency for less-
experienced readers

[22, 40]

AI: artificial intelligence; CAD: coronary artery disease; HD-IVUS: high-definition intravascular ultrasound; ML: machine learning; 
ECHO: echocardiography.

A summary of performance across key applications is shown in Figure 6, which displays pooled 
estimates of sensitivity, specificity, and accuracy across different modalities and tasks.

Figure 6. Performance metrics and clinical validation of AI applications in cardiovascular diagnostics. Descriptive 
comparison of the study-reported diagnostic performance by modality and task. Bars display the median of study-level 
sensitivity, specificity, and—where available—accuracy within each category; parentheses indicate the number of contributing 
studies: CCTA plaque detection (N = 19), OCT plaque erosion (N = 14), ML FFR-CT (N = 10), coronary angiography CNN 
models (N = 21), and CCTA stenosis detection (N = 7). Due to heterogeneous thresholds and reference standards, no formal 
meta-analysis was performed; values are descriptive and not pooled estimates. Where only one bar appears for a method, the 
other metrics were not consistently reported in the source literature. Key findings. OCT-based plaque-erosion detection showed 
the highest sensitivity (~ 96%) with strong overall balance across metrics; CCTA plaque and stenosis detection demonstrated 
consistently high accuracy across studies; ML FFR-CT achieved moderate performance (~ 76–80%) with variability by lesion 
complexity and image quality; CNN-based analysis of coronary angiography yielded high sensitivity (~ 90%). Overall variability 
across tasks underscores the need for application-specific validation and ongoing algorithm refinement before broad clinical 
deployment. CCTA: coronary computed tomography angiography; CNN: convolutional neural network; FFR-CT: fractional flow 
reserve derived from CT; OCT: optical coherence tomography; AI: artificial intelligence; CT: computed tomography.
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A comprehensive analysis of AI performance across 12 key cardiovascular applications reveals notable 
differences in diagnostic accuracy, sensitivity, and specificity, depending on the specific clinical task. The 
top-performing applications include ECG arrhythmia detection (with 97.8% accuracy), heart disease 
prediction (with 97.6% accuracy), and cardiac MRI segmentation (with 95.2% accuracy). More difficult 
applications, such as FFR estimation, achieve lower but still clinically relevant performance levels of 84%. 
Implementation barriers and practical solutions across regulatory, ethical, clinical, and economic areas are 
outlined in Table 6. Table 6 offers a brief checklist for deployment planning.

Table 6. Implementation challenges.

Category Challenges Solutions References

Regulatory FDA/CE approval pathways; validation standards; 
lifecycle oversight of adaptive algorithms

Software as a Medical Device (SaMD) 
frameworks; dedicated guidance; post-market 
performance monitoring

[49, 50, 56]

Ethical Algorithmic bias; transparency/interpretability; 
liability; data privacy

Diverse and representative datasets; bias 
auditing; explainable AI; accountability 
mechanisms

[48, 51, 56]

Clinical Workflow integration; physician acceptance; 
standardization; prospective validation

Training and protocols; vendor-agnostic 
standards; multi-center trials to demonstrate 
efficacy (e.g., PROTEUS)

[34–36, 40, 
52]

Economic Implementation costs, reimbursement models, 
and uncertain ROI

Cost-benefit analyses; value-based payment 
models; phased deployment; workflow 
efficiency gains

[36, 57]

AI: artificial intelligence; CE: Conformité Européenne; FDA: Food and Drug Administration; ROI: return on investment.

Conclusions
The increasing use of algorithms in diagnosing IHD marks a significant change in cardiovascular medicine, 
with the potential to enhance diagnostic accuracy, improve workflow efficiency, and enable more 
personalized patient care. Current applications of AI and ML for data collection demonstrate diagnostic 
accuracy that is equal to or superior to that of human experts for specific imaging methods and clinical 
scenarios.

The links between algorithms and multimodal imaging platform environments facilitate a holistic 
approach to cardiovascular assessment, revealing methodologically significant physiological and prognostic 
findings within a lucid and coherent diagnostic framework. AI-enhanced HD-IVUS and OCT imaging are 
showing great promise for both more detailed plaque characterization and procedural quality that was 
previously not possible.

Future directions include DL architectures for AI systems and ML, as well as federated learning and 
opportunities for real-time implementation of systems, which will further enhance the potential for 
diagnostics and clinical adoption. However, for widespread integration to be practical, fundamental issues 
of regulation, ethically responsible utilization, and clear and explicit clinical and economic value need to be 
overcome.

The evidence indicates that algorithmic methods are not just complementary to traditional evaluation; 
they are already altering how IHD is diagnosed, risk-stratified, and managed. They are poised to become 
ubiquitous in cardiovascular medicine, but realizing their full benefits will require ongoing evaluation of 
their impact on patient outcomes and addressing the remaining challenges in regulation, integration, and 
trust.

A stage-wise mapping of AI tools across the IHD diagnostic pathway is presented in Table 7. Table 7 
aligns tools with clinical intent and expected benefits.
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Table 7. Applications by diagnostic stage.

Stage AI tools Main benefits References

Screening AI-ECG Early detection of latent disease and population-
level risk prediction/triage

[6, 17]

Anatomical 
diagnosis

AI-CCTA; AI-CMR Accurate plaque quantification and characterization 
(CCTA); quantitative myocardial tissue 
characterization, including LGE/T1 mapping (CMR)

[7, 10, 11, 
21]

Functional 
assessment

AI-FFR (FFR-CT); AI-perfusion (stress 
imaging: echocardiography/nuclear)

Non-invasive hemodynamic evaluation; lesion-
specific ischemia assessment; potential 
improvement of reader performance in stress 
imaging

[9, 32, 33, 
36, 40]

Intervention 
planning

AI-IVUS; AI-OCT Procedure optimization (e.g., stent sizing and 
landing zone selection), outcome prediction, and 
intraprocedural decision support

[13, 22, 39]

Monitoring Integrated CDSS (with imaging and 
ECG data)

Personalized risk stratification, longitudinal follow-
up, and event prediction with integration of 
multimodal data into clinical workflows

[16, 18, 52]

AI: artificial intelligence; CCTA: coronary computed tomography angiography; CDSS: clinical decision support systems; CMR: 
cardiovascular magnetic resonance; CT: computed tomography; FFR: fractional flow reserve; FFR-CT: FFR derived from CT; 
ECG: electrocardiogram; IVUS: intravascular ultrasound; LGE: late gadolinium enhancement; OCT: optical coherence 
tomography.

Abbreviations
3D: three-dimensional

AI: artificial intelligence

AUC: area under the curve

AUROC: area under the ROC curve

CAC: coronary artery calcium

CAD: coronary artery disease

CAD-RADS: Coronary Artery Disease Reporting and Data System

CCTA: coronary computed tomography angiography

CDSS: clinical decision support systems

CE: Conformité Européenne

CMR: cardiovascular magnetic resonance

CNNs: convolutional neural networks

CT: computed tomography

DICOM: Digital Imaging and Communications in Medicine

DL: deep learning

ECG: electrocardiogram

ECHO: echocardiography

EMR: electronic medical record

ESC: European Society of Cardiology

FDA: Food and Drug Administration

FFR: fractional flow reserve

FFR-CT: fractional flow reserve derived from computed tomography

FHIR: Fast Healthcare Interoperability Resources

GANs: generative adversarial networks



Explor Cardiol. 2025;3:101275 | https://doi.org/10.37349/ec.2025.101275 Page 16

GDPR: General Data Protection Regulation

HD-IVUS: high-definition intravascular ultrasound

HIPAA: Health Insurance Portability and Accountability Act

HL7: Health Level Seven

iFR: instantaneous wave-free ratio

IHD: ischemic heart disease

IVUS: intravascular ultrasound

LGE: late gadolinium enhancement

LV/RV: left/right ventricle

LVEF: left ventricular ejection fraction

MACE: major adverse cardiac events

ML: machine learning

MPI: myocardial perfusion imaging

MRI: magnetic resonance imaging

NPV: negative predictive value

OCT: optical coherence tomography

PACS: picture archiving and communication system

PCI: percutaneous coronary intervention

PPV: positive predictive value

QFR: quantitative flow ratio

ROI: return on investment

SaMD: Software as a Medical Device

SPECT: single-photon emission computed tomography

TCFAs: thin-cap fibroatheromas

TPD: total perfusion deficit
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