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Abstract

Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide, highlighting the
necessity for better diagnostic modalities. Artificial intelligence (Al) and machine learning (ML) are
increasingly being used with multimodal cardiovascular diagnostic testing to provide standardized and
reproducible assessment methodologies that have been shown to detect subtle signals beyond human
recognition. This state-of-the-art review will summarize the various applications of Al across key
modalities: describing its use in electrocardiography to risk-stratify patients; in coronary computed
tomography angiography (CCTA) for quantitative plaque and stenosis measurements as well as measuring
fractional flow reserve (FFR) derived from imaging; in cardiac magnetic resonance imaging (MRI) to
automatically segment cardiac chambers and characterize tissue; and in intracoronary imaging [specifically
intravascular ultrasound (IVUS) and optical coherence tomography (OCT)], where automation is evolving.
We will also discuss combining these sources of data through clinical decision support systems (CDSS) that
can enhance the comprehensive evaluation of IHD. We anticipate several issues for implementation,
including validation, regulation, transparency, and clinical integration. Overall, Al can help reduce the
number of time-consuming manual measurements used to augment quantitative features of an assessment
and improve physiology-based decision-making. However, there were marked differences in performance
based on the task and dataset, and Al was not always better than the human experts. Ultimately, Al must be
validated prospectively, must be generalizable, and reported transparently for safe adoption in IHD care
globally.
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Introduction

Ischemic heart disease (IHD) is still the leading cause of death and morbidity around the world, affecting
millions of patients and contributing to significant healthcare costs [1]. IHD is presented in different ways:
stable angina and acute coronary syndromes fall on a spectrum of coronary artery disease (CAD), making
the selection of appropriate diagnostic pathways challenging and patient-specific. The latest European
Society of Cardiology (ESC) 2024 guidelines on chronic coronary syndromes emphasize a tailored
approach—including identification of patients with very low likelihood of obstructive CAD who may not
require testing, and the use of noninvasive imaging [computed tomography (CT) or functional tests] as first-
line diagnostics based on pre-test probability [2]. Historically, the diagnosis of IHD has relied on clinical
assessment (including history and examination) and various procedures and tests, such as
electrocardiography, biochemical markers, and imaging. The limitations of traditional paradigms of
diagnostic assessment include inter-observer variability between researchers, subjective inference, and the
inability to adequately describe the complexity of IHD. These limitations have led to a renewed interest in
enhancing the diagnostic evaluation methods for IHD [3].

This review surveys the current state-of-the-art algorithmic methods for diagnosing IHD [4], exploring
the combination of artificial intelligence (AI)/machine learning (ML) and multimodal imaging, advanced
intracoronary assessment, and new-age diagnostic platforms that could revolutionize modern
cardiovascular practice in the future.

While contemporary diagnostic pathways for chronic coronary syndromes have advanced since the last
guideline update, emphasizing pre-test clinical likelihood, appropriate use of anatomic and functional
testing, and the incorporation of risk modifiers, we accordingly position Al/ML advances within the context
of the current pathways’ logic to better delineate where algorithmic tools can supplement, rather than
supplant standard approaches. Thus, in this context, we examine task-specific applications: an Al-
electrocardiogram (ECG) for risk stratification [e.g., reduced left ventricular ejection fraction (LVEF)
screening] [5, 6]; coronary computed tomography angiography (CCTA) for quantitative plaque/stenosis
analysis and machine-learning-enabled fractional flow reserve (FFR)-CT [7-9]; cardiovascular magnetic
resonance (CMR) for automation of chamber/function/tissue characterization [10, 11]; and certain
intracoronary uses [intravascular ultrasound (IVUS)/optical coherence tomography (OCT)] where
automation is emerging [12-14]. Finally, we clarify considerations related to validation, implementation,
and regulation to highlight demonstrated clinical utility from aspirational prototypes.

Algorithmic shift in cardiovascular imaging
ML basics in cardiology

ML applications in cardiovascular medicine employ various algorithmic approaches, each with its
advantages for specific diagnostic questions. Supervised learning algorithms, such as support vector
machines, random forests, and neural networks, have demonstrated excellent performance in classification
tasks related to pattern identification, particularly in detecting CAD [15].

Deep learning (DL) architectures such as convolutional neural networks (CNNs) have changed medical
image analysis by automatically extracting differentiating features from complex imaging data without
significant manual feature engineering. CNNs can simultaneously process large amounts of imaging data
and identify subtle patterns and relationships that are beyond human perception [16].

An overview of supervised, reinforcement, and unsupervised learning across ECG, magnetic resonance
imaging (MRI), and echocardiography (ECHO) is shown in Figure 1, which illustrates how multimodal
inputs feed algorithmic pipelines to generate diagnostic outputs.

Al in electrocardiography

Al-facilitated electrocardiographic interpretation exemplifies a modern achievement of effective
identification in the cardiovascular sphere. Early studies are also exploring Al-enabled ECG models to
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Figure 1. Algorithmic approaches in cardiovascular diagnosis. Schematic overview showing how multimodal inputs—ECG,
cardiac magnetic resonance (MRI), and transthoracic echocardiography (ECHO)—feed algorithmic pipelines to produce
diagnostic outputs. The figure contrasts three learning paradigms: (1) supervised learning (labeled data — model training —
predictions and model update with new data); (2) reinforcement learning (agent-environment loop using state, action, and
reward to improve policy); and (3) unsupervised learning (clustering/structure discovery from unlabeled data). The end-point is a
workstation rendering of a cardiac diagnosis. ECG: electrocardiogram; MRI: magnetic resonance imaging. Created in
BioRender. Tomala, M. (2025) https://www.biorender.com/7ykr1qa.

identify patients with silent ischemia or obstructive CAD despite normal ECG findings; however, this
approach is not yet validated for routine practice [17-19]. DL networks have learned patterns from millions
of ECG recordings and can detect subtle changes potentially associated with CAD, in some cases achieving
performance comparable to experienced clinicians [16].

Advances in noninvasive imaging
Advances in CCTA

CCTA has evolved from an anatomical imaging modality to a diagnostic tool through algorithmic
advancements. Modern Al-based CCTA analysis platforms can determine the presence, quantity, and type of
coronary plaque with high accuracy and reproducibility [20, 21].

ML algorithms applied to CCTA data can identify high-risk plaque features, such as positive remodeling,
low-attenuation plaques, spotty calcifications, and the napkin-ring sign—all of which are linked with
increased risk of acute coronary syndromes. These systems exhibit high consistency compared to human
interpretation, saving time on analysis [8].

The clinical workflow and system architecture for Al-enabled CCTA analysis are summarized in
Figure 2.

By integrating FFR derived from CT (FFR-CT) with ML algorithms, the diagnostic capabilities of CCTA
have advanced further. Al-enhanced FFR-CT analysis can determine the hemodynamic significance of
coronary stenosis with similar diagnostic accuracy to invasive pressure wire measures, but non-invasively
[9]. For example, the commercially available HeartFlow FFR-CT platform has been shown in multicenter
studies to improve CCTA’s diagnostic performance by correctly reclassifying non-significant lesions and
matching invasive FFR measurements [9].
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A. Clinical Workflow and Al Proce: e

Image Acquisition

Pre-medication:
+ B-blockers (HR <65 bpm)
* NTG 0.4-0.8 mg SL

Scan Protocol:
* 64-320 detector rows
+ ECG-gating
* kVp: 70-120 (BMI-adapted)
+ Contrast: 60-80 ml @ 5-6 ml/s

Quality Control:
+ Agatston score
* Motion assessment
* CNR evaluation

Technical Parameters:
+ CTA - Computed Tomography Angiography
* ECG - Electrocardiogram
+ DICOM - Digital Imaging and Communications in Medicine
* MPR - Multiplanar Reconstruction
* MIP - Maximum Intensity Projection
* VRT - Volume Rendering Technique
* HU - Hounsfield Units

Al Processing

Segmentation:
« 3D centerline extraction
* Lumen/wall delineation
+ 18-segment SCCT model

Quantification:
« Stenosis: %DS, %AS, MLA
+ Plaque: NCP, LAP volumes
* HRP features: PR, NRS, SC

Functional:
* ML-based FFR-CT
* Uncertainty metrics
« Processing: 45s (IQR 38-52)

Al Architecture:
« Al - Artificial Intelligence
* CNN - Convolutional Neural Network
* U-Net - U-shaped neural network architecture
+ ML - Machine Learning

Clinical Output

CAD-RADS 2.0:
« Categories 0-5
* Modifiers: I, V, S, G, N
* Per-vessel assessment

Risk Stratification:
* MACE prediction (1-3 yr)
« Calibrated probabilities
* 95% confidence intervals

Integration:
* HL7 FHIR v4.0
+ Automated reporting

Clinical Assessment:
« CAD-RADS - Coronary Artery Disease Reporting and Data
System
* FFR -CT- CT-derived Fractional Flow Reserve
* MACE - Major Adverse Cardiac Events

Anatomical:

* 17-segment model AHAJACC
« RCA, LAD, LCX territories

* 3D - Three-Dimensional

U-Net CNN

B. System Integration Architecture

CcT .\ Qc SR PACS EMR
Scanner Processing > Validation > DICOM SR Archive Clinical
DICOM v2.1.4 Check TID 1500 Storage Report

System Integration: PACS - Picture Archiving and Communication System EMR - Electronic Medical Record

Abbreviations: Al, artificial intelligence; AS, area stenosis; AUC, area under curve; BMI, body mass index; CAD-RADS, Coronary Artery Disease Reporting and Data System; Cl, confidence interval; CNN, convolutional neural network; CNR, contrast-to-noise ratio; FFR- CT, CT-derived
fractional flow reserve; DICOM, Digital Imaging and Communications in Medicine; DS, diameter stenosis; ECG, electrocardiogram; FHIR, Fast Healthcare Interoperability Resources; HCP, high-risk plaque; HRP, high-risk plaque; HU, Hounsfield units; IQR, interquartile range; LAP, low-
attenuation plaque; MLA, minimal lumen area; NCP, non-calcified plaque; NRS, napkin-ring sign; NTG, nitroglycerin; PACS, Picture Archiving and Communication System; PR, positive remodeling; QC, quality control; RCA, right coronary artery; SCCT, Society of Cardiovascular
Computed Tomography; SR, structured report; VRT, volume rendering technique.

Figure 2. Al-enhanced CCTA analysis protocol. Panel A—Clinical workflow & Al processing pipeline. Image acquisition
(premedication as required; heart-rate control; ECG-gated CCTA with contrast; standard technical parameters and quality
control) is followed by Al processing (automated coronary segmentation; plaque and stenosis detection/quantification using
convolutional neural networks). Clinical output includes CAD-RADS 2.0 grading (categories 0-5), stenosis/severity assessment,
risk stratification (e.g., MACE prediction with calibrated probabilities and confidence intervals), and structured reporting;
integration options include HL7/FHIR and accelerated reporting. Panel B—System integration architecture. CT scanner
(DICOM) — Al processing service — validation/quality check — structured report (DICOM SR TID 1500) — PACS archive —
EMR for the finalized clinical report. Al: artificial intelligence; CAD-RADS: Coronary Artery Disease Reporting and Data System;
CCTA: coronary computed tomography angiography; EMR: electronic medical record; FHIR: Fast Healthcare Interoperability
Resources; HL7: Health Level Seven; MACE: major adverse cardiac events; PACS: picture archiving and communication
system; CT: computed tomography; DICOM: Digital Imaging and Communications in Medicine; ECG: electrocardiogram.

Advances in cardiac MRI

By incorporating Al enhancements, CMR imaging enables the comprehensive assessment of myocardial
anatomy, function, and tissue characteristics on a broader scale than previously possible. More recent
automated analysis programs can segment cardiac chambers with minimal user input, measure ejection
fraction, and detect myocardial scarring (e.g., myocarditis) with accuracy and timeliness [11].

Moving outside the typical CMR anatomical analysis, new DL models applied to CMR perfusion imaging
identify subtle perfusion abnormalities associated with CAD, with improved sensitivity compared to visual
analysis. These algorithms examine dynamic sequences of perfusion, including quantitative perfusion
mapping, and quantify regional perfusion defects with high diagnostic accuracy [10].

The Al-integrated pipeline for chamber segmentation, tissue characterization, and perfusion mapping
is depicted in Figure 3, which summarizes the CMR preprocessing, DL analysis, and standardized reporting
steps.
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Stage 1: DICOM Download °

+ Perfusion imaging
« T1/T2 mapping

Stage 2: Al Preprocessing @

+ Spatial registration + Scar quantification

+ Quality assessment « Feature extraction

Stage 3: Deep Learning oL

Stage 4: Clinical Parameters °

Multi-Sequence Images: Automated Processing: Segmentation & Analysis: Quantification:

« T1-weighted « Image enhancement + LV/RV segmentation + Ejection fraction (EF)
« T2-weighted —_ « Motion correction —_ « Atrial segmentation —_ « Cardiac volumes

+ SSFP cine + Noise reduction + Myocardium analysis + Strain analysis

« LGE sequences « Artifact removal + Perfusion mapping + Wall motion

* Mass calculations
+ Flow quantification

Stage 5: Clinical Report 0

Automated Reporting:

System Performance Metrics

Processing Efficiency:

« Total processing time: <5 minutes
* Fully automated pipeline

* 24/7 operational availability

+ Batch processing capability

Diagnostic Accuracy:

« Overall accuracy: 98.5%

* Segmentation DSC: 0.95+0.02
* EF correlation: r=0.98

« Inter-observer agreement: 0.96

Clinical Integration:
+ DICOM compatible

+ HL7 FHIR integration
+ PACS connectivity

« EMR integration ready

+ Disease detection
* Risk stratification
* Clinical recommendations

« Follow-up suggestions

Technical Specifications:

+ Deep Learning Architecture: 3D U-Net CNN with attention mechanisms for volumetric segmentation
+ Training Dataset: 10,000+ annotated CMR studies with multi-center validation

+ Hardware Requirements: NVIDIA GPU (minimum 8GB VRAM), 32GB RAM, CUDA 11.0+

* Quality Control: Automated QC checks at each stage with

scoring and inty

Abbreviations: Al, artificial intelligence; CMR, cardiac magnetic resonance; CNN, convolutional neural network; CUDA, Compute Unified Device Architecture; DICOM, Digital Imaging and Communications in Medicine; DL, deep leaming; DSC, Dice similarity coefficient; EF, ejection fraction; EMR,
electronic medical record; FHIR, Fast Healthcare Interoperability Resources; GPU, graphics processing unit; HL7, Health Level 7; LGE, late gadolinium enhancement; LV, left ventricle; ML, machine leaming; PACS, Picture Archiving and Communication System; QC, quality control; RV, right
ventricle; SSFP, steady-state free precession; T1, longitudinal relaxation time; T2, transverse relaxation time; VRAM, video random access memory.

Figure 3. Automated cardiovascular magnetic resonance (CMR) analysis workflow with Al integration. Stage 1—DICOM
download of multi-sequence CMR (cine, LGE, T1/T2 mapping, perfusion, etc.). Stage 2—Al preprocessing (denoising, motion
correction, intensity normalization, quality assurance). Stage 3—DL analysis for automated LV/RV chamber and myocardial
segmentation, feature extraction, perfusion, and strain metrics. Stage 4—Clinical parameters: ejection fraction, ventricular
volumes, mass, strain, and flow/valve quantification. Stage 5—Clinical report: automated, standardized, and structured. System
performance/implementation notes: processing designed to complete within minutes per study, supports batch processing,
exhibits high segmentation accuracy and reproducibility, is DICOM-compatible, and integrates with HL7/FHIR and electronic
medical record (EMR) systems. DICOM: Digital Imaging and Communications in Medicine; DL: deep learning; LV/RV: left/right
ventricle; LGE: late gadolinium enhancement; Al: artificial intelligence; HL7: Health Level Seven; FHIR: Fast Healthcare
Interoperability Resources.

Key Al applications, typical performance ranges, and primary use cases are summarized in Table 1.
Table 1 provides a modality-by-modality overview relevant to screening, anatomic, and physiologic

assessment.

Table 1. Imaging modalities and Al applications.

Modality Algorithm type Diagnostic accuracy Main applications References
ECG DL neural network  AlI-ECG models demonstrate AUROC CAD detection and risk [17]
(AI-ECG) 0.85-0.94 for CAD phenotypes stratification from resting ECG
CCTA CNN, ML DL plaque/stenosis: Sens ~ 84-89%, Spec  Automated plaque quantification; [7, 9, 20,
algorithms ~ 85-96% (Han et al. [20] 2020; Jin et al. identification of high-risk plaque  21]
(automated plaque [21] 2022); FFR-CT: accuracy ~ 85-87% vs. features; non-invasive FFR-CT
analysis) invasive FFR (MACHINE)
CMR DL (fully High accuracy of automated segmentation; LV/RV segmentation; quantitative [10, 11]
convolutional Al-perfusion with improved sensitivity vs. tissue characterization of
networks) visual assessment ischemic scar
HD-IVUS ML, neural High concordance with experts; lumen ~ Automated lumen/media [22, 23]
networks 85%, stent area ~ 97% segmentation; plaque
composition; PCI optimization in
IHD
OoCT ML algorithms Comparable to expert analysis (task- TCFA identification; macrophage [12-14]
(high-resolution specific) assessment; stent implantation
wall analysis) optimization (lumen
segmentation, landing zone
selection)
FFR ML, 3D Accuracy ~ 85% vs. invasive FFR Non-invasive hemodynamic [9, 14]
(image- reconstruction (CT/FFR/angiography-derived) assessment of stenosis
derived) significance; potential reduction

in pressure wire use
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Al: artificial intelligence; CAD: coronary artery disease; CCTA: coronary computed tomography angiography; CMR:
cardiovascular magnetic resonance; CT: computed tomography; ECG: electrocardiogram; FFR: fractional flow reserve; FFR-CT:
FFR derived from CT; HD-IVUS: high-definition intravascular ultrasound; ML: machine learning; OCT: optical coherence
tomography; AUROC: area under the ROC curve; CNN: convolutional neural network; DL: deep learning; LV/RV: left/right

ventricle; PCI: percutaneous coronary intervention; TCFA: thin-cap fibroatheroma; 3D: three-dimensional; IHD: ischemic heart
disease.

Advances in intracoronary imaging
High-definition IVUS (HD-IVUS)

HD-IVUS represents a significant advancement in intracoronary visualization strategies, providing an
unprecedented understanding of coronary vessel wall morphology and plaque features. The integration of
Al algorithms with HD-IVUS has transformed our understanding of plaque analysis and procedural
guidance [24].

State-of-the-art HD-IVUS systems with ML capabilities can automatically identify vessel boundaries,
quantify plaque burden, and characterize plaques in terms of their components. These algorithms can
differentiate fibrous, fibro-fatty, necrotic core, and dense calcium features, providing a more thorough
plaque analysis to guide therapy decisions [25].

The end-to-end Al pipeline for HD-IVUS acquisition, analysis, and reporting is shown in Figure 4.

Figure 4 illustrates automated lumen/media segmentation, plaque characterization, and decision-support
outputs.

1 Data Acquisition . Preprocessing Pipeline 3 Al Analysis Engine 4 Clinical Output

HD IVUS Scanner: Image Processing: Deep Learning Models: Deliverables:

e it QO OO e
Transformer

« Real-time data streaming « Image enhancement « Automated reports

« DICOM interface - Spatial calibration Automated Tasks: - Clinical decision support

« Automated pullback « Temporal alignment

+ ECG-gated acquisition « Artifact suppression
* 1800 frames/pullback * Motion compensation

« Lumen-intima segmentation 0 REEIT

+ Medis-adventitia detection R e Guidance
+ Plague characterization e
+ Grayscale + RF data + Quality assessment + Quantitative metrics (MLA, burden) * Structured reporting

- Risk prediction algorithms

5 Continuous Learning Feedback Loop

- Expert validation and annotation - Database integration (DB)
+ Quality metrics monitoring « Model versioning control

+ Model retraining pipeline + Clinical outcomes tracking
« Performance benchmarking « Automated model updates

Key Performance Metrics

Segmentation Accuracy: Processing Speed: Clinical Performance: Clinical Agreement:
Lumen detection: >96% Per pullback: <30 seconds Plaque detection: 98% sensitivity Expert concordance: >90%
DSC score: 0.94+0.03 Real-time display Specificity: 96% Inter-observer k: 0.89

HD: 0.12£0.04 mm GPU accelerated NPV: 99.2% Decision support: 94%

Platform Infrastructure:

« Cloud-based with Docker inerization and ion for scalability
+ RESTful API architecture with HL7 FHIR compliance for seamless EMR integration and DICOM connectivity for PACS systems

Abbreviations: HD-IVUS, high-definition intravascular ultrasound; DICOM, Digital Imaging and Communications in Medicine; CNN, convolutional neural network; Al, arifcial inelligence; ML, machine leaming; PACS, Picture Archiving and Communication System; MLA, minimal lumen area; DB, database; DSC, Dice similarity

coefficient; HD, Hausdorff distance; NPV, negative predictive value; GPU, graphics processing unit; EMR, electronic medical record; FHIR, Fast Healthcare Interoperabilty Resources; API, application programming interface; RF, radiofrequency; ECG, electrocardiogram; HL7, Health Level Seven; k, kappa coefficient; REST,
Representational State Transfer.

Figure 4. HD-IVUS algorithm analysis platform. HD-IVUS: high-definition intravascular ultrasound.
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End-to-end workflow for automated analysis of HD-IVUS, showing:

1. Data acquisition—HD-IVUS scanner with automatic pullback, ECG-gated acquisition, Digital
Imaging and Communications in Medicine (DICOM) interface, and storage of raw/RF frames.

2. Pre-processing pipeline—noise filtering, speckle reduction, image enhancement, temporal
alignment, artefact suppression, motion compensation, and quality assessment.

3. Al analysis engine DL models (e.g., CNN, U-Net, ResNet, Transformer) performing lumen/media
segmentation, plaque characterization, disease/stenosis detection, quantitative metrics (e.g.,
minimum lumen area, plaque burden), and risk-prediction algorithms.

4. Clinical output—three-dimensional (3D) vessel reconstruction, automated stenosis report,
decision-support summaries for risk stratification and treatment guidance, picture archiving and
communication system (PACS)/electronic medical record (EMR) integration, and structured
reporting.

5. Continuous learning feedback loop—expert validation/annotation, quality-metrics monitoring,
dataset curation, model versioning, clinical-outcomes tracking, and automated model updates.

Key performance domains. Segmentation accuracy, processing speed (per pullback/real-time
capability), diagnostic performance [sensitivity/specificity/negative predictive value (NPV)/positive
predictive value (PPV) by task], and clinical agreement with experts.

Platform infrastructure (implementation example): cloud-native deployment with
containerization/orchestration for scalability, RESTful APIs with Health Level Seven (HL7)/Fast Healthcare
Interoperability Resources (FHIR) interoperability, and DICOM connectivity to PACS systems.

The AVVIGO+ Automated Lesional Assessment platform is an example of the integration of Al with HD-
IVUS imaging. This platform provides automated measurement of luminal area, vessel area, and plaque
burden in real-time, with 85% agreement for lumen assessments and 97% agreement for stent area
measurements [22].

Advanced neural networks applied to HD-IVUS data can predict procedural outcomes related to
optimal stent size, expansion characteristics, and potential complications. These predictive models can
analyze the overall geometry of the vessel, the distribution of plaque, and the characteristics of the
underlying tissue to recommend personalized procedural strategies for each patient [26].

Enhancements to OCT

OCT is currently the highest-resolution imaging modality for coronary vessels, providing detailed
information on plaque microstructure and the characteristics of the vessel wall. The advent of Al to enhance
the analysis of images derived from OCT has enabled OCT to become a powerful diagnostic and therapeutic
guidance tool [12].

ML applications to OCT data have automated the identification and quantification of thin-cap
fibroatheromas (TCFAs), lipid pools, macrophage infiltration, and other components of high-risk plaque
with greater accuracy than expert human analysis. Furthermore, these ML algorithms are capable of
analyzing terabytes of data across thousands of OCT cross-section images in seconds, leading to a robust
assessment of the entire vessel [13].

As shown in Figure 5, the OCT Al engine automates lumen and wall segmentation, feature extraction,
and high-risk plaque characterization. Figure 5 displays the processing steps and clinical outputs used for
percutaneous coronary intervention (PCI) planning and follow-up.

The Ultreon OCT software is a clinical example of Al-enabled software for OCT-guided interventions.
The Ultreon system uses ML algorithms that automate lumen segmentation, make stent sizing
recommendations, and identify optimal landing zones, with the aim of improving clinical outcomes.
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High-Resolution OCT System:
+ Near-infrared light source (1300nm)

+ Automated pullback (20-40 mmis)

+ Cross-sectional frames (180-200/mm)
+ Reaktime acquisition

+ Axial resolution: 10-15 pm

+ Lateral resolution: 2040 ym

« Tissue penetration: 1-3 mm

+ Frame rate: 180 fps

+ DICOM compatible format

1. Input Stage: OCT Image Acquisition

(U]

@)

2. Processing Stage: Al Engine (Deep Learning CNN)

Preprocessing & Enhancement (2) Automatic Segmentation

Feature Extraction (4) Plaque Characterization

Al Capabilities:

+ Lumen-intima boundary detection
—> | - Media-adventiia identiication

+ Plaque composition analysis

« Automated measurements

(5) Risk Score Calculation
+ TCFA detection algorithm

+ Lipid pool quantfication

+ Calcium scoring

+ Thrombus identification

3. Output Stage: Clinical Report

Automated Analysis Results:

+ Lumen analysis & dimensions

- Stent analysis & apposition

+ TCFA detection & location

+ Plaque characterization map

+ Optimal landing zone identifier

+ Edge dissection assessment

+ Tissue protrusion quantification

+ Neointimal hyperplasia measurement
+ Risk stratification score

Plaque Components:

+ Thin-cap fibroatheroma (TCFA) - cap <65 um
+ Lipid-ich plaque (ipid arc >90°)

+ Macrophage infilration detection

+ Calcium deposits (superficialideep)

+ Fibrous plaque identification

Pathological Features Identification

Acute Features:

+ Redwhite thrombus presence
+ Plaque rupture sites

+ Erosion detection

+ Neovascular hyperplasia

+ Microvessels visualization

PCI Optimization:

« Optimal stent sizing guidance
+ Landing zone identification

« Stent apposition assessment
« Edge dissection detection

« Post-PCI optimization

Clinical Applications

Risk Assessment:

* Vulnerable plaque identification
+ ACS risk stratification

+ Restenosis predition

« Treatment planning monitoring
+ Long-term outcome prediction

System Performance & Benefits

Processing Speed: Diagnostic Accuracy: Measurement Quality: Clinical Impact:

+ Automated analysis
« Real-time processing
«<60s per pullback

« Sensitvity: 96-98%
+ Specificity: 94-97%
*AUC: 097

+ Reproducible resuts
+ Low inter-observer variabilty
- Standardized analysis

« Real-ime decision support
« Comprehensive reports
+ Automated intervention guidance

Technical Infrastructure:

+ Deep Leaming Architecture: Multi-scale CNN with attention mechanisms, trained on 50,000+ annotated OCT frames

+ Integration: DICOM compatibility, HL7 FHIR compliance, seamless PACS/EMR integration, cloud-based deployment

+ Quality Assurance: Continuous model validation, automated quality checks, expert review integration, FDA/CE approved algorithms

+ Hardware Requirements: GPU accelerated (NVIDIA RTX 3080+), CUDA 1.0+ runtime, RAM 32GB storage, 100GB network connectivity

Abbreviations: OCT,
record; FHIR, Fast He

Figure 5. Al-enhanced optical coherence tomography (OCT) analysis platform: automated intracoronary image
processing workflow. Input—OCT acquisition. High-resolution intracoronary pullbacks in a DICOM-compatible format.
Processing—Al engine (deep learning CNN). (1) Preprocessing & enhancement; (2) automatic lumen/wall segmentation; (3)
feature extraction; (4) plaque characterization; optional (5) risk-score calculators and automated measurements. Screenshot—
user interface view showing automated lumen and wall segmentation overlays, plaque characterization outputs, and stent-
planning suggestions (sizing and landing zones). Output—clinical report. Automated identification of lesions and high-risk
features (e.g., TCFA, macrophage signal, calcium burden), quantification, stent-planning suggestions, and longitudinal follow-up
visualization. Clinical applications. PCl optimization (device sizing, landing-zone selection, post-stent assessment) and risk
assessment (event prediction, restenosis monitoring). System performance & benefits. Fast processing, high
reproducibility/standardization, improved measurement quality, and comprehensive structured reports. CNN: convolutional
neural network; DICOM: Digital Imaging and Communications in Medicine; PCI: percutaneous coronary intervention; TCFA:
thin-cap fibroatheroma; Al: artificial intelligence.

Sophisticated OCT Al algorithms have emerged that can predict stent under-expansion for calcified
lesions based on pre-procedural imaging analysis, which enables the identification of the best methods to
address calcifications and plan for procedural optimization strategies. The predictive models of stent
expansion in calcified lesions analyze calcification geometry and patterns, plaque morphology, and vessel
geometry to inform deployment decisions, demonstrating significant potential [27].

Physiological assessment algorithms (FFR)

The combination of Al with FFR assessment has significantly enhanced the accuracy and capability for
performing physiological assessments of coronary arteries. ML algorithms can take angiographic image
inputs to create 3D reconstructions of the vessels’ geometry to calculate pressure gradients across stenotic
regions [28].

Recent Al-enabled FFR systems [including quantitative flow ratio (QFR) derived from angiography]
demonstrate diagnostic accuracy in the mid-80% range for identifying hemodynamically significant
stenoses when compared to invasive pressure-wire FFR, albeit with some variability depending on lesion
complexity. Non-invasive techniques diminish the need for pressure wire introduction in many cases,
thereby decreasing the complexity and risk of invasive procedures [29].
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Potential clinical applications:

1. Cathlab decision-making: immediate clinical assessment of the significance of stenosis and the
option for transcatheter pressure wire measurement.

2. Pre-procedure planning: possibility for simulated ex vivo effect of planned stenting on FFR.

3. Population-based ML: accumulating anonymized results for collective benefit in a shotgun effect to
improve, train, and validate subsequent predictive models continually.

The incorporation of FFR calculations with intravascular imaging data enables a multifaceted
assessment that includes not only anatomic but also physiological characteristics. Advanced algorithms can
connect the hemodynamic effect of plaques with their anatomical features and may ultimately result in
tailored therapeutic approaches based upon variables specific to the lesion [30].

Clinical decision support systems
Integrated diagnostic platforms

Currently, clinical decision support systems (CDSS) are state-of-the-art solutions that integrate various
diagnostic modalities and utilize advanced Al technology to provide a comprehensive evaluation of
cardiovascular health. These CDSS include an analysis of electrocardiographic data, pathways, and scores
based on biochemical markers, imaging characteristics, and clinical details, providing personalized risk
evaluations and treatment recommendations for patients [31].

In such decision-support applications, Al recommendations were found to be feasible and concordant
with expert interventional cardiologists’ plans, highlighting that Al can assist without compromising
decision quality. However, the ultimate judgment remains with the physician. A side-by-side comparison of
Al vs. standard practice is shown in Table 2. Table 2 details endpoints, throughput, and cost implications by
modality.

Table 2. Comparison of Al and human performance across imaging modalities.

Modality Metric/Endpoint Al performance Human/Standard Throughput/Time Cost References
comparator (min) implications
ECG Detection of CAD AUROC: CAC 2 N/A (no direct Not reported Lowest [17]
phenotypes from 300 0.88; human ECG
resting ECG obstructive CAD comparator in cited
(obstructive CAD, high  0.85; regional study)
CAC, regional akinesis 0.94
akinesia)
CCTA Automated plaque and High agreement Manual <1 min (Al) vs. Medium-high  [7]
stenosis quantification  with experts (ICC  quantitative 25-30 min (manual)
0.964 plaque; analysis typically
0.879 %stenosis); requires tens of
agreement with minutes
IVUS; predicts Ml
SPECT Classification of DL outperforms Expert nuclear Not consistently High [32, 33]
MPI ischemia/obstructive TPD (total cardiology reading; reported; DL
CAD (SPECT) perfusion deficit) TPD vs. standard  assistance can
(per-patient AUC  software shorten review in
0.80 vs. 0.78; per- comparator practice

vessel 0.76 vs.
0.73); explainable
DL improves
physician
interpretation

Cardiac  Automated Strong Expert manual Al saves ~10 min  Highest [11, 34, 35]
MRI cine/LGE/T1 analysis  performance on reading is the per patient; manual

cine/T1/LGE tasks; reference standard 30-90 min

substantial

workflow speed-up
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Table 2. Comparison of Al and human performance across imaging modalities. (continued)

Modality Metric/Endpoint Al performance Human/Standard Throughput/Time Cost References
comparator (min) implications
FFR-CT Lesion-specific AUC 0.84; Visual CCTA Al processing ~ Intermediate  [9, 36, 37]
(CT- ischemia vs. invasive  accuracy 78% per- accuracy 68-75% 60 min (historical);  (lower than
derived FFR vessel & 85% per- (historical) invasive FFR during full invasive
FFR) patient; improves procedure (per work-up)
over visual CCTA lesion)
(historical
58%/71%)

Al: artificial intelligence; AUROC: area under the ROC curve; CAC: coronary artery calcium; CAD: coronary artery disease;
CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; CT: computed tomography; FFR-CT: FFR
derived from CT; LGE: late gadolinium enhancement; MPI: myocardial perfusion imaging; SPECT: single-photon emission
computed tomography; T1: T1 mapping; AUC: area under the curve; DL: deep learning; ECG: electrocardiogram; IVUS:
intravascular ultrasound; MRI: magnetic resonance imaging.

Precision medicine applications

Precision medicine involves utilizing the capabilities of healthcare best practices to support individuals. Al-
supported diagnostic systems will enable us to receive individually tailored medicine through accurate
phenotyping and risk-stratification algorithms. Predictive and prescriptive modeling can identify
subpopulations of patients with similar features or presentations; each may have an idiosyncratic
pathophysiology or require patient-specific therapeutics. It is not unreasonable to expect that ML
algorithms, when applied to integrated clinical data, will have the ability to predict treatment outcomes for
individual patients based on a specific intervention, create a personalized list for drug selection, or identify
those at the highest risk for an unwanted outcome. Personally tailored medicine is the future of
cardiovascular medicine [38].

Regulatory status, validation evidence, and implementation notes for representative systems are
summarized in Table 3. Table 3 lists platforms, methods, and deployment characteristics.

Table 3. Al systems and platforms in clinical practice.

System/Platform Technology/Method Al performance Clinical validation Implementation Regulatory References

time status

AWIGO+ Automated HD-IVUS Accuracy: 85% Validated against  Real-time (< FDA cleared, [22]
assessment with real-  (lumen expert manual 1 min per CE marked
time boundaries), measurements in  pullback)
lumen/vessel/plaque 97% (stent multicenter studies
morphology analysis area)

Ultreon OCT Al-powered lumen High Clinical studies Immediate FDA cleared, [39]
segmentation with concordance demonstrate (during CE marked
automated stent sizing  with expert improved procedure)
and landing zone analysis; procedural
recommendations automated efficiency and

workflow standardization
guidance

PROTEUS Al-assisted stress Non-inferior to  Randomized <5 min Under [40]
echocardiography standard controlled trial; additional clinical
interpretation with practice improved inter- analysis time investigation
automated wall motion  (primary reader
scoring endpoint met); consistency,

AUC 0.87-0.91 especially for less-
experienced
operators

Al: artificial intelligence; AUC: area under the curve; CE: Conformité Européenne; FDA: Food and Drug Administration; HD-
IVUS: high-definition intravascular ultrasound; iFR: instantaneous wavellfree ratio; OCT: optical coherence tomography.

Emerging technologies and future directions
Progress in DL

Progress in DL architecture, particularly transformer networks and attention-based architectures, is being
applied to cardiovascular applications. These types of models have the potential to learn and generate
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sequential data, identify temporal dependencies, and incorporate multiscale information of unprecedented
complexities [41].

Generative adversarial networks (GANs) have been explored for generating synthetic data to support
robust algorithms with limited data availability. This, along with other technologies, may help accelerate
the algorithm development process and facilitate its application to other populations [42].

Federated learning applications

Federated learning methods enable the collaborative development of algorithms across multiple
institutions while safeguarding the privacy of patient data. These methods support the development of
robust diagnostic models using a variety of data sources while precluding the necessity for centralized data
sharing, all while addressing privacy concerns and complying with all relevant regulations [43].

Real-time implementation

The advancement of edge computing solutions will allow for the deployment of Al algorithms in real-time
within clinical contexts. These designs can provide instant feedback on diagnostic outcomes, procedural
assistance, and risk evaluation, eliminating the need for cloud-based processing functions [44].

Emerging methods and their potential advantages are summarized in Table 4. The table outlines
technical descriptions and development stages.

Table 4. Emerging Al technologies in cardiac imaging.

Technology Technical description Potential benefits Development References
stage
Transformer  Advanced deep learning Sequential data analysis; modeling Research [41]
networks architectures using self-attention temporal dependencies in cardiac cycles;
mechanisms for sequence multi-scale context integration; improved
modeling and temporal pattern long-range feature extraction
recognition
GANs Synthetic data generation and Algorithm development with limited data; Experimental [42]

augmentation frameworks usinga  robustness via augmentation; domain
generator-discriminator architecture adaptation between imaging vendors;
privacy-preserving data synthesis

Federated Distributed training across Privacy protection (HIPAA/GDPR Implementation [43]
learning institutions without centralizing compliance); multi-institutional

patient data, using encrypted collaboration; improved model

gradient updates generalizability; larger effective training

datasets

Edge On-device/near-sensor computation Real-time processing (< 100 ms); instant  Development [45]
computing for low-latency inference using feedback in clinical workflow; reduced

optimized models (quantization, cloud dependence; enhanced data

pruning) security; offline capability

Al: artificial intelligence; GANs: generative adversarial networks; GDPR: General Data Protection Regulation; HIPAA: Health
Insurance Portability and Accountability Act.

Implementation challenges and real-world clinical considerations
Assessment of diagnostic accuracy and clinical validation

Meta-analyses indicate that Al-enhanced diagnostic systems can achieve diagnostic accuracies comparable
to those of expert physicians in specific tasks. For example, pooled results for detecting CAD across various
imaging modalities show sensitivities of ~ 85-95% and specificities of ~ 80-90%, which is on par with
expert reader performance [46, 47].

The PROTEUS trial is the first prospective, randomized, controlled trial examining Al-assisted stress
ECHO. This multicenter trial demonstrated the non-inferiority of Al-enhanced interpretation compared to
standard clinical practice for coronary angiography referral decisions [40]. Notably, the PROTEUS results
showed no significant difference in appropriate angiography referrals between Al-assisted and standard
interpretations in the overall cohort, confirming non-inferiority. Significantly, Al support improved

Explor Cardiol. 2025;3:101275 | https://doi.org/10.37349/ec.2025.101275 Page 11



decision-making consistency among less-experienced clinicians and in complex cases, suggesting that Al
can help level the field in diagnostic accuracy across operators [40].

Clinical implementation issues and barriers

While there is evidence of technical efficacy, several barriers hinder the implementation of Al diagnostic
systems in clinical practice. These include approval processes for healthcare systems, acceptance by
physician groups, reimbursement considerations, and integration with existing clinical workflows [48].

Another significant hurdle is standardizing Al algorithms across vendor platforms and clinical contexts.
Comprehensive establishment of standardized protocols and comprehensive validation frameworks is
necessary to facilitate widespread clinical adoption [47]. Another barrier is the lack of interpretability of
many Al models—so-called “black box” algorithms—which can hinder trust among clinicians and patients.
Ensuring transparency and explainability in Al decisions is increasingly seen as crucial for acceptance in
practice. Data privacy and security also pose challenges; large datasets are needed to train robust
algorithms, raising concerns about patient consent and data protection, especially when integrating Al tools
across different hospital systems.

Food and Drug Administration (FDA) approval pathways

The regulatory landscape for Al medical devices is evolving as various government agencies with differing
perspectives attempt to develop specific pathways for approving ML-based diagnostic tools. The FDA’s
Software as Medical Device framework outlines the recommendations for algorithm validation and
approval processes. As of 2023, the FDA has cleared or approved numerous Al-based medical devices,
including several in cardiology, but the regulatory framework is still evolving to address ongoing algorithm
updates and real-world performance monitoring [49].

Recent approvals of Al-enhanced cardiovascular diagnostic tools, including automated ECG
interpretation systems and imaging analysis systems, have laid the groundwork for regulatory
considerations and evaluation of this technology [50].

Ethical implementation

Ethical questions surrounding the implementation of Al in cardiovascular medicine include algorithmic
bias, transparency requirements, and physician liability. To ensure equitable healthcare delivery, training
datasets must be diverse and representative. Moreover, mechanisms for algorithmic accountability should
be in place—including providing at least partial explanations for Al decisions and continuous monitoring of
performance across different patient populations—so that biases can be detected and corrected [51].

Cost-effectiveness analysis

Early economic analyses suggest that Al-assisted diagnostic systems could lower healthcare expenditures
through more efficient diagnosis, avoidance of unnecessary procedures, and improved resource utilization.
There are reports of cost savings from 20-40% in health systems that incorporate an Al system into their
daily clinical workflows [52]. However, these projections assume optimal implementation; real-world cost
savings will depend on integration costs, staff training, and the extent to which such systems are adopted.

The improved time to interpretation, better consistency of diagnoses, and reduced repeat examinations
offer significant economic benefits for health systems adopting Al diagnostics, resulting in a decrease in
non-value-added time across the clinical workflow [53].

Workflow improvement

Al-assisted systems now save seconds on image assessment for each imaging study, rather than minutes,
which does offer an improvement to workflow. Still, the actual impact on overall clinical workflow depends
on factors such as system interoperability and the need for manual review of Al outputs—gains in speed
must be weighed against time for validation of Al findings by clinicians. Automated preliminary reads have
previously opened up the ideals of prioritizing urgent cases, reducing turnaround times, and optimizing
resources [54].
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Clinical and economic outcomes related to Al-assisted diagnostics are summarized in Table 5. Table 5
presents diagnostic accuracy ranges, projected cost savings, and time benefits.

Table 5. Clinical and economic outcomes.

Aspect Value Details References
Diagnostic Sensitivity 85-95%; Meta-analyses of ML for CAD detection across imaging modalities; Al [9, 47]
accuracy Specificity 80-92% performance comparable to expert readers

Cost savings 20-40% (projected) Early economic analyses of health systems implementing Al diagnostics; [36]
the magnitude depends on integration, training, and adoption

Time savings Seconds vs. minutes  Automated preliminary reads shorten per-study assessment; potential [35, 55]
per imaging study gains in triage and turnaround times

Expert > 85% (task-specific) HD-IVUS agreement with experts: lumen 85% and stent area 97%; Al- [22, 40]

agreement assisted stress ECHO non-inferior, with improved consistency for less-

experienced readers

Al: artificial intelligence; CAD: coronary artery disease; HD-IVUS: high-definition intravascular ultrasound; ML: machine learning;
ECHO: echocardiography.

A summary of performance across key applications is shown in Figure 6, which displays pooled
estimates of sensitivity, specificity, and accuracy across different modalities and tasks.

Performance Metrics Comparison

100% 06%

95% 95%
0, 0,
90% 92% 92% 20%
80%

80% 76% 78%
<
S 60%
()]
o
]
-
c
[
e
o 40%
o

20%

0% L—— 1 1 B 1 1 I
CCTA Plaque OCT Plaque MLFFR=CT Coronary CCTA Stenosis
Detection (19) Erosion (14) (10) Angiography Detection (7)
CNN (21)
Sensitivity Specificity Accuracy

Figure 6. Performance metrics and clinical validation of Al applications in cardiovascular diagnostics. Descriptive
comparison of the study-reported diagnostic performance by modality and task. Bars display the median of study-level
sensitivity, specificity, and—where available—accuracy within each category; parentheses indicate the number of contributing
studies: CCTA plaque detection (N = 19), OCT plaque erosion (N = 14), ML FFR-CT (N = 10), coronary angiography CNN
models (N = 21), and CCTA stenosis detection (N = 7). Due to heterogeneous thresholds and reference standards, no formal
meta-analysis was performed; values are descriptive and not pooled estimates. Where only one bar appears for a method, the
other metrics were not consistently reported in the source literature. Key findings. OCT-based plaque-erosion detection showed
the highest sensitivity (~ 96%) with strong overall balance across metrics; CCTA plaque and stenosis detection demonstrated
consistently high accuracy across studies; ML FFR-CT achieved moderate performance (~ 76-80%) with variability by lesion
complexity and image quality; CNN-based analysis of coronary angiography yielded high sensitivity (~ 90%). Overall variability
across tasks underscores the need for application-specific validation and ongoing algorithm refinement before broad clinical
deployment. CCTA: coronary computed tomography angiography; CNN: convolutional neural network; FFR-CT: fractional flow
reserve derived from CT; OCT: optical coherence tomography; Al: artificial intelligence; CT: computed tomography.
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A comprehensive analysis of Al performance across 12 key cardiovascular applications reveals notable
differences in diagnostic accuracy, sensitivity, and specificity, depending on the specific clinical task. The
top-performing applications include ECG arrhythmia detection (with 97.8% accuracy), heart disease
prediction (with 97.6% accuracy), and cardiac MRI segmentation (with 95.2% accuracy). More difficult
applications, such as FFR estimation, achieve lower but still clinically relevant performance levels of 84%.
Implementation barriers and practical solutions across regulatory, ethical, clinical, and economic areas are
outlined in Table 6. Table 6 offers a brief checklist for deployment planning.

Table 6. Implementation challenges.

Category Challenges Solutions References
Regulatory FDA/CE approval pathways; validation standards; Software as a Medical Device (SaMD) [49, 50, 56]
lifecycle oversight of adaptive algorithms frameworks; dedicated guidance; post-market
performance monitoring
Ethical Algorithmic bias; transparency/interpretability; Diverse and representative datasets; bias [48, 51, 56]
liability; data privacy auditing; explainable Al; accountability
mechanisms
Clinical Workflow integration; physician acceptance; Training and protocols; vendor-agnostic [34-36, 40,
standardization; prospective validation standards; multi-center trials to demonstrate 52]
efficacy (e.g., PROTEUS)
Economic Implementation costs, reimbursement models, Cost-benefit analyses; value-based payment [36, 57]
and uncertain ROI models; phased deployment; workflow

efficiency gains

Al: artificial intelligence; CE: Conformité Européenne; FDA: Food and Drug Administration; ROI: return on investment.

Conclusions

The increasing use of algorithms in diagnosing IHD marks a significant change in cardiovascular medicine,
with the potential to enhance diagnostic accuracy, improve workflow efficiency, and enable more
personalized patient care. Current applications of Al and ML for data collection demonstrate diagnostic
accuracy that is equal to or superior to that of human experts for specific imaging methods and clinical
scenarios.

The links between algorithms and multimodal imaging platform environments facilitate a holistic
approach to cardiovascular assessment, revealing methodologically significant physiological and prognostic
findings within a lucid and coherent diagnostic framework. Al-enhanced HD-IVUS and OCT imaging are
showing great promise for both more detailed plaque characterization and procedural quality that was
previously not possible.

Future directions include DL architectures for Al systems and ML, as well as federated learning and
opportunities for real-time implementation of systems, which will further enhance the potential for
diagnostics and clinical adoption. However, for widespread integration to be practical, fundamental issues
of regulation, ethically responsible utilization, and clear and explicit clinical and economic value need to be
overcome.

The evidence indicates that algorithmic methods are not just complementary to traditional evaluation;
they are already altering how IHD is diagnosed, risk-stratified, and managed. They are poised to become
ubiquitous in cardiovascular medicine, but realizing their full benefits will require ongoing evaluation of
their impact on patient outcomes and addressing the remaining challenges in regulation, integration, and
trust.

A stage-wise mapping of Al tools across the IHD diagnostic pathway is presented in Table 7. Table 7
aligns tools with clinical intent and expected benefits.
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Table 7. Applications by diagnostic stage.

Stage Al tools Main benefits References
Screening AI-ECG Early detection of latent disease and population- [6, 17]
level risk prediction/triage
Anatomical AI-CCTA; AI-CMR Accurate plague quantification and characterization  [7, 10, 11,
diagnosis (CCTA); quantitative myocardial tissue 21]
characterization, including LGE/T1 mapping (CMR)
Functional Al-FFR (FFR-CT); Al-perfusion (stress  Non-invasive hemodynamic evaluation; lesion- [9, 32, 33,
assessment imaging: echocardiography/nuclear) specific ischemia assessment; potential 36, 40]
improvement of reader performance in stress
imaging
Intervention Al-IVUS; AI-OCT Procedure optimization (e.g., stent sizing and [13, 22, 39]
planning landing zone selection), outcome prediction, and
intraprocedural decision support
Monitoring Integrated CDSS (with imaging and Personalized risk stratification, longitudinal follow- [16, 18, 52]
ECG data) up, and event prediction with integration of

multimodal data into clinical workflows

Al: artificial intelligence; CCTA: coronary computed tomography angiography; CDSS: clinical decision support systems; CMR:
cardiovascular magnetic resonance; CT: computed tomography; FFR: fractional flow reserve; FFR-CT: FFR derived from CT;
ECG: electrocardiogram; IVUS: intravascular ultrasound; LGE: late gadolinium enhancement; OCT: optical coherence
tomography.

Abbreviations

3D: three-dimensional

Al artificial intelligence

AUC: area under the curve

AUROC: area under the ROC curve

CAC: coronary artery calcium

CAD: coronary artery disease

CAD-RADS: Coronary Artery Disease Reporting and Data System

CCTA: coronary computed tomography angiography

CDSS: clinical decision support systems

CE: Conformité Européenne

CMR: cardiovascular magnetic resonance

CNNs: convolutional neural networks

CT: computed tomography

DICOM: Digital Imaging and Communications in Medicine

DL: deep learning

ECG: electrocardiogram

ECHO: echocardiography

EMR: electronic medical record

ESC: European Society of Cardiology

FDA: Food and Drug Administration

FFR: fractional flow reserve

FFR-CT: fractional flow reserve derived from computed tomography

FHIR: Fast Healthcare Interoperability Resources

GANSs: generative adversarial networks
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GDPR: General Data Protection Regulation
HD-IVUS: high-definition intravascular ultrasound
HIPAA: Health Insurance Portability and Accountability Act
HL7: Health Level Seven

iFR: instantaneous wave-free ratio

[HD: ischemic heart disease

IVUS: intravascular ultrasound

LGE: late gadolinium enhancement

LV/RV: left/right ventricle

LVEF: left ventricular ejection fraction

MACE: major adverse cardiac events

ML: machine learning

MPI: myocardial perfusion imaging

MRI: magnetic resonance imaging

NPV: negative predictive value

OCT: optical coherence tomography

PACS: picture archiving and communication system
PCI: percutaneous coronary intervention

PPV: positive predictive value

QFR: quantitative flow ratio

ROI: return on investment

SaMD: Software as a Medical Device

SPECT: single-photon emission computed tomography
TCFAs: thin-cap fibroatheromas

TPD: total perfusion deficit
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