Exploration of Cardiology

Open Access Review

How algorithms are transforming the diagnosis of ischemic heart disease—state of the art

Marek Tomala^{1,2*}

¹Center for Invasive Cardiology, Electrotherapy, and Angiology, 33-300 Nowy Sącz, Poland ²Clinical Research Center Intercard, 31-514 Kraków, Poland

*Correspondence: Marek Tomala, Center for Invasive Cardiology, Electrotherapy, and Angiology, 33-300 Nowy Sącz, Poland. marektomala@gmail.com

Academic Editor: Teresa Tsang, University of British Columbia, Canada

Received: July 25, 2025 Accepted: September 15, 2025 Published: October 15, 2025

Cite this article: Tomala M. How algorithms are transforming the diagnosis of ischemic heart disease—state of the art. Explor Cardiol. 2025;3:101275. https://doi.org/10.37349/ec.2025.101275

Abstract

Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide, highlighting the necessity for better diagnostic modalities. Artificial intelligence (AI) and machine learning (ML) are increasingly being used with multimodal cardiovascular diagnostic testing to provide standardized and reproducible assessment methodologies that have been shown to detect subtle signals beyond human recognition. This state-of-the-art review will summarize the various applications of AI across key modalities: describing its use in electrocardiography to risk-stratify patients; in coronary computed tomography angiography (CCTA) for quantitative plaque and stenosis measurements as well as measuring fractional flow reserve (FFR) derived from imaging; in cardiac magnetic resonance imaging (MRI) to automatically segment cardiac chambers and characterize tissue; and in intracoronary imaging [specifically intravascular ultrasound (IVUS) and optical coherence tomography (OCT)], where automation is evolving. We will also discuss combining these sources of data through clinical decision support systems (CDSS) that can enhance the comprehensive evaluation of IHD. We anticipate several issues for implementation, including validation, regulation, transparency, and clinical integration. Overall, AI can help reduce the number of time-consuming manual measurements used to augment quantitative features of an assessment and improve physiology-based decision-making. However, there were marked differences in performance based on the task and dataset, and AI was not always better than the human experts. Ultimately, AI must be validated prospectively, must be generalizable, and reported transparently for safe adoption in IHD care globally.

Keywords

artificial intelligence, machine learning, ischemic heart disease, multimodality imaging, coronary artery disease, diagnostic algorithms

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Introduction

Ischemic heart disease (IHD) is still the leading cause of death and morbidity around the world, affecting millions of patients and contributing to significant healthcare costs [1]. IHD is presented in different ways: stable angina and acute coronary syndromes fall on a spectrum of coronary artery disease (CAD), making the selection of appropriate diagnostic pathways challenging and patient-specific. The latest European Society of Cardiology (ESC) 2024 guidelines on chronic coronary syndromes emphasize a tailored approach—including identification of patients with very low likelihood of obstructive CAD who may not require testing, and the use of noninvasive imaging [computed tomography (CT) or functional tests] as first-line diagnostics based on pre-test probability [2]. Historically, the diagnosis of IHD has relied on clinical assessment (including history and examination) and various procedures and tests, such as electrocardiography, biochemical markers, and imaging. The limitations of traditional paradigms of diagnostic assessment include inter-observer variability between researchers, subjective inference, and the inability to adequately describe the complexity of IHD. These limitations have led to a renewed interest in enhancing the diagnostic evaluation methods for IHD [3].

This review surveys the current state-of-the-art algorithmic methods for diagnosing IHD [4], exploring the combination of artificial intelligence (AI)/machine learning (ML) and multimodal imaging, advanced intracoronary assessment, and new-age diagnostic platforms that could revolutionize modern cardiovascular practice in the future.

While contemporary diagnostic pathways for chronic coronary syndromes have advanced since the last guideline update, emphasizing pre-test clinical likelihood, appropriate use of anatomic and functional testing, and the incorporation of risk modifiers, we accordingly position AI/ML advances within the context of the current pathways' logic to better delineate where algorithmic tools can supplement, rather than supplant standard approaches. Thus, in this context, we examine task-specific applications: an AI-electrocardiogram (ECG) for risk stratification [e.g., reduced left ventricular ejection fraction (LVEF) screening] [5, 6]; coronary computed tomography angiography (CCTA) for quantitative plaque/stenosis analysis and machine-learning-enabled fractional flow reserve (FFR)-CT [7–9]; cardiovascular magnetic resonance (CMR) for automation of chamber/function/tissue characterization [10, 11]; and certain intracoronary uses [intravascular ultrasound (IVUS)/optical coherence tomography (OCT)] where automation is emerging [12–14]. Finally, we clarify considerations related to validation, implementation, and regulation to highlight demonstrated clinical utility from aspirational prototypes.

Algorithmic shift in cardiovascular imaging

ML basics in cardiology

ML applications in cardiovascular medicine employ various algorithmic approaches, each with its advantages for specific diagnostic questions. Supervised learning algorithms, such as support vector machines, random forests, and neural networks, have demonstrated excellent performance in classification tasks related to pattern identification, particularly in detecting CAD [15].

Deep learning (DL) architectures such as convolutional neural networks (CNNs) have changed medical image analysis by automatically extracting differentiating features from complex imaging data without significant manual feature engineering. CNNs can simultaneously process large amounts of imaging data and identify subtle patterns and relationships that are beyond human perception [16].

An overview of supervised, reinforcement, and unsupervised learning across ECG, magnetic resonance imaging (MRI), and echocardiography (ECHO) is shown in Figure 1, which illustrates how multimodal inputs feed algorithmic pipelines to generate diagnostic outputs.

AI in electrocardiography

AI-facilitated electrocardiographic interpretation exemplifies a modern achievement of effective identification in the cardiovascular sphere. Early studies are also exploring AI-enabled ECG models to

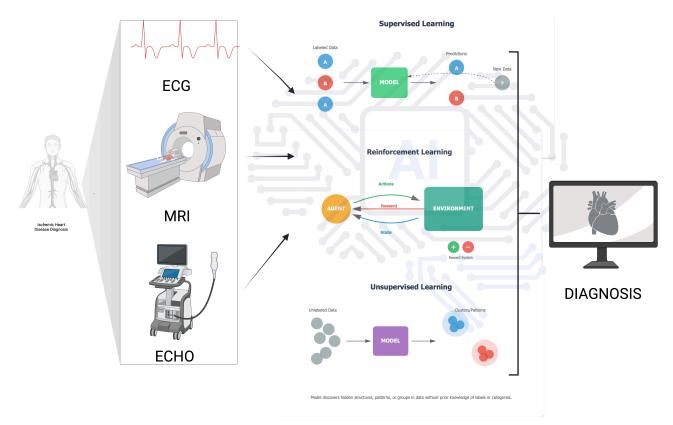


Figure 1. Algorithmic approaches in cardiovascular diagnosis. Schematic overview showing how multimodal inputs—ECG, cardiac magnetic resonance (MRI), and transthoracic echocardiography (ECHO)—feed algorithmic pipelines to produce diagnostic outputs. The figure contrasts three learning paradigms: (1) supervised learning (labeled data → model training → predictions and model update with new data); (2) reinforcement learning (agent-environment loop using state, action, and reward to improve policy); and (3) unsupervised learning (clustering/structure discovery from unlabeled data). The end-point is a workstation rendering of a cardiac diagnosis. ECG: electrocardiogram; MRI: magnetic resonance imaging. Created in BioRender. Tomala, M. (2025) https://www.biorender.com/7ykr1qa.

identify patients with silent ischemia or obstructive CAD despite normal ECG findings; however, this approach is not yet validated for routine practice [17–19]. DL networks have learned patterns from millions of ECG recordings and can detect subtle changes potentially associated with CAD, in some cases achieving performance comparable to experienced clinicians [16].

Advances in noninvasive imaging

Advances in CCTA

CCTA has evolved from an anatomical imaging modality to a diagnostic tool through algorithmic advancements. Modern AI-based CCTA analysis platforms can determine the presence, quantity, and type of coronary plaque with high accuracy and reproducibility [20, 21].

ML algorithms applied to CCTA data can identify high-risk plaque features, such as positive remodeling, low-attenuation plaques, spotty calcifications, and the napkin-ring sign—all of which are linked with increased risk of acute coronary syndromes. These systems exhibit high consistency compared to human interpretation, saving time on analysis [8].

The clinical workflow and system architecture for AI-enabled CCTA analysis are summarized in Figure 2.

By integrating FFR derived from CT (FFR-CT) with ML algorithms, the diagnostic capabilities of CCTA have advanced further. AI-enhanced FFR-CT analysis can determine the hemodynamic significance of coronary stenosis with similar diagnostic accuracy to invasive pressure wire measures, but non-invasively [9]. For example, the commercially available HeartFlow FFR-CT platform has been shown in multicenter studies to improve CCTA's diagnostic performance by correctly reclassifying non-significant lesions and matching invasive FFR measurements [9].

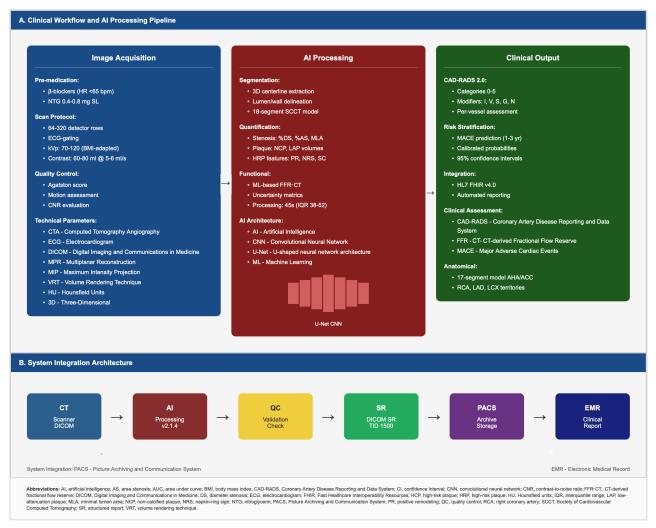


Figure 2. Al-enhanced CCTA analysis protocol. Panel A—Clinical workflow & Al processing pipeline. Image acquisition (premedication as required; heart-rate control; ECG-gated CCTA with contrast; standard technical parameters and quality control) is followed by Al processing (automated coronary segmentation; plaque and stenosis detection/quantification using convolutional neural networks). Clinical output includes CAD-RADS 2.0 grading (categories 0–5), stenosis/severity assessment, risk stratification (e.g., MACE prediction with calibrated probabilities and confidence intervals), and structured reporting; integration options include HL7/FHIR and accelerated reporting. Panel B—System integration architecture. CT scanner (DICOM) → Al processing service → validation/quality check → structured report (DICOM SR TID 1500) → PACS archive → EMR for the finalized clinical report. Al: artificial intelligence; CAD-RADS: Coronary Artery Disease Reporting and Data System; CCTA: coronary computed tomography angiography; EMR: electronic medical record; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level Seven; MACE: major adverse cardiac events; PACS: picture archiving and communication system; CT: computed tomography; DICOM: Digital Imaging and Communications in Medicine; ECG: electrocardiogram.

Advances in cardiac MRI

By incorporating AI enhancements, CMR imaging enables the comprehensive assessment of myocardial anatomy, function, and tissue characteristics on a broader scale than previously possible. More recent automated analysis programs can segment cardiac chambers with minimal user input, measure ejection fraction, and detect myocardial scarring (e.g., myocarditis) with accuracy and timeliness [11].

Moving outside the typical CMR anatomical analysis, new DL models applied to CMR perfusion imaging identify subtle perfusion abnormalities associated with CAD, with improved sensitivity compared to visual analysis. These algorithms examine dynamic sequences of perfusion, including quantitative perfusion mapping, and quantify regional perfusion defects with high diagnostic accuracy [10].

The AI-integrated pipeline for chamber segmentation, tissue characterization, and perfusion mapping is depicted in Figure 3, which summarizes the CMR preprocessing, DL analysis, and standardized reporting steps.

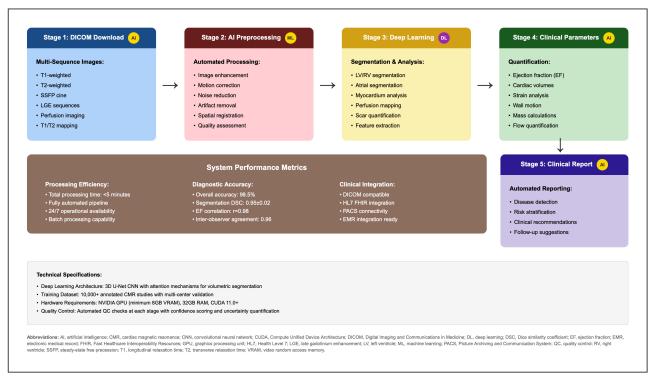


Figure 3. Automated cardiovascular magnetic resonance (CMR) analysis workflow with AI integration. Stage 1—DICOM download of multi-sequence CMR (cine, LGE, T1/T2 mapping, perfusion, etc.). Stage 2—AI preprocessing (denoising, motion correction, intensity normalization, quality assurance). Stage 3—DL analysis for automated LV/RV chamber and myocardial segmentation, feature extraction, perfusion, and strain metrics. Stage 4—Clinical parameters: ejection fraction, ventricular volumes, mass, strain, and flow/valve quantification. Stage 5—Clinical report: automated, standardized, and structured. System performance/implementation notes: processing designed to complete within minutes per study, supports batch processing, exhibits high segmentation accuracy and reproducibility, is DICOM-compatible, and integrates with HL7/FHIR and electronic medical record (EMR) systems. DICOM: Digital Imaging and Communications in Medicine; DL: deep learning; LV/RV: left/right ventricle; LGE: late gadolinium enhancement; AI: artificial intelligence; HL7: Health Level Seven; FHIR: Fast Healthcare Interoperability Resources.

Key AI applications, typical performance ranges, and primary use cases are summarized in Table 1. Table 1 provides a modality-by-modality overview relevant to screening, anatomic, and physiologic assessment.

Table 1. Imaging modalities and AI applications.

Modality	Algorithm type	Diagnostic accuracy	Main applications	References
ECG	DL neural network (AI-ECG)	AI-ECG models demonstrate AUROC 0.85–0.94 for CAD phenotypes	CAD detection and risk stratification from resting ECG	[17]
CCTA	CNN, ML algorithms (automated plaque analysis)	DL plaque/stenosis: Sens ~ 84–89%, Spec ~ 85–96% (Han et al. [20] 2020; Jin et al. [21] 2022); FFR-CT: accuracy ~ 85–87% vs. invasive FFR (MACHINE)	Automated plaque quantification; identification of high-risk plaque features; non-invasive FFR-CT	[7, 9, 20, 21]
CMR	DL (fully convolutional networks)	High accuracy of automated segmentation; Al-perfusion with improved sensitivity vs. visual assessment	LV/RV segmentation; quantitative tissue characterization of ischemic scar	[10, 11]
HD-IVUS	ML, neural networks	High concordance with experts; lumen ~ 85%, stent area ~ 97%	Automated lumen/media segmentation; plaque composition; PCI optimization in IHD	[22, 23]
OCT	ML algorithms (high-resolution wall analysis)	Comparable to expert analysis (task-specific)	TCFA identification; macrophage assessment; stent implantation optimization (lumen segmentation, landing zone selection)	[12–14]
FFR (image- derived)	ML, 3D reconstruction	Accuracy ~ 85% vs. invasive FFR (CT/FFR/angiography-derived)	Non-invasive hemodynamic assessment of stenosis significance; potential reduction in pressure wire use	[9, 14]

Al: artificial intelligence; CAD: coronary artery disease; CCTA: coronary computed tomography angiography; CMR: cardiovascular magnetic resonance; CT: computed tomography; ECG: electrocardiogram; FFR: fractional flow reserve; FFR-CT: FFR derived from CT; HD-IVUS: high-definition intravascular ultrasound; ML: machine learning; OCT: optical coherence tomography; AUROC: area under the ROC curve; CNN: convolutional neural network; DL: deep learning; LV/RV: left/right ventricle; PCI: percutaneous coronary intervention; TCFA: thin-cap fibroatheroma; 3D: three-dimensional; IHD: ischemic heart disease.

Advances in intracoronary imaging

High-definition IVUS (HD-IVUS)

HD-IVUS represents a significant advancement in intracoronary visualization strategies, providing an unprecedented understanding of coronary vessel wall morphology and plaque features. The integration of AI algorithms with HD-IVUS has transformed our understanding of plaque analysis and procedural guidance [24].

State-of-the-art HD-IVUS systems with ML capabilities can automatically identify vessel boundaries, quantify plaque burden, and characterize plaques in terms of their components. These algorithms can differentiate fibrous, fibro-fatty, necrotic core, and dense calcium features, providing a more thorough plaque analysis to guide therapy decisions [25].

The end-to-end AI pipeline for HD-IVUS acquisition, analysis, and reporting is shown in Figure 4. Figure 4 illustrates automated lumen/media segmentation, plaque characterization, and decision-support outputs.

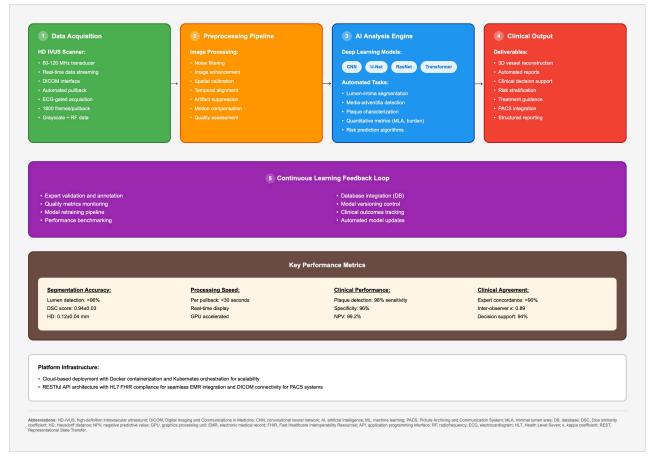


Figure 4. HD-IVUS algorithm analysis platform. HD-IVUS: high-definition intravascular ultrasound.

End-to-end workflow for automated analysis of HD-IVUS, showing:

- 1. **Data acquisition**—HD-IVUS scanner with automatic pullback, ECG-gated acquisition, Digital Imaging and Communications in Medicine (DICOM) interface, and storage of raw/RF frames.
- 2. **Pre-processing pipeline**—noise filtering, speckle reduction, image enhancement, temporal alignment, artefact suppression, motion compensation, and quality assessment.
- 3. **AI analysis engine** DL models (e.g., CNN, U-Net, ResNet, Transformer) performing lumen/media segmentation, plaque characterization, disease/stenosis detection, quantitative metrics (e.g., minimum lumen area, plaque burden), and risk-prediction algorithms.
- 4. **Clinical output**—three-dimensional (3D) vessel reconstruction, automated stenosis report, decision-support summaries for risk stratification and treatment guidance, picture archiving and communication system (PACS)/electronic medical record (EMR) integration, and structured reporting.
- 5. **Continuous learning feedback loop**—expert validation/annotation, quality-metrics monitoring, dataset curation, model versioning, clinical-outcomes tracking, and automated model updates.

Key performance domains. Segmentation accuracy, processing speed (per pullback/real-time capability), diagnostic performance [sensitivity/specificity/negative predictive value (NPV)/positive predictive value (PPV) by task], and clinical agreement with experts.

Platform infrastructure (implementation example): cloud-native deployment with containerization/orchestration for scalability, RESTful APIs with Health Level Seven (HL7)/Fast Healthcare Interoperability Resources (FHIR) interoperability, and DICOM connectivity to PACS systems.

The AVVIGO+ Automated Lesional Assessment platform is an example of the integration of AI with HD-IVUS imaging. This platform provides automated measurement of luminal area, vessel area, and plaque burden in real-time, with 85% agreement for lumen assessments and 97% agreement for stent area measurements [22].

Advanced neural networks applied to HD-IVUS data can predict procedural outcomes related to optimal stent size, expansion characteristics, and potential complications. These predictive models can analyze the overall geometry of the vessel, the distribution of plaque, and the characteristics of the underlying tissue to recommend personalized procedural strategies for each patient [26].

Enhancements to OCT

OCT is currently the highest-resolution imaging modality for coronary vessels, providing detailed information on plaque microstructure and the characteristics of the vessel wall. The advent of AI to enhance the analysis of images derived from OCT has enabled OCT to become a powerful diagnostic and therapeutic guidance tool [12].

ML applications to OCT data have automated the identification and quantification of thin-cap fibroatheromas (TCFAs), lipid pools, macrophage infiltration, and other components of high-risk plaque with greater accuracy than expert human analysis. Furthermore, these ML algorithms are capable of analyzing terabytes of data across thousands of OCT cross-section images in seconds, leading to a robust assessment of the entire vessel [13].

As shown in Figure 5, the OCT AI engine automates lumen and wall segmentation, feature extraction, and high-risk plaque characterization. Figure 5 displays the processing steps and clinical outputs used for percutaneous coronary intervention (PCI) planning and follow-up.

The Ultreon OCT software is a clinical example of AI-enabled software for OCT-guided interventions. The Ultreon system uses ML algorithms that automate lumen segmentation, make stent sizing recommendations, and identify optimal landing zones, with the aim of improving clinical outcomes.

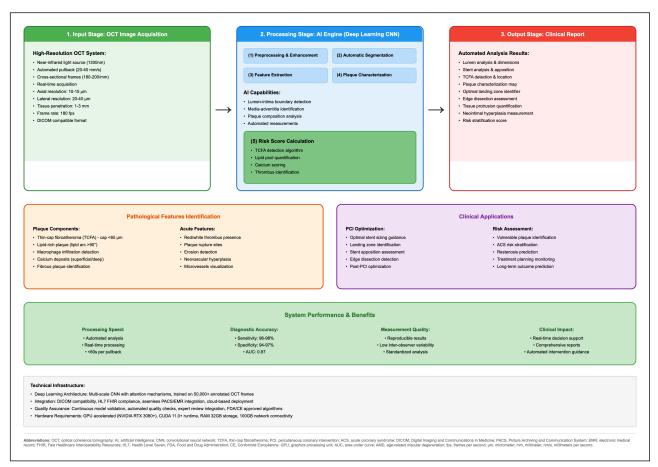


Figure 5. Al-enhanced optical coherence tomography (OCT) analysis platform: automated intracoronary image processing workflow. Input—OCT acquisition. High-resolution intracoronary pullbacks in a DICOM-compatible format. Processing—Al engine (deep learning CNN). (1) Preprocessing & enhancement; (2) automatic lumen/wall segmentation; (3) feature extraction; (4) plaque characterization; optional (5) risk-score calculators and automated measurements. Screenshot—user interface view showing automated lumen and wall segmentation overlays, plaque characterization outputs, and stent-planning suggestions (sizing and landing zones). Output—clinical report. Automated identification of lesions and high-risk features (e.g., TCFA, macrophage signal, calcium burden), quantification, stent-planning suggestions, and longitudinal follow-up visualization. Clinical applications. PCI optimization (device sizing, landing-zone selection, post-stent assessment) and risk assessment (event prediction, restenosis monitoring). System performance & benefits. Fast processing, high reproducibility/standardization, improved measurement quality, and comprehensive structured reports. CNN: convolutional neural network; DICOM: Digital Imaging and Communications in Medicine; PCI: percutaneous coronary intervention; TCFA: thin-cap fibroatheroma; AI: artificial intelligence.

Sophisticated OCT AI algorithms have emerged that can predict stent under-expansion for calcified lesions based on pre-procedural imaging analysis, which enables the identification of the best methods to address calcifications and plan for procedural optimization strategies. The predictive models of stent expansion in calcified lesions analyze calcification geometry and patterns, plaque morphology, and vessel geometry to inform deployment decisions, demonstrating significant potential [27].

Physiological assessment algorithms (FFR)

The combination of AI with FFR assessment has significantly enhanced the accuracy and capability for performing physiological assessments of coronary arteries. ML algorithms can take angiographic image inputs to create 3D reconstructions of the vessels' geometry to calculate pressure gradients across stenotic regions [28].

Recent AI-enabled FFR systems [including quantitative flow ratio (QFR) derived from angiography] demonstrate diagnostic accuracy in the mid-80% range for identifying hemodynamically significant stenoses when compared to invasive pressure-wire FFR, albeit with some variability depending on lesion complexity. Non-invasive techniques diminish the need for pressure wire introduction in many cases, thereby decreasing the complexity and risk of invasive procedures [29].

Potential clinical applications:

- 1. Cathlab decision-making: immediate clinical assessment of the significance of stenosis and the option for transcatheter pressure wire measurement.
- 2. Pre-procedure planning: possibility for simulated ex vivo effect of planned stenting on FFR.
- 3. Population-based ML: accumulating anonymized results for collective benefit in a shotgun effect to improve, train, and validate subsequent predictive models continually.

The incorporation of FFR calculations with intravascular imaging data enables a multifaceted assessment that includes not only anatomic but also physiological characteristics. Advanced algorithms can connect the hemodynamic effect of plaques with their anatomical features and may ultimately result in tailored therapeutic approaches based upon variables specific to the lesion [30].

Clinical decision support systems

Integrated diagnostic platforms

Currently, clinical decision support systems (CDSS) are state-of-the-art solutions that integrate various diagnostic modalities and utilize advanced AI technology to provide a comprehensive evaluation of cardiovascular health. These CDSS include an analysis of electrocardiographic data, pathways, and scores based on biochemical markers, imaging characteristics, and clinical details, providing personalized risk evaluations and treatment recommendations for patients [31].

In such decision-support applications, AI recommendations were found to be feasible and concordant with expert interventional cardiologists' plans, highlighting that AI can assist without compromising decision quality. However, the ultimate judgment remains with the physician. A side-by-side comparison of AI vs. standard practice is shown in Table 2. Table 2 details endpoints, throughput, and cost implications by modality.

Table 2. Comparison of Al and human performance across imaging modalities.

Modality	Metric/Endpoint	Al performance	Human/Standard comparator	Throughput/Time (min)	Cost implications	References
ECG	Detection of CAD phenotypes from resting ECG (obstructive CAD, high CAC, regional akinesia)	AUROC: CAC ≥ 300 0.88; obstructive CAD 0.85; regional akinesis 0.94	N/A (no direct human ECG comparator in cited study)	Not reported	Lowest	[17]
CCTA	Automated plaque and stenosis quantification	High agreement with experts (ICC 0.964 plaque; 0.879 %stenosis); agreement with IVUS; predicts MI	Manual quantitative analysis typically requires tens of minutes	≤ 1 min (Al) vs. 25–30 min (manual)	Medium-high	[7]
SPECT MPI	Classification of ischemia/obstructive CAD (SPECT)	DL outperforms TPD (total perfusion deficit) (per-patient AUC 0.80 vs. 0.78; per- vessel 0.76 vs. 0.73); explainable DL improves physician interpretation	Expert nuclear cardiology reading; TPD vs. standard software comparator	Not consistently reported; DL assistance can shorten review in practice	High	[32, 33]
Cardiac MRI	Automated cine/LGE/T1 analysis	Strong performance on cine/T1/LGE tasks; substantial workflow speed-up	Expert manual reading is the reference standard	Al saves ~ 10 min per patient; manual 30–90 min	Highest	[11, 34, 35]

Table 2. Comparison of AI and human performance across imaging modalities. (continued)

Modality	Metric/Endpoint	Al performance	Human/Standard comparator	Throughput/Time (min)	Cost implications	References
FFR-CT (CT- derived FFR)	Lesion-specific ischemia vs. invasive FFR	AUC 0.84; accuracy 78% pervessel & 85% perpatient; improves over visual CCTA (historical 58%/71%)	Visual CCTA accuracy 68–75% (historical)	Al processing ~ 60 min (historical); invasive FFR during procedure (per lesion)	Intermediate (lower than full invasive work-up)	[9, 36, 37]

Al: artificial intelligence; AUROC: area under the ROC curve; CAC: coronary artery calcium; CAD: coronary artery disease; CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; CT: computed tomography; FFR-CT: FFR derived from CT; LGE: late gadolinium enhancement; MPI: myocardial perfusion imaging; SPECT: single-photon emission computed tomography; T1: T1 mapping; AUC: area under the curve; DL: deep learning; ECG: electrocardiogram; IVUS: intravascular ultrasound; MRI: magnetic resonance imaging.

Precision medicine applications

Precision medicine involves utilizing the capabilities of healthcare best practices to support individuals. Alsupported diagnostic systems will enable us to receive individually tailored medicine through accurate phenotyping and risk-stratification algorithms. Predictive and prescriptive modeling can identify subpopulations of patients with similar features or presentations; each may have an idiosyncratic pathophysiology or require patient-specific therapeutics. It is not unreasonable to expect that ML algorithms, when applied to integrated clinical data, will have the ability to predict treatment outcomes for individual patients based on a specific intervention, create a personalized list for drug selection, or identify those at the highest risk for an unwanted outcome. Personally tailored medicine is the future of cardiovascular medicine [38].

Regulatory status, validation evidence, and implementation notes for representative systems are summarized in Table 3. Table 3 lists platforms, methods, and deployment characteristics.

Table 3. Al systems and platforms in clinical practice.

System/Platform	Technology/Method	Al performance	Clinical validation	Implementation time	Regulatory status	References
AVVIGO+	Automated HD-IVUS assessment with real- time lumen/vessel/plaque morphology analysis	Accuracy: 85% (lumen boundaries), 97% (stent area)	Validated against expert manual measurements in multicenter studies	Real-time (< 1 min per pullback)	FDA cleared, CE marked	[22]
Ultreon OCT	Al-powered lumen segmentation with automated stent sizing and landing zone recommendations	High concordance with expert analysis; automated workflow guidance	Clinical studies demonstrate improved procedural efficiency and standardization	Immediate (during procedure)	FDA cleared, CE marked	[39]
PROTEUS	Al-assisted stress echocardiography interpretation with automated wall motion scoring	Non-inferior to standard practice (primary endpoint met); AUC 0.87–0.91	Randomized controlled trial; improved inter- reader consistency, especially for less- experienced operators	< 5 min additional analysis time	Under clinical investigation	[40]

Al: artificial intelligence; AUC: area under the curve; CE: Conformité Européenne; FDA: Food and Drug Administration; HD-IVUS: high-definition intravascular ultrasound; iFR: instantaneous wave free ratio; OCT: optical coherence tomography.

Emerging technologies and future directions

Progress in DL

Progress in DL architecture, particularly transformer networks and attention-based architectures, is being applied to cardiovascular applications. These types of models have the potential to learn and generate

sequential data, identify temporal dependencies, and incorporate multiscale information of unprecedented complexities [41].

Generative adversarial networks (GANs) have been explored for generating synthetic data to support robust algorithms with limited data availability. This, along with other technologies, may help accelerate the algorithm development process and facilitate its application to other populations [42].

Federated learning applications

Federated learning methods enable the collaborative development of algorithms across multiple institutions while safeguarding the privacy of patient data. These methods support the development of robust diagnostic models using a variety of data sources while precluding the necessity for centralized data sharing, all while addressing privacy concerns and complying with all relevant regulations [43].

Real-time implementation

The advancement of edge computing solutions will allow for the deployment of AI algorithms in real-time within clinical contexts. These designs can provide instant feedback on diagnostic outcomes, procedural assistance, and risk evaluation, eliminating the need for cloud-based processing functions [44].

Emerging methods and their potential advantages are summarized in Table 4. The table outlines technical descriptions and development stages.

Table 4. Emerging AI technologies in cardiac imaging.

Technology	Technical description	Potential benefits	Development stage	References
Transformer networks	Advanced deep learning architectures using self-attention mechanisms for sequence modeling and temporal pattern recognition	Sequential data analysis; modeling temporal dependencies in cardiac cycles; multi-scale context integration; improved long-range feature extraction	Research	[41]
GANs	Synthetic data generation and augmentation frameworks using a generator-discriminator architecture	Algorithm development with limited data; robustness via augmentation; domain adaptation between imaging vendors; privacy-preserving data synthesis	Experimental	[42]
Federated learning	Distributed training across institutions without centralizing patient data, using encrypted gradient updates	Privacy protection (HIPAA/GDPR compliance); multi-institutional collaboration; improved model generalizability; larger effective training datasets	Implementation	[43]
Edge computing	On-device/near-sensor computation for low-latency inference using optimized models (quantization, pruning)	Real-time processing (< 100 ms); instant feedback in clinical workflow; reduced cloud dependence; enhanced data security; offline capability	Development	[45]

Al: artificial intelligence; GANs: generative adversarial networks; GDPR: General Data Protection Regulation; HIPAA: Health Insurance Portability and Accountability Act.

Implementation challenges and real-world clinical considerations

Assessment of diagnostic accuracy and clinical validation

Meta-analyses indicate that AI-enhanced diagnostic systems can achieve diagnostic accuracies comparable to those of expert physicians in specific tasks. For example, pooled results for detecting CAD across various imaging modalities show sensitivities of ~ 85 –95% and specificities of ~ 80 –90%, which is on par with expert reader performance [46, 47].

The PROTEUS trial is the first prospective, randomized, controlled trial examining AI-assisted stress ECHO. This multicenter trial demonstrated the non-inferiority of AI-enhanced interpretation compared to standard clinical practice for coronary angiography referral decisions [40]. Notably, the PROTEUS results showed no significant difference in appropriate angiography referrals between AI-assisted and standard interpretations in the overall cohort, confirming non-inferiority. Significantly, AI support improved

decision-making consistency among less-experienced clinicians and in complex cases, suggesting that AI can help level the field in diagnostic accuracy across operators [40].

Clinical implementation issues and barriers

While there is evidence of technical efficacy, several barriers hinder the implementation of AI diagnostic systems in clinical practice. These include approval processes for healthcare systems, acceptance by physician groups, reimbursement considerations, and integration with existing clinical workflows [48].

Another significant hurdle is standardizing AI algorithms across vendor platforms and clinical contexts. Comprehensive establishment of standardized protocols and comprehensive validation frameworks is necessary to facilitate widespread clinical adoption [47]. Another barrier is the lack of interpretability of many AI models—so-called "black box" algorithms—which can hinder trust among clinicians and patients. Ensuring transparency and explainability in AI decisions is increasingly seen as crucial for acceptance in practice. Data privacy and security also pose challenges; large datasets are needed to train robust algorithms, raising concerns about patient consent and data protection, especially when integrating AI tools across different hospital systems.

Food and Drug Administration (FDA) approval pathways

The regulatory landscape for AI medical devices is evolving as various government agencies with differing perspectives attempt to develop specific pathways for approving ML-based diagnostic tools. The FDA's Software as Medical Device framework outlines the recommendations for algorithm validation and approval processes. As of 2023, the FDA has cleared or approved numerous AI-based medical devices, including several in cardiology, but the regulatory framework is still evolving to address ongoing algorithm updates and real-world performance monitoring [49].

Recent approvals of AI-enhanced cardiovascular diagnostic tools, including automated ECG interpretation systems and imaging analysis systems, have laid the groundwork for regulatory considerations and evaluation of this technology [50].

Ethical implementation

Ethical questions surrounding the implementation of AI in cardiovascular medicine include algorithmic bias, transparency requirements, and physician liability. To ensure equitable healthcare delivery, training datasets must be diverse and representative. Moreover, mechanisms for algorithmic accountability should be in place—including providing at least partial explanations for AI decisions and continuous monitoring of performance across different patient populations—so that biases can be detected and corrected [51].

Cost-effectiveness analysis

Early economic analyses suggest that AI-assisted diagnostic systems could lower healthcare expenditures through more efficient diagnosis, avoidance of unnecessary procedures, and improved resource utilization. There are reports of cost savings from 20–40% in health systems that incorporate an AI system into their daily clinical workflows [52]. However, these projections assume optimal implementation; real-world cost savings will depend on integration costs, staff training, and the extent to which such systems are adopted.

The improved time to interpretation, better consistency of diagnoses, and reduced repeat examinations offer significant economic benefits for health systems adopting AI diagnostics, resulting in a decrease in non-value-added time across the clinical workflow [53].

Workflow improvement

AI-assisted systems now save seconds on image assessment for each imaging study, rather than minutes, which does offer an improvement to workflow. Still, the actual impact on overall clinical workflow depends on factors such as system interoperability and the need for manual review of AI outputs—gains in speed must be weighed against time for validation of AI findings by clinicians. Automated preliminary reads have previously opened up the ideals of prioritizing urgent cases, reducing turnaround times, and optimizing resources [54].

Clinical and economic outcomes related to AI-assisted diagnostics are summarized in Table 5. Table 5 presents diagnostic accuracy ranges, projected cost savings, and time benefits.

Table 5. Clinical and economic outcomes.

Aspect	Value	Details	References
Diagnostic accuracy	Sensitivity 85–95%; Specificity 80–92%	Meta-analyses of ML for CAD detection across imaging modalities; Al performance comparable to expert readers	[9, 47]
Cost savings	20–40% (projected)	Early economic analyses of health systems implementing AI diagnostics; the magnitude depends on integration, training, and adoption	[36]
Time savings	Seconds vs. minutes per imaging study	Automated preliminary reads shorten per-study assessment; potential gains in triage and turnaround times	[35, 55]
Expert agreement	≥ 85% (task-specific)	HD-IVUS agreement with experts: lumen 85% and stent area 97%; Alassisted stress ECHO non-inferior, with improved consistency for less-experienced readers	[22, 40]

Al: artificial intelligence; CAD: coronary artery disease; HD-IVUS: high-definition intravascular ultrasound; ML: machine learning; ECHO: echocardiography.

A summary of performance across key applications is shown in Figure 6, which displays pooled estimates of sensitivity, specificity, and accuracy across different modalities and tasks.

Performance Metrics Comparison

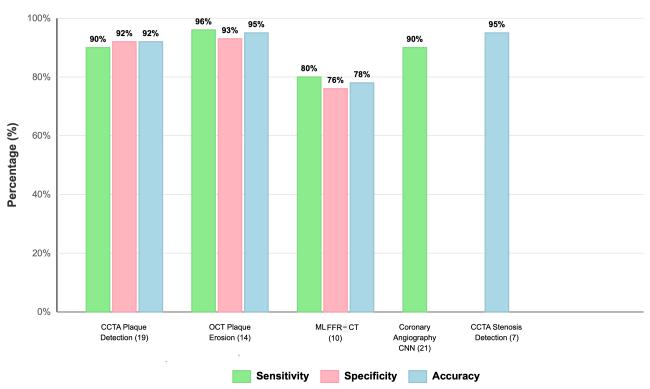


Figure 6. Performance metrics and clinical validation of Al applications in cardiovascular diagnostics. Descriptive comparison of the study-reported diagnostic performance by modality and task. Bars display the median of study-level sensitivity, specificity, and—where available—accuracy within each category; parentheses indicate the number of contributing studies: CCTA plaque detection (N = 19), OCT plaque erosion (N = 14), ML FFR-CT (N = 10), coronary angiography CNN models (N = 21), and CCTA stenosis detection (N = 7). Due to heterogeneous thresholds and reference standards, no formal meta-analysis was performed; values are descriptive and not pooled estimates. Where only one bar appears for a method, the other metrics were not consistently reported in the source literature. Key findings. OCT-based plaque-erosion detection showed the highest sensitivity (N = 10) with strong overall balance across metrics; CCTA plaque and stenosis detection demonstrated consistently high accuracy across studies; ML FFR-CT achieved moderate performance (N = 10). Overall variability across tasks underscores the need for application-specific validation and ongoing algorithm refinement before broad clinical deployment. CCTA: coronary computed tomography angiography; CNN: convolutional neural network; FFR-CT: fractional flow reserve derived from CT; OCT: optical coherence tomography; Al: artificial intelligence; CT: computed tomography.

A comprehensive analysis of AI performance across 12 key cardiovascular applications reveals notable differences in diagnostic accuracy, sensitivity, and specificity, depending on the specific clinical task. The top-performing applications include ECG arrhythmia detection (with 97.8% accuracy), heart disease prediction (with 97.6% accuracy), and cardiac MRI segmentation (with 95.2% accuracy). More difficult applications, such as FFR estimation, achieve lower but still clinically relevant performance levels of 84%. Implementation barriers and practical solutions across regulatory, ethical, clinical, and economic areas are outlined in Table 6. Table 6 offers a brief checklist for deployment planning.

Table 6. Implementation challenges.

Category	Challenges	Solutions	References
Regulatory	FDA/CE approval pathways; validation standards; lifecycle oversight of adaptive algorithms	Software as a Medical Device (SaMD) frameworks; dedicated guidance; post-market performance monitoring	[49, 50, 56]
Ethical	Algorithmic bias; transparency/interpretability; liability; data privacy	Diverse and representative datasets; bias auditing; explainable AI; accountability mechanisms	[48, 51, 56]
Clinical	Workflow integration; physician acceptance; standardization; prospective validation	Training and protocols; vendor-agnostic standards; multi-center trials to demonstrate efficacy (e.g., PROTEUS)	[34–36, 40, 52]
Economic	Implementation costs, reimbursement models, and uncertain ROI	Cost-benefit analyses; value-based payment models; phased deployment; workflow efficiency gains	[36, 57]

Al: artificial intelligence; CE: Conformité Européenne; FDA: Food and Drug Administration; ROI: return on investment.

Conclusions

The increasing use of algorithms in diagnosing IHD marks a significant change in cardiovascular medicine, with the potential to enhance diagnostic accuracy, improve workflow efficiency, and enable more personalized patient care. Current applications of AI and ML for data collection demonstrate diagnostic accuracy that is equal to or superior to that of human experts for specific imaging methods and clinical scenarios.

The links between algorithms and multimodal imaging platform environments facilitate a holistic approach to cardiovascular assessment, revealing methodologically significant physiological and prognostic findings within a lucid and coherent diagnostic framework. AI-enhanced HD-IVUS and OCT imaging are showing great promise for both more detailed plaque characterization and procedural quality that was previously not possible.

Future directions include DL architectures for AI systems and ML, as well as federated learning and opportunities for real-time implementation of systems, which will further enhance the potential for diagnostics and clinical adoption. However, for widespread integration to be practical, fundamental issues of regulation, ethically responsible utilization, and clear and explicit clinical and economic value need to be overcome.

The evidence indicates that algorithmic methods are not just complementary to traditional evaluation; they are already altering how IHD is diagnosed, risk-stratified, and managed. They are poised to become ubiquitous in cardiovascular medicine, but realizing their full benefits will require ongoing evaluation of their impact on patient outcomes and addressing the remaining challenges in regulation, integration, and trust.

A stage-wise mapping of AI tools across the IHD diagnostic pathway is presented in Table 7. Table 7 aligns tools with clinical intent and expected benefits.

Table 7. Applications by diagnostic stage.

Stage	Al tools	Main benefits	References
Screening	AI-ECG	Early detection of latent disease and population- level risk prediction/triage	[6, 17]
Anatomical diagnosis	AI-CCTA; AI-CMR	Accurate plaque quantification and characterization (CCTA); quantitative myocardial tissue characterization, including LGE/T1 mapping (CMR)	[7, 10, 11, 21]
Functional assessment	Al-FFR (FFR-CT); Al-perfusion (stress imaging: echocardiography/nuclear)	Non-invasive hemodynamic evaluation; lesion- specific ischemia assessment; potential improvement of reader performance in stress imaging	[9, 32, 33, 36, 40]
Intervention planning	AI-IVUS; AI-OCT	Procedure optimization (e.g., stent sizing and landing zone selection), outcome prediction, and intraprocedural decision support	[13, 22, 39]
Monitoring	Integrated CDSS (with imaging and ECG data)	Personalized risk stratification, longitudinal follow- up, and event prediction with integration of multimodal data into clinical workflows	[16, 18, 52]

Al: artificial intelligence; CCTA: coronary computed tomography angiography; CDSS: clinical decision support systems; CMR: cardiovascular magnetic resonance; CT: computed tomography; FFR: fractional flow reserve; FFR-CT: FFR derived from CT; ECG: electrocardiogram; IVUS: intravascular ultrasound; LGE: late gadolinium enhancement; OCT: optical coherence tomography.

Abbreviations

3D: three-dimensional

AI: artificial intelligence

AUC: area under the curve

AUROC: area under the ROC curve

CAC: coronary artery calcium CAD: coronary artery disease

CAD-RADS: Coronary Artery Disease Reporting and Data System

CCTA: coronary computed tomography angiography

CDSS: clinical decision support systems

CE: Conformité Européenne

CMR: cardiovascular magnetic resonance

CNNs: convolutional neural networks

CT: computed tomography

DICOM: Digital Imaging and Communications in Medicine

DL: deep learning

ECG: electrocardiogram
ECHO: echocardiography

EMR: electronic medical record

ESC: European Society of Cardiology FDA: Food and Drug Administration

FFR: fractional flow reserve

FFR-CT: fractional flow reserve derived from computed tomography

FHIR: Fast Healthcare Interoperability Resources

GANs: generative adversarial networks

GDPR: General Data Protection Regulation

HD-IVUS: high-definition intravascular ultrasound

HIPAA: Health Insurance Portability and Accountability Act

HL7: Health Level Seven

iFR: instantaneous wave-free ratio

IHD: ischemic heart disease

IVUS: intravascular ultrasound

LGE: late gadolinium enhancement

LV/RV: left/right ventricle

LVEF: left ventricular ejection fraction

MACE: major adverse cardiac events

ML: machine learning

MPI: myocardial perfusion imaging

MRI: magnetic resonance imaging

NPV: negative predictive value

OCT: optical coherence tomography

PACS: picture archiving and communication system

PCI: percutaneous coronary intervention

PPV: positive predictive value QFR: quantitative flow ratio

ROI: return on investment

SaMD: Software as a Medical Device

SPECT: single-photon emission computed tomography

TCFAs: thin-cap fibroatheromas

TPD: total perfusion deficit

Declarations

Author contributions

MT: Conceptualization, Writing—original draft, Writing—review & editing. The author read and approved the submitted version.

Conflicts of interest

The author declares that there are no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Availability of data and materials

Not applicable.

Funding

Not applicable.

Copyright

© The Author(s) 2025.

Publisher's note

Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.

References

- 1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al.; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76: 2982–3021. [DOI] [PubMed] [PMC]
- 2. Vrints C, Andreotti F, Koskinas KC, Rossello X, Adamo M, Ainslie J, et al.; ESC Scientific Document Group. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024; 45:3415–537. [DOI] [PubMed]
- 3. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;144:e368–454. [DOI] [PubMed]
- 4. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017;69:2657–64. [DOI] [PubMed]
- 5. Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G, et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol. 2019;12:e007284. [DOI] [PubMed] [PMC]
- 6. Yao X, Rushlow DR, Inselman JW, McCoy RG, Thacher TD, Behnken EM, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. 2021;27:815–9. [DOI] [PubMed]
- 7. Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J, et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digit Health. 2022;4:e256–65. [DOI] [PubMed] [PMC]
- 8. Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X, et al. Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT. IEEE Trans Med Imaging. 2018;37: 1835–46. [DOI] [PubMed] [PMC]
- 9. Coenen A, Kim YH, Kruk M, Tesche C, De Geer J, Kurata A, et al. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium. Circ Cardiovasc Imaging. 2018;11:e007217. [DOI] [PubMed]
- 10. Fahmy AS, El-Rewaidy H, Nezafat M, Nakamori S, Nezafat R. Automated analysis of cardiovascular magnetic resonance myocardial native T₁ mapping images using fully convolutional neural networks. J Cardiovasc Magn Reson. 2019;21:7. [DOI] [PubMed] [PMC]

- 11. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20:65. [DOI] [PubMed] [PMC]
- 12. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46. [DOI] [PubMed] [PMC]
- 13. Gessert N, Lutz M, Heyder M, Latus S, Leistner DM, Abdelwahed YS, et al. Automatic Plaque Detection in IVOCT Pullbacks Using Convolutional Neural Networks. IEEE Trans Med Imaging. 2019;38:426–34. [DOI] [PubMed]
- 14. Cha JJ, Son TD, Ha J, Kim JS, Hong SJ, Ahn CM, et al. Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study. Sci Rep. 2020;10:20421. [DOI] [PubMed] [PMC]
- 15. Niroda K, Drudi C, Byers J, Johnson J, Cozzi G, Celi LA, et al. Artificial Intelligence in Cardiology: Insights From a Multidisciplinary Perspective. J Soc Cardiovasc Angiogr Interv. 2025;4:102612. [DOI] [PubMed] [PMC]
- 16. Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chareonthaitawee P, Jouni H, et al. Artificial Intelligence in Cardiology: Present and Future. Mayo Clin Proc. 2020;95:1015–39. [DOI] [PubMed]
- 17. Awasthi S, Sachdeva N, Gupta Y, Anto AG, Asfahan S, Abbou R, et al. Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG. EClinicalMedicine. 2023;65: 102259. [DOI] [PubMed] [PMC]
- 18. Howard JP, Vasudevan N, Sarkar S, Landman S, Koehler J, Keene D. Dynamic risk stratification of worsening heart failure using a deep learning-enabled implanted ambulatory single-lead electrocardiogram. Eur Heart J Digit Health. 2024;5:435–43. [DOI] [PubMed] [PMC]
- 19. Yao X, McCoy RG, Friedman PA, Shah ND, Barry BA, Behnken EM, et al. ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial. Am Heart J. 2020;219:31–6. [DOI] [PubMed]
- 20. Han D, Liu J, Sun Z, Cui Y, He Y, Yang Z. Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis. Comput Methods Programs Biomed. 2020;196:105651. [DOI] [PubMed]
- 21. Jin X, Li Y, Yan F, Liu Y, Zhang X, Li T, et al. Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: a multi-center multi-vendor study. Eur Radiol. 2022;32:5276–86. [DOI] [PubMed]
- 22. Matsumura M, Mintz GS, Dohi T, Li W, Shang A, Fall K, et al. Accuracy of IVUS-Based Machine Learning Segmentation Assessment of Coronary Artery Dimensions and Balloon Sizing. JACC Adv. 2023;2: 100564. [DOI] [PubMed] [PMC]
- 23. Pinna A, Boi A, Mannelli L, Balestrieri A, Sanfilippo R, Suri J, et al. Machine Learning for Coronary Plaque Characterization: A Multimodal Review of OCT, IVUS, and CCTA. Diagnostics (Basel). 2025;15: 1822. [DOI] [PubMed] [PMC]
- 24. Subhan S, Malik J, Haq AU, Qadeer MS, Zaidi SMJ, Orooj F, et al. Role of Artificial Intelligence and Machine Learning in Interventional Cardiology. Curr Probl Cardiol. 2023;48:101698. [DOI] [PubMed]
- 25. Moon JH, Lee DY, Cha WC, Chung MJ, Lee KS, Cho BH, et al. Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Programs Biomed. 2021;198:105819. [DOI] [PubMed]
- 26. Gupta MD, Kunal S, Girish MP, Gupta A, Yadav R. Artificial intelligence in cardiology: The past, present and future. Indian Heart J. 2022;74:265–9. [DOI] [PubMed] [PMC]
- 27. Kang SJ, Mintz GS, Akasaka T, Park DW, Lee JY, Kim WJ, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation. 2011;123:2954–63. [DOI] [PubMed]

- 28. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53. [DOI] [PubMed]
- 29. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8. [DOI] [PubMed]
- 30. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5:193–202. [DOI] [PubMed]
- 31. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ Cardiovasc Imaging. 2016;9:e004330. [DOI] [PubMed] [PMC]
- 32. Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study. JACC Cardiovasc Imaging. 2018;11:1654–63. [DOI] [PubMed] [PMC]
- 33. Miller RJH, Kuronuma K, Singh A, Otaki Y, Hayes S, Chareonthaitawee P, et al. Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging. J Nucl Med. 2022;63: 1768–74. [DOI] [PubMed] [PMC]
- 34. Evertz R, Lange T, Jan Backhaus S, Schulz A, Beuthner BE, Topci R, et al. ARTIFICIAL INTELLIGENCE ENABLED FULLY AUTOMATED CMR FUNCTION QUANTIFICATION FOR OPTIMIZED RISK STRATIFICATION IN PATIENTS UNDERGOING TRANSCATHETER AORTIC VALVE REPLACEMENT. J Am Coll Cardiol. 2022;79:1709. [DOI]
- 35. Backhaus SJ, Staab W, Steinmetz M, Ritter CO, Lotz J, Hasenfuß G, et al. Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings. J Cardiovasc Magn Reson. 2019;21:24. [DOI] [PubMed] [PMC]
- 36. Chinnaiyan KM, Safian RD, Gallagher ML, George J, Dixon SR, Bilolikar AN, et al. Clinical Use of CT-Derived Fractional Flow Reserve in the Emergency Department. JACC Cardiovasc Imaging. 2020;13: 452–61. [DOI] [PubMed]
- 37. Kurata A, Fukuyama N, Hirai K, Kawaguchi N, Tanabe Y, Okayama H, et al. On-Site Computed Tomography-Derived Fractional Flow Reserve Using a Machine-Learning Algorithm Clinical Effectiveness in a Retrospective Multicenter Cohort. Circ J. 2019;83:1563–71. [DOI] [PubMed]
- 38. Ahmad T, Pencina MJ, Schulte PJ, O'Brien E, Whellan DJ, Piña IL, et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64:1765–74. [DOI] [PubMed] [PMC]
- 39. Sibbald M, Mitchell HR, Buccola J, Pinilla-Echeverri N. Impact of Artificial Intelligence-Enhanced Optical Coherence Tomography Software on Percutaneous Coronary Intervention Decisions. J Soc Cardiovasc Angiogr Interv. 2025;4:102438. [DOI] [PubMed] [PMC]
- 40. Woodward G, Bajre M, Bhattacharyya S, Breen M, Chiocchia V, Dawes H, et al. PROTEUS Study: A Prospective Randomized Controlled Trial Evaluating the Use of Artificial Intelligence in Stress Echocardiography. Am Heart J. 2023;263:123–32. [DOI] [PubMed]
- 41. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention Is All You Need. ArXiv [Preprint]. 2017 [cited 2025 Jun 26]. Available from: https://arxiv.org/abs/1706.03762
- 42. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial Networks. ArXiv [Preprint]. 2014 [cited 2025 Jun 26]. Available from: https://doi.org/10.48550/arXiv.1406.2661
- Li T, Sahu AK, Talwalkar A, Smith V. Federated Learning: Challenges, Methods, and Future Directions.
 ArXiv [Preprint]. 2019 [cited 2025 Jun 26]. Available from: https://doi.org/10.48550/arXiv.1908.078
 73

- 44. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016; 3:637–46. [DOI]
- 45. Li X, Zhang H, Yue J, Yin L, Li W, Ding G, et al. A multi-task deep learning approach for real-time view classification and quality assessment of echocardiographic images. Sci Rep. 2024;14:20484. [DOI] [PubMed] [PMC]
- 46. Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine Learning Approaches in Cardiovascular Imaging. Circ Cardiovasc Imaging. 2017;10:e005614. [DOI] [PubMed] [PMC]
- 47. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271–97. [DOI] [PubMed]
- 48. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56. [DOI] [PubMed]
- 49. U.S. Food and Drug Administration. Software as a Medical Device (SAMD): Clinical Evaluation Guidance for Industry and Food and Drug Administration Staff [Internet]. Silver Spring (MD): FDA; [cited 2025 Jun 26]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidan ce-documents/software-medical-device-samd-clinical-evaluation
- 50. Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. Lancet Digit Health. 2021;3:e195-203. [DOI] [PubMed]
- 51. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380:1347–58. [DOI] [PubMed]
- 52. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial Intelligence in Cardiovascular Imaging: *JACC* State-of-the-Art Review. J Am Coll Cardiol. 2019;73:1317–35. [DOI]
- 53. van Smeden M, Naaktgeboren CA, Reitsma JB, Moons KG, de Groot JA. Latent class models in diagnostic studies when there is no reference standard--a systematic review. Am J Epidemiol. 2014; 179:423–31. [DOI] [PubMed]
- 54. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol. 2016;68:2287–95. [DOI] [PubMed]
- 55. Åkesson J, Ostenfeld E, Carlsson M, Arheden H, Heiberg E. Deep learning can yield clinically useful right ventricular segmentations faster than fully manual analysis. Sci Rep. 2023;13:1216. [DOI] [PubMed] [PMC]
- 56. Sengupta PP, Dey D, Davies RH, Duchateau N, Yanamala N. Challenges for augmenting intelligence in cardiac imaging. Lancet Digit Health. 2024;6:e739–48. [DOI] [PubMed]
- 57. Ben Ali W, Pesaranghader A, Avram R, Overtchouk P, Perrin N, Laffite S, et al. Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble. Front Cardiovasc Med. 2021;8:711401. [DOI] [PubMed] [PMC]