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Abstract
Aim: Colorectal cancer is a leading cause of cancer-related mortality, emphasising the need for accurate 
polyp segmentation during colonoscopy for early detection. Existing methods often struggle to generalize 
effectively across diverse clinical scenarios. This study introduces DeepPolyp, an artificial intelligence 
framework designed for comprehensive benchmarking and real-time clinical deployment of polyp 
segmentation models.
Methods: Transformer-based segmentation models, SegFormer and SSFormer, were trained from scratch 
using an extensive dataset comprising public collections (CVC-ClinicDB, ETIS-LaribPolypDB, Kvasir) and 
recently augmented datasets (PolypDataset-TCNoEndo, PolypGen). Training involved standardized data 
augmentation, learning rate schedules, and early stopping. Models were evaluated using Dice and 
Intersection over Union (IoU) metrics. Real-time inference performance was assessed on an NVIDIA Jetson 
Orin device with ONNX and TensorRT optimizations.
Results: SegFormer-B4 achieved the highest accuracy (Dice: 0.9843, IoU: 0.9694), but was not selected for 
clinical deployment due to computational constraints. SegFormer-B2 provided comparable accuracy (Dice: 
0.9787, IoU: 0.9588) with significantly faster inference (94 ms per frame), offering an optimal balance 
suitable for real-time clinical use. SSFormer showed lower accuracy and slower inference, limiting its 
practical deployment.
Conclusions: DeepPolyp enables systematic evaluation of polyp segmentation models, assisting in selecting 
models based on both performance and computational efficiency. Despite superior accuracy from 
SegFormer-B4, SegFormer-B2 was selected for clinical deployment due to its advantageous balance 
between accuracy and real-time execution efficiency.
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Introduction
Colorectal cancer remains one of the leading causes of cancer-related mortality worldwide, with more than 
1.9 million new cases diagnosed annually [1]. Early detection and diagnosis are essential to increase patient 
survival by enabling timely medical intervention and treatment planning [2, 3]. Polyp segmentation, 
defined as the task of identifying and delineating polyps in endoscopic images, plays a crucial role in the 
screening and diagnosis of colorectal cancer [4]. Accurate segmentation assists gastroenterologists in 
differentiating between benign and malignant lesions, guiding decisions during procedures such as 
polypectomy [5–7]. However, polyp segmentation remains a difficult task due to high variability in polyp 
size, shape, texture, and contrast with surrounding tissue [8, 9].

Anatomical differences, varying camera angles, and inconsistent lighting across endoscopic equipment 
create complex visual patterns, making reliable polyp segmentation especially challenging. Traditional 
segmentation approaches often rely on hand-crafted features, thresholding, and region-based techniques 
[10]. These methods usually apply filters to extract texture, edges, or color features and use post-processing 
techniques such as morphological operations to refine segmentation masks. While effective in controlled 
environments, these techniques struggle to generalize under varying imaging conditions and are unable to 
capture complex spatial dependencies [11]. As a result, segmentation masks generated using traditional 
methods are often incomplete or inaccurate [9].

The introduction of deep learning, particularly convolutional neural networks (CNNs), has brought 
significant improvements in polyp segmentation by enabling automatic learning of hierarchical features 
from image data. Encoder-decoder architectures such as U-Net and its variants have become standard in 
medical image analysis due to their ability to localize features and refine object boundaries [12]. However, 
CNNs have limitations in modelling long-range dependencies because of their inherently local receptive 
fields [13].

Transformer-based architectures have recently emerged as powerful alternatives by using self-
attention mechanisms to capture global dependencies. These models have demonstrated strong 
performance across many vision tasks, including segmentation. Hybrid architectures, such as SegFormer 
and SSFormer, combine the strengths of convolutional layers for local feature extraction with transformer 
blocks for global context modelling, achieving state-of-the-art results in several segmentation benchmarks 
[14]. Lightweight transformer models, including Enhanced Nanonet, have also been developed to reduce 
computational cost while maintaining high segmentation accuracy, supporting deployment on low-power 
devices [15].

Despite the progress achieved by deep learning, several challenges remain. Many current segmentation 
models are designed with highly specialized architectures and require extensive hyperparameter tuning to 
reach optimal performance. Such specialization limits model adaptability to different imaging conditions or 
datasets. Additionally, most models are trained on relatively small and homogeneous datasets, which fail to 
capture the diversity of polyp appearances encountered in clinical practice. Variations in polyp morphology 
and imaging modalities across patients and devices further reduce generalization performance.

Another critical issue is the computational complexity of advanced models, which restricts their 
deployment on embedded or portable systems that require real-time operation. This limitation is 
particularly relevant in clinical settings where fast and reliable analysis is essential. Consequently, there is a 
growing demand for general-purpose segmentation networks that are robust, adaptable to various 
scenarios, and efficient enough for use on edge devices.

Recent advances in transformer-based segmentation models offer promising solutions, yet their 
application in medical imaging—and specifically in polyp segmentation—remains limited. Many existing 
studies rely on standard benchmark datasets, which may not adequately represent the complexity of real 
clinical scenarios. New datasets, such as PolypDataset-TCNoEndo [16] and PolypGen [17], provide 
additional variability in polyp appearance and imaging modalities, and therefore represent more realistic 
testbeds for evaluating model generalization.
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In addition, the deployment of segmentation models on resource-constrained hardware for real-time 
use has not been thoroughly investigated. Although interest in edge AI is increasing, few works evaluate 
segmentation models in terms of latency, segmentation quality, and computational efficiency under real 
hardware constraints.

To address these gaps, a modular AI framework named DeepPolyp is introduced. This framework is 
designed to benchmark and evaluate the performance of general-purpose transformer-based segmentation 
models, including SSFormer [18] and SegFormer [19], when trained on a diverse and extended set of 
datasets. In addition to widely used public datasets such as CVC-ClinicDB [20], CVC-ColonDB [21], ETIS-
LaribPolypDB [22], and Kvasir [23], two newer datasets—PolypDataset-TCNoEndo [16] and PolypGen [17, 
24, 25]—are included to ensure higher variability in the evaluation.

While recent transformer-based architectures and hybrid models have shown promising results in 
medical image segmentation, several gaps persist in current research. First, most existing models are 
designed as specialized solutions tailored to specific datasets, which limits their generalizability across 
diverse imaging conditions. Second, research efforts often rely on benchmark datasets that do not fully 
reflect the variability present in real-world clinical environments. Third, there is limited investigation into 
the practical feasibility of deploying such models on edge devices for real-time clinical use. These 
limitations are addressed in this work through the following specific contributions:

Introduction of DeepPolyp, a novel AI framework specifically designed for the comprehensive 
evaluation of polyp segmentation models in terms of accuracy, generalization, and deployment 
feasibility.

1.

A systematic assessment of state-of-the-art general-purpose segmentation architectures, namely 
SSFormer [18] and SegFormer [19], retrained and evaluated on a large and diverse collection of 
polyp datasets.

2.

Expansion of existing evaluation settings beyond commonly used datasets (CVC-ClinicDB [20], CVC-
ColonDB [21], ETIS-LaribPolypDB [22], and Kvasir [23]) by including two additional recent datasets: 
PolypDataset-TCNoEndo [16] and PolypGen [17, 24, 25], providing a more realistic and challenging 
evaluation setting.

3.

Evaluation of model performance under computational constraints, including inference time and 
resource usage, to explore deployment feasibility in resource-limited clinical environments using 
edge hardware.

4.

The remainder of the paper is structured systematically. State-of-the-art section provides a structured 
comparison and detailed critique of existing literature, highlighting the strengths and limitations of current 
methodologies relative to the proposed DeepPolyp framework. Materials and methods section outlines the 
methodology, including dataset preparation, model training protocols, and evaluation metrics. Results 
section presents experimental results, emphasizing model comparison and generalization capabilities. 
Discussion section discusses implications for clinical deployment, particularly focusing on computational 
efficiency and real-time capabilities.

State-of-the-art

Polyp segmentation has advanced significantly with deep learning techniques, which have overcome 
limitations of traditional methods [26]. Traditional approaches struggle with the variability in polyp size, 
shape, texture, and contrast, resulting in inconsistent segmentation. In contrast, deep learning models, 
particularly CNNs and transformer-based architectures, demonstrate superior accuracy and robustness. 
Recent research has focused on developing novel architectures and optimization strategies, including 
hybrid models that combine CNNs with transformers to capture both local features and global context. 
These advances have improved segmentation performance, enabling more accurate and reliable clinical 
applications.
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CNN-based approaches

CNN-based models have established strong baseline performance for polyp segmentation due to their 
ability to extract hierarchical features. However, these models often struggle with capturing long-range 
dependencies and maintaining consistent performance across varied polyp morphologies.

Fan et al. [27] pioneered a parallel reverse attention network that combines global and local features to 
improve boundary detection and segmentation accuracy. While effective for well-defined polyps, this 
approach may underperform with flat or sessile polyps that lack clear boundaries.

ResUNet variants have shown promising results. Jha et al. [28] enhanced ResUNet with squeeze-and-
excitation blocks, attention gates, and residual connections to boost feature extraction and segmentation 
performance. Though effective, these models require significant computational resources, limiting their 
deployment on resource-constrained devices.

DilatedSegNet [29] employs a ResNet50 backbone with a Dilated Convolution Pooling (DCP) block, 
achieving reliable segmentation at 33.68 FPS. While computationally efficient, it may struggle with very 
small polyps due to information loss during pooling operations.

MSRF-Net [30] uses Dual-Scale Dense Fusion (DSDF) blocks to preserve high-resolution features, 
addressing the detail loss common in CNN architectures. However, it requires careful parameter tuning to 
maintain optimal performance across datasets.

HarDNet-MSEG [31] achieves over 0.9 mean Dice score with an 86 FPS inference speed using a low-
memory CNN backbone, making it suitable for clinical applications. Its focus on efficiency may occasionally 
compromise performance on challenging cases.

Transformer-based approaches

Transformer models excel at capturing global contextual information but often require significant 
computational resources and may lose fine local details critical for accurate boundary delineation.

Dong et al. [32] present a transformer-based approach with attention mechanisms in both encoder and 
decoder, refining outputs while preserving the UNet-like decoder structure. This approach effectively 
captures global dependencies but may struggle with real-time applications due to computational overhead.

SSFormer [18] integrates a transformer-based pyramid encoder with a Progressive Locality Decoder 
(PLD) and Stepwise Feature Aggregation (SFA), mitigating attention dispersion issues. While effective for 
capturing global context, it faces challenges with very small polyps and has increased latency compared to 
lightweight CNN models.

FCBFormer [33] combines convolutional and transformer-based methods through a dual-branch 
architecture, enhancing robustness. This approach balances global and local feature extraction but requires 
careful optimization to manage computational complexity.

Polyp-PVT [32] leverages pyramid vision transformers, integrating a cascaded fusion module, 
camouflage identification module, and similarity aggregation module. Though powerful, it requires 
substantial GPU resources that may not be available in all clinical settings.

Hybrid approaches

Hybrid models aim to combine the strengths of CNNs and transformers, addressing the limitations of 
individual approaches. These models typically offer better performance but often at the cost of increased 
complexity and computational requirements.

Zhang et al. [34] combine CNN and transformers, where the transformer encoder captures global 
dependencies, and a cascaded CNN upsampler refines local features. This approach effectively balances 
global context with local detail but introduces additional complexity in training and deployment.

The authors [35] introduce a fusion of Meta-Former with UNet, incorporating a multi-scale upsampling 
block and level-up augmentation to enhance texture representation. While this approach improves texture 
delineation, it requires careful balancing of the two architectural components.
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FeDNet [36] introduces a Feature Decoupled Module (FDM) leveraging Laplacian pyramid 
decomposition for targeted optimization. Integrated with a vision transformer-based Feature Pyramid 
Network (FPN), FeDNet demonstrates strong accuracy and generalization but at increased computational 
cost.

LDNet [37] introduces a lesion-aware dynamic kernel, Lesion-aware Cross-Attention (LCA), and 
Efficient Self-Attention (ESA) to improve contrast between polyps and the background. This approach 
excels with challenging cases but requires careful implementation to maintain efficiency.

Zhou et al. [38] propose a cross-level feature aggregation and boundary prediction network, utilizing a 
two-stream structure to capture hierarchical semantic information. The model integrates a Cross-level 
Feature Fusion module to handle scale variations but may struggle with very small or flat polyps.

BDG-Net [39] employs a Boundary Distribution Map (BDM) for segmentation precision, addressing the 
challenge of accurate boundary delineation. However, it requires additional computational steps that may 
impact real-time performance.

DCRNet [40] captures contextual relations within and across images using an episodic memory 
mechanism. While effective for maintaining consistency across video frames, this approach requires 
sequential processing that increases latency.

ColonFormer [41] employs a hierarchical transformer encoder and a CNN-based decoder with 
multiscale feature representation. This approach effectively handles scale variations but faces challenges 
with real-time deployment due to its complexity.

PolypSeg+ [5] integrates an Adaptive Scale Context module and an Efficient Global Context module for 
real-time segmentation. It balances performance and efficiency but may still underperform on datasets with 
significant domain shifts.

HarDNet-DFUS [42] optimizes the HarDNet-MSEG model with ShuffleNetV2 concepts and a Lawin 
Transformer decoder, enhancing computational efficiency while maintaining accuracy. This approach 
represents a promising direction for clinical deployment.

DuAT [43] balances local and global representations with Global-to-Local Spatial Aggregation (GLSA) 
and Selective Boundary Aggregation (SBA). This comprehensive approach addresses multiple challenges 
but increases model complexity.

FuzzyNet [27] employs a Fuzzy Attention module to refine segmentation near polyp boundaries, 
addressing a critical challenge in clinical applications. However, it requires careful parameter tuning to 
achieve optimal results.

HSNet [44] combines Transformer-CNN frameworks, integrating a Cross-Semantic Attention module 
and Multi-Scale Prediction module for high performance. While effective, it introduces additional 
complexity that may challenge deployment in resource-constrained environments.

UACANet [45] enhances segmentation with Uncertainty Augmented Context Attention, improving 
robustness to ambiguous boundaries. This approach addresses a key clinical challenge but at the cost of 
increased computational overhead.

M2SNet [46] applies subtraction-based feature fusion to improve edge preservation, addressing a 
common limitation in polyp segmentation. This approach effectively captures boundaries but may struggle 
with flat or sessile polyps.

MSNet [47] employs a subtraction-based extraction mechanism for boundary delineation. While 
effective for well-defined polyps, it may underperform with polyps that have gradual transitions to 
surrounding tissue.

SANet [48] introduces a color exchange operation and probability correction strategy for small polyp 
segmentation. This approach specifically addresses the challenge of small polyps but may not generalize 
well to larger, more complex cases.
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TransFuse [34] integrates CNN and Transformer models with a BiFusion module for precise 
segmentation. This balanced approach effectively combines global and local features but requires careful 
implementation to manage computational demands.

CaraNet [49] enhances small object segmentation through a Context Axial Reverse Attention Network. 
While effective for small polyps, it may introduce unnecessary complexity for larger, more obvious cases.

FANet [50] refines segmentation iteratively with a Feedback Attention Network. This approach 
improves accuracy through multiple refinement steps but increases inference time, potentially limiting 
real-time applications.

Enhanced U-Net [51] improves robustness with a Semantic Feature Enhancement Module (SFEM) and 
Adaptive Global Context Module (AGCM). This approach effectively balances performance and efficiency but 
still faces challenges with very small or flat polyps.

Recent specialized approaches

Recent works have focused on addressing specific challenges in polyp segmentation, such as boundary 
delineation, small polyp detection, and domain generalization.

The authors [28] introduce an advanced ResUNet-based architecture with residual units, squeeze-and-
excitation blocks, and attention mechanisms, achieving strong results on Kvasir-SEG. However, complex 
attention mechanisms increase computational demands.

Tomar et al. [29] propose a dual decoder attention network, with one decoder acting as an 
autoencoder, enhancing feature maps through attention mechanisms. This approach improves feature 
representation but at the cost of model complexity.

The authors [28] develop a multi-scale residual fusion network with cross multi-scale attention, 
improving generalizability. While effective for handling domain shifts, this approach introduces additional 
parameters that increase memory requirements.

Guo et al. [52] address threshold selection by learning adaptive threshold maps through a confidence-
guided manifold mixup approach, achieving a Dice coefficient of 87.307% on EndoScene. This approach 
improves segmentation consistency but requires careful implementation to avoid overfitting.

Research gap and motivation

Despite significant advances, challenges remain in polyp segmentation, including:

Balancing computational efficiency with segmentation accuracy for clinical deployment•

Addressing performance variations across different polyp morphologies•

Enabling reliable deployment on resource-constrained edge devices•

Providing systematic comparison frameworks for evaluating model performance•

These challenges highlight the need for a comprehensive framework to evaluate and compare different 
segmentation models under uniform conditions, particularly for edge deployment scenarios. This study 
focuses on analyzing the DUCK-Net, SSFormer, and SegFormer models for potential deployment on edge 
devices, addressing a critical gap in current research.

Materials and methods
This section introduces DeepPolyp, an advanced AI framework for polyp segmentation and detection, 
designed to systematically evaluate the effectiveness of specialized and general-purpose segmentation 
models. The workflow, illustrated in Figure 1, is organized into four main stages: Data preparation, SOTA 
model selection, model comparison, and edge porting. This structured approach ensures a rigorous 
evaluation of segmentation models under different imaging conditions, providing comprehensive 
information on their performance and feasibility. Further details are given in the following subsections.
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Figure 1. Workflow of DeepPolyp. The framework consists of four main stages: (1) data preparation, including dataset 
selection and fusion to improve model generalisation; (2) SOTA model selection, comparing CNNs and transformer-based 
architectures to identify the best specialised medical model; (3) model comparison, evaluating the robustness of the specialised 
medical model against a general-purpose segmentation model; and (4) edge porting, optimising and deploying the model on 
edge devices for real-time clinical applications. This systematic approach ensures comprehensive evaluation, high segmentation 
accuracy and efficient real-time performance

Data preparation

Data preparation is key to robust model training and evaluation. In DeepPolyp, this phase is divided into 
three key steps: dataset selection, first dataset fusion, and second dataset fusion, to ensure comprehensive 
and diverse training data for effective model generalisation.

Dataset selection

Public datasets have significantly advanced automatic polyp segmentation research by providing 
standardized benchmarks for deep learning models. These datasets offer diverse polyp images with 
detailed annotations, enabling reproducible research and fair model comparisons. The DeepPolyp 
framework leverages several key datasets to address the limitation of existing models being overly 
specialized to specific datasets.

Kvasir-SEG [23]: This widely used dataset contains 1,000 polyp images with corresponding 
segmentation masks. The images have varying resolutions (332 × 487 to 1,920 × 1,072 pixels) stored 
in JPEG format with bounding box information in JSON format. This resolution diversity helps models 
become more robust by learning from different input sizes.

•

CVC-ClinicDB [20]: Consisting of 612 frames extracted from colonoscopy videos, this dataset 
includes polyps with ground truth segmentation masks. It effectively represents real clinical 
scenarios, making it valuable for evaluating segmentation algorithms.

•

ETIS-LaribPolypDB [22]: This dataset provides a comprehensive collection of polyp images with 
detailed annotations. Its diverse polyp appearances contribute to better model generalisation across 
different clinical settings.

•

PolypGen [17]: One of the most comprehensive datasets available, containing 1,537 polyp images, 
2,225 positive polyp video sequences, and 4,275 negative frames. Data collected from six medical 
centers across Europe and Africa ensures significant imaging variability, enhancing model 
adaptability to real-world clinical settings.

•

CVC-ColonDB [21]: This dataset offers 300 colonoscopy images with corresponding polyp 
segmentation annotations, supporting the development of accurate machine learning models.

•
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CVC-300 [53]: Comprising 912 images from 44 colonoscopy sequences with ground truth 
segmentation masks. It is frequently used as a test set alongside other datasets to evaluate model 
generalisation capabilities. The inclusion of multiple sequences from different procedures provides a 
comprehensive evaluation of segmentation algorithms.

•

PolypDataset-TCNoEndo [16]: This dataset is an augmented version of Kvasir-SEG, not a new 
dataset. It contains approximately 19,000 images generated through various data augmentation 
techniques, including color modification, lighting adjustment, and contrast alteration. These 
augmentations introduce greater variability in imaging conditions, crucial for training models that 
generalise well across different clinical scenarios.

•

Dataset fusion methodology

To address the generalisation limitations of existing models, DeepPolyp employs a systematic dataset 
fusion approach:

Preprocessing: All images undergo standardized preprocessing before fusion:

Normalization to a common intensity range [0, 1]•

Resizing to a uniform dimension (512 × 512 pixels)•

Color space standardization (RGB)•

Contrast enhancement using adaptive histogram equalization•

First dataset fusion

To improve model generalisation, individual datasets are combined to create a mixed dataset, which is 
designed to simulate real-world scenarios by including a wide range of polyp appearances, lighting 
conditions and imaging devices. The mixed dataset contains images from all selected datasets, ensuring 
better model generalisation and robustness.

The datasets are divided into training, validation and test sets in a ratio of 80-10-10. Table 1 
summarises the distribution.

Table 1. Number of images for each dataset split

Dataset Training Validation Test

CVC-300 43 11 6
CVC-ClinicDB 440 110 62
CVC-ColonDB 273 69 38
ETIS-LaribPolypDB 140 36 20
Kvasir 720 180 100
Mixed dataset 1,077 381 704

Second dataset fusion

To further improve model generalisation, a second dataset fusion is performed. This stage includes 
additional datasets, particularly images without polyps, to reduce false positives. This enriched dataset 
consists of:

Training set: 19,657 images•

Validation set: 5,027 images•

Test set: 10,660 images•

This comprehensive dataset allows the model to learn from a wide range of scenarios, improving 
segmentation accuracy and robustness.
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The DeepPolyp framework’s unique contribution lies in this structured fusion approach, which 
addresses the key challenges in polyp segmentation: limited generalisation across datasets, insufficient 
diversity in training data, and the gap between laboratory performance and clinical deployment. By 
integrating diverse datasets through a systematic methodology, DeepPolyp enables the training of more 
robust segmentation models that perform consistently across different clinical settings and imaging 
conditions.

SOTA model comparison

This section evaluates existing segmentation models to establish a benchmark for comparison. The 
comparison systematically assesses CNN-based models against transformer-based architectures and 
identifies the best-performing specialized medical model for further evaluation.

DUCK-Net [35] and SSFormer [18] are trained on the mixed dataset. DUCK-Net was selected as a 
representative CNN-based model with established performance in medical image segmentation, while 
SSFormer represents the newer transformer-based approaches specifically designed for medical 
applications.

The evaluation uses two standard metrics: Dice coefficient and mean Intersection over Union (mIoU) 
[28]. Each model’s performance is tested on individual datasets to assess their ability to generalize across 
different imaging conditions.

DUCK-Net shows acceptable performance on larger datasets such as Kvasir and CVC-ClinicDB but 
performs poorly on smaller datasets like CVC-ColonDB. In contrast, SSFormer consistently outperforms 
DUCK-Net across all datasets, achieving higher Dice and mIoU scores. This superior performance stems 
from the transformer-based architecture’s ability to capture global dependencies in the images.

Specific medical model vs general purpose model

This phase aims to improve the model’s ability to generalize for polyp segmentation from RGB images. A 
key goal is to ensure the network can correctly handle images where no polyp is present, thus reducing 
false positives. To achieve this, additional datasets were incorporated to diversify the training data.

By combining these new datasets with those previously selected in Dataset selection section, the final 
dataset for the second verification step includes 19,657 images for training, 5,027 images for validation, and 
10,660 images for testing.

This comprehensive dataset enables a direct comparison between a specific medical model (SSFormer) 
and a general-purpose segmentation model (SegFormer). SegFormer was selected as a state-of-the-art 
general-purpose segmentation model to benchmark against the specialized medical approach of SSFormer. 
The main objective is to evaluate how robust these models are under varied imaging conditions, especially 
in scenarios with no polyp present, thereby assessing their false-positive rates and overall segmentation 
accuracy.

To ensure fair comparison, both models are trained using identical hyperparameter settings, data 
augmentation strategies, and evaluation metrics. This standardization allows for an unbiased assessment of 
each model’s ability to generalize, highlighting their strengths and limitations across diverse datasets.

The results of this comparative analysis are discussed in detail in the following sections, focusing on 
performance differences between specific medical models and general-purpose models in terms of 
segmentation accuracy, generalization capability, and clinical applicability.

Model Training Settings: The model comparison stage evaluates the best specialized medical model 
(SSFormer) against a general-purpose segmentation model (SegFormer) to assess their robustness in 
handling different image variations. This comparison includes:

Training from scratch: Both models are trained without pre-trained weights to ensure unbiased 
learning.

•
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Data augmentation: Standard techniques, including normalization, color jitter, and contrast 
adjustment, are applied consistently.

•

Learning rate scheduling and early stopping: These techniques optimize convergence and 
prevent overfitting.

•

Training parameters for both models are detailed in Table 2.

Table 2. Training parameters used for SSFormer and SegFormer

Parameter SSFormer SegFormer

Learning rate 1e−4 1e−5
Epochs 200 50
Optimizer AdamW SGD
Learning rate scheduler Activated Activated
Early stopping Not activated Activated

Both SegFormer and SSFormer models were trained from scratch to ensure fair learning from the 
newly incorporated datasets, PolypDataset-TCNoEndo and PolypGen dataset. Standard data augmentation 
techniques were randomly applied to the input data. Early stopping terminated training when evaluation 
metrics showed no improvement for five consecutive epochs, preventing overfitting and optimizing 
computational resources.

The SegFormer model was trained in two variants, B2 and B4, both showing robust learning behavior. 
As shown in Figure 2 and Figure 3, SegFormer-B4 achieved superior evaluation metrics. The validation 
phase at each epoch confirmed that both variants approached their maximum metric values asymptotically, 
demonstrating their effectiveness for polyp segmentation.

Figure 2. Dice metrics for SegFormer models. (a) SegFormer-B2 performance (blue curve) and (b) SegFormer-B4 
performance (red curve) during training. In both plots, the x-axis represents training steps, and the y-axis shows the metric value 
(maximum is 1). The SegFormer-B4 variant achieves higher overall performance and better generalization, indicated by a 
smaller gap between training and validation curves

The SSFormer model was trained in two variants, small and large, both demonstrating effective 
learning dynamics. As depicted in Figure 4 and Figure 5, SSFormer-Large consistently achieved higher 
evaluation metrics, despite experiencing more fluctuations during training. Training curves for both 
variants illustrate rapid initial improvements followed by gradual optimization towards their peak 
performance, highlighting the robustness and suitability of SSFormer for polyp segmentation tasks.

Results
This section presents the main experimental results obtained through the DeepPolyp framework. 
DeepPolyp is designed as a modular benchmarking platform to evaluate segmentation models on diverse 
datasets, with the possibility to extend it to additional architectures in future studies. The framework 
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Figure 3. IoU metrics for SegFormer models. (a) SegFormer-B2 training performance (blue curve); (b) SegFormer-B4 training 
performance (red curve). In both plots, the x-axis represents training steps, and the y-axis shows the IoU metric value 
(maximum is 1). The convergence patterns illustrate steady improvement, with the SegFormer-B4 variant demonstrating more 
stable learning and superior final performance compared to the B2 variant. IoU: Intersection over Union

Figure 4. Dice metrics for SSFormer models. (a) SSFormer-Small training performance (green curve); (b) SSFormer-Large 
training performance (gray curve). In both plots, the x-axis represents training steps, and the y-axis shows the metric value 
(maximum is 1). Training curves exhibit rapid initial improvement followed by gradual optimization, with the large variant 
achieving higher final performance but displaying more pronounced fluctuations during training

Figure 5. IoU metrics for SSFormer models. (a) SSFormer-Small training performance (green curve); (b) SSFormer-Large 
training performance (gray curve). In both plots, the x-axis represents training steps, and the y-axis shows the IoU metric value 
(maximum is 1). The convergence behavior resembles the Dice metrics, with both variants achieving strong performance; 
however, the large variant demonstrates superior final results despite exhibiting greater oscillations during training. IoU: 
Intersection over Union

enables consistent comparison of both specialised medical models and general-purpose segmentation 
models using standard metrics and reproducible conditions. It also supports testing models in edge 
deployment settings.

Comparison of specialised segmentation models

The first set of experiments involved comparing DUCK-Net, a CNN-based model, and SSFormer, a 
Transformer-based model designed for medical imaging. Both models were trained on a mixed dataset 
composed of CVC-300, CVC-ClinicDB, CVC-ColonDB, ETIS-LaribPolypDB, and Kvasir. Evaluation was 
performed using the Dice coefficient and mean mIoU.
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As shown in Table 3, DUCK-Net achieved good segmentation accuracy on larger datasets such as Kvasir 
(Dice: 0.9042) and CVC-ClinicDB (Dice: 0.8847). However, its performance dropped significantly on smaller 
datasets like CVC-ColonDB (Dice: 0.7169), revealing its limited generalisation. Additional experiments 
training DUCK-Net on single datasets (Tables 4, 5, 6, 7) confirmed this dependency on dataset size and 
distribution.

Table 3. DUCK-Net results with training on the mixed dataset

Dataset Dice 17 mIoU 17 Dice 34 mIoU 34

CVC-300 0.8711 0.7717 0.8608 0.7556
CVC-ClinicDB 0.8583 0.7517 0.8847 0.7932
CVC-ColonDB 0.5331 0.3634 0.7169 0.5587
ETIS-LaribPolypDB 0.8268 0.7048 0.8957 0.8111
Kvasir 0.8423 0.7275 0.9042 0.8251
17 and 34 refer to the number of filters incorporated in the models: A model with 17 filters is identified as an optimal smaller 
model, whereas a model with 34 filters effectively represents a larger model. mIoU: mean Intersection over Union

Table 4. DUCK-Net results with training on the CVC-300 dataset

Dataset Dice 17 mIoU 17 Dice 34 mIoU 34

CVC-ClinicDB 0.1564 0.0848 0.0299 0.0152
CVC-ColonDB 0.02091 0.1167 0.2097 0.1171
ETIS-LaribPolypDB 0.2750 0.1594 0.0572 0.0294
Kvasir 0.0679 0.0352 0.0118 0.0059
17 and 34 refer to the number of filters incorporated in the models: A model with 17 filters is identified as an optimal smaller 
model, whereas a model with 34 filters effectively represents a larger model. mIoU: mean Intersection over Union

Table 5. DUCK-Net results with training on the CVC-ClinicDB dataset

Dataset Dice 17 mIoU 17 Dice 34 mIoU 34

CVC-300 0.5055 0.3382 0.7348 0.5808
CVC-ColonDB 0.5751 0.4037 0.6032 0.4318
ETIS-LaribPolypDB 0.2319 0.1311 0.2207 0.1240
Kvasir 0.5909 0.4194 0.5896 0.4181
17 and 34 refer to the number of filters incorporated in the models: A model with 17 filters is identified as an optimal smaller 
model, whereas a model with 34 filters effectively represents a larger model. mIoU: mean Intersection over Union

Table 6. DUCK-Net results with training on the CVC-ColonDB dataset

Dataset Dice 17 mIoU 17 Dice 34 mIoU 34

CVC-300 0.8935 0.8074 0.9200 0.8519
CVC-ClinicDB 0.5310 0.3615 0.6773 0.5121
ETIS-LaribPolypDB 0.6063 0.4350 0.6587 0.4911
Kvasir 0.4310 0.2747 0.6626 0.4954
17 and 34 refer to the number of filters incorporated in the models: A model with 17 filters is identified as an optimal smaller 
model, whereas a model with 34 filters effectively represents a larger model. mIoU: mean Intersection over Union

Table 7. DUCK-Net results with training on the ETIS-LaribPolypDB dataset

Dataset Dice 17 mIoU 17 Dice 34 mIoU 34

CVC-300 0.1246 0.0665 0.2995 0.1761
CVC-ClinicDB 0.3518 0.2134 0.4310 0.2747
CVC-ColonDB 0.2517 0.1440 0.2902 0.1698
Kvasir 0.5261 0.3570 0.6537 0.4855
17 and 34 refer to the number of filters incorporated in the models: A model with 17 filters is identified as an optimal smaller 
model, whereas a model with 34 filters effectively represents a larger model. mIoU: mean Intersection over Union
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In contrast, SSFormer achieved consistently higher accuracy across all datasets. For instance, Table 8 
reports a Dice score of 0.9295 on CVC-300 using SSFormer-Large, surpassing DUCK-Net’s best result. This 
superior performance is attributed to the transformer-based attention mechanism, which captures global 
dependencies more effectively than convolutional filters. Further evidence is provided in Tables 9, 10, and 
11, where SSFormer demonstrates strong generalization capabilities across various training scenarios. 
Notably, when trained on CVC-300 (Table 9), SSFormer achieves a Dice Small of 0.7265 on the Kvasir 
dataset, and when trained on CVC-ClinicDB (Table 10), it reaches a Dice Small of 0.9122 on CVC-ColonDB. 
The best performance is observed when trained on CVC-ColonDB (Table 11), where it obtains a Dice Large 
of 0.9490 on CVC-300, highlighting its robustness and cross-dataset generalizability.

Table 8. SSFormer results trained on the mixed dataset

Dataset Dice Small mIoU Small Dice Large mIoU Large

CVC-300 0.8064 0.7204 0.9295 0.8734
CVC-ColonDB 0.5703 0.4845 0.9069 0.8539
CVC-ClinicDB 0.6869 0.5678 0.9212 0.8757
ETIS-LaribPolypDB 0.6027 0.5164 0.8857 0.8349
Kvasir 0.7534 0.6365 0.9386 0.8970
mIoU: mean Intersection over Union

Table 9. SSFormer results trained on the CVC-300 dataset

Dataset Dice Small mIoU Small Dice Large mIoU Large

CVC-ClinicDB 0.5716 0.4842 0.5465 0.4759
CVC-ColonDB 0.6708 0.5515 0.6476 0.5337
ETIS-LaribPolypDB 0.5826 0.4991 0.6147 0.5296
Kvasir 0.7265 0.6131 0.7143 0.5982
mIoU: mean Intersection over Union

Table 10. SSFormer results trained on the CVC-ClinicDB dataset

Dataset Dice Small mIoU Small Dice Large mIoU Large

CVC-300 0.8485 0.7779 0.8453 0.7790
CVC-ColonDB 0.9122 0.8575 0.9211 0.8689
ETIS-LaribPolypDB 0.8068 0.7222 0.8012 0.7332
Kvasir 0.8693 0.7898 0.8691 0.7962
mIoU: mean Intersection over Union

Table 11. SSFormer results with training on the CVC-ColonDB dataset

Dataset Dice Small mIoU Small Dice Large mIoU Large

CVC-300 0.9442 0.8979 0.9490 0.9073
CVC-ClinicDB 0.8708 0.7945 0.9191 0.8573
ETIS-LaribPolypDB 0.7825 0.6911 0.7893 0.7138
Kvasir 0.8010 0.6999 0.7978 0.7064
mIoU: mean Intersection over Union

Qualitative examples support these findings. Figure 6 shows that DUCK-Net struggles with polyps in 
low contrast or irregular shapes, often producing discontinuous or oversmoothed masks. On the other 
hand, SSFormer masks (Figure 7) preserve anatomical boundaries and fine details. Despite this, SSFormer 
also exhibits some failure cases under complex visual conditions, as illustrated in Figure 8 and Figure 9. 
These results suggest room for architectural improvement.
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Figure 6. Example segmentation masks generated by DUCK-Net. The masks reveal challenges in accurately segmenting 
polyps, particularly in complex scenarios such as low-contrast regions or irregular polyp shapes

Figure 7. Example segmentation masks generated by SSFormer. SSFormer demonstrates significantly higher precision in 
polyp delineation, preserving fine-grained structures and achieving superior discrimination between polyps and the background

General-purpose versus specialised models

To further assess model robustness, the best-performing medical model (SSFormer) was compared to 
SegFormer, a general-purpose transformer segmentation model. Both SegFormer-B2 and SegFormer-B4 
variants were evaluated using the same training and test conditions.
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Figure 8. SSFormer small variant error for mask generation. In complex conditions such as low contrast or occlusion, 
SSFormer fails to produce accurate masks, highlighting the need for architectural optimizations

Figure 9. SSFormer large variant error for mask generation. Similar to the small variant, the large variant struggles with 
complex scenarios, indicating areas for future improvement

As shown in Table 12, SegFormer-B4 achieved the highest accuracy, with a Dice score of 0.9843 and 
IoU of 0.9694. These scores are significantly higher than those of SSFormer, whose performance remained 
below 0.18 in all configurations. Figure 10 and Figure 11 demonstrate SegFormer’s ability to produce 
accurate segmentation masks across variable polyp appearances and sizes.

Table 12. Performance metrics (Dice and IoU) for SegFormer and SSFormer on the test set

Metric SegFormer-B2 SegFormer-B4 SSFormer-Small SSFormer-Large

Dice 0.9787 0.9843 0.1659 0.1780
IoU 0.9588 0.9694 0.1590 0.1616
IoU: Intersection over Union

Figure 10. Segmentation masks generated by SegFormer-B2. The model accurately identifies polyp boundaries, showing 
high reliability and precision even in challenging cases with varying polyp sizes, shapes, and contrast levels

The strong performance of SegFormer, especially the B4 variant, is likely due to its larger capacity, 
improved architecture, and pretraining on diverse datasets. This suggests that general-purpose models, 
when fine-tuned on domain-specific data, can outperform models designed specifically for medical 
segmentation.

Statistical analysis of segmentation performance

To evaluate whether the observed differences in segmentation performance between models were 
statistically significant, a two-tailed paired t-test was conducted on the Dice and IoU scores obtained from 
the test datasets. The test compared the performance of SegFormer-B4 with SSFormer-Large, as these two 
models represented the best-performing variants within their respective categories.
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Figure 11. Segmentation masks generated by SegFormer-B4. The B4 variant demonstrates superior reliability and precision 
compared to B2, highlighting the impact of its enhanced architectural features

The results of the statistical analysis (Table 13) indicated that the difference in Dice scores between 
SegFormerB4 and SSFormer-Large was statistically significant, with a p-value < 0.001. Similarly, the IoU 
scores also showed a significant difference with p-value < 0.001. These results confirm that SegFormer-B4 
consistently outperformed SSFormer-Large across all test datasets, and the difference in performance was 
not due to random variation.

Table 13. Statistical comparison of segmentation performance between SegFormer and SSFormer variants

Comparison Metric Mean ± Std (SegFormer) Mean ± Std (SSFormer) p-value (t-test)

SegFormer-B4 vs SSFormer-Large Dice 0.9843 ± 0.0052 0.1780 ± 0.0417 < 0.001
SegFormer-B4 vs SSFormer-Large IoU 0.9694 ± 0.0063 0.1616 ± 0.0389 < 0.001
SegFormer-B2 vs SSFormer-Small Dice 0.9787 ± 0.0061 0.1659 ± 0.0452 < 0.01
SegFormer-B2 vs SSFormer-Small IoU 0.9588 ± 0.0074 0.1590 ± 0.0428 < 0.01
IoU: Intersection over Union

A similar test was performed between SegFormer-B2 and SSFormer-Small, also resulting in statistically 
significant differences (p-value < 0.01 for both Dice and IoU scores).

These findings reinforce the conclusions drawn from the quantitative and qualitative analyses and 
support the claim that SegFormer, despite being a general-purpose model, offers superior performance in 
the context of polyp segmentation. The inclusion of statistical validation adds reliability to the 
benchmarking procedure conducted through the DeepPolyp framework.

Summary of findings

Overall, the experiments suggest that general-purpose models like SegFormer, especially variant B4, are 
effective for polyp segmentation when properly trained. SSFormer shows promising results as a medical-
specific alternative, but requires architectural optimisation for deployment efficiency. DUCK-Net is 
outperformed in most scenarios, particularly on smaller datasets.

DeepPolyp enables fair and reproducible comparisons, integrates deployment analysis, and supports 
future extensions to novel models. Its modular design makes it useful for researchers and practitioners 
seeking to evaluate both accuracy and real-world applicability in medical image segmentation.

Real-time edge deployment evaluation

In addition to segmentation accuracy, the DeepPolyp framework allows for evaluating model performance 
in real-time conditions on edge devices. This functionality is essential for clinical settings where low-latency 
feedback is needed, such as during endoscopic procedures.
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The edge deployment process was carried out on an NVIDIA Jetson Orin device and involved three 
main steps: (1) model conversion and optimization using ONNX and TensorRT for efficient inference, (2) 
evaluation of segmentation accuracy to ensure consistency with PyTorch-based results, and (3) 
performance measurement of the full inference pipeline.

Table 14 reports the segmentation metrics before and after deployment. SegFormer-B2 and B4 
maintained high accuracy after optimization, with only a minor drop in Dice and IoU scores. On the other 
hand, SSFormer variants experienced minimal changes, although their overall performance remained low.

Table 14. Metrics comparison between PyTorch and TensorRT models

PyTorch results TensorRT resultsModel

Dice IoU Dice IoU

SegFormer-B2 0.9787 0.9588 0.9231 0.8684
SegFormer-B4 0.9843 0.9694 0.9433 0.9025
SSFormer-Small 0.1659 0.1590 0.1606 0.1449
SSFormer-Large 0.1780 0.1616 0.1667 0.1487
IoU: Intersection over Union

After validating segmentation accuracy, a performance analysis of the full execution pipeline was 
conducted. The analysis considered a 20-second video sequence and measured execution times for each 
component, including preprocessing, inference, post-processing, and image rendering. Among these, 
inference remained the most computationally intensive step.

As reported in Table 15, execution times for the inference pipeline, detailed for each component, edge 
deployment significantly reduced inference time compared to GPU execution. SegFormer-B2 achieved the 
lowest latency, completing the full pipeline in approximately 94 ms per frame, making it suitable for real-
time operation. SegFormer-B4 maintained acceptable latency (135 ms per frame), while SSFormer models 
were slower but remained within operational limits for semi-real-time tasks.

The results confirm that the DeepPolyp framework supports the deployment of segmentation models 
in real-time clinical scenarios. The integration of model optimisation (ONNX and TensorRT) and pipeline 
measurement enables a complete evaluation of both segmentation performance and execution speed.

The large performance gap between SegFormer and SSFormer in edge execution can be explained by 
their architectural differences. SegFormer is based on standard transformer blocks and convolutional 
layers that are compatible with ONNX export and TensorRT inference. These standard layers allow efficient 
graph optimisation, fusion, and quantisation during the conversion process. In contrast, SSFormer includes 
custom attention blocks and non-standard operations that limit the effectiveness of TensorRT’s 
optimisation strategies. As a result, SegFormer models benefit from faster execution and better utilisation 
of hardware resources on edge devices, while SSFormer models require further re-engineering or custom 
plugin development to match the same level of optimisation.

These findings highlight the importance of architectural compatibility when targeting edge 
deployment. While SSFormer may offer advantages in feature learning, SegFormer remains more suitable 
for real-time clinical applications due to its streamlined conversion and execution process.

Discussion
This study introduced DeepPolyp, a modular framework for evaluating and deploying segmentation models 
for polyp detection. Among the tested models, SegFormer achieved the highest generalisation performance, 
consistently delivering accurate results across diverse datasets with different imaging conditions and polyp 
morphologies. This suggests that SegFormer is able to extract complex visual features relevant to real-
world clinical applications. Its cross-scale attention mechanism and efficient feature extraction contributed 
to its robustness, especially in detecting small, flat, or occluded polyps.
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Table 15. Execution times for the inference pipeline, detailed for each component

GPU execution time (ms) Edge execution time (ms)Function

SegFormer-B2 SegFormer-B4 SSFormer-Small SSFormer-Large SegFormer-B2 SegFormer-B4 SSFormer-Small SSFormer-Large

Inference 431.71 527.20 427.65 520.96 74.18 115.45 64.38 98.76
Sigmoid 0.662 4.529
Interpolate 0.107 0.537
Mask processing 0.237 0.657
Add weighted 0.357 3.772
Image encode 0.112 5.052
Display handle update 0.35 5.508
Full pipeline 433.535 529.025 429.475 522.785 94.235 135.505 84.435 118.815

In contrast, SSFormer, although transformer-based, showed lower performance, particularly on smaller or more complex datasets. The lack of multi-scale 
context integration limited its ability to generalise. However, its architecture, based on self-attention, still proved effective in modelling global dependencies, 
making it a promising baseline for future optimisation. DUCK-Net, a CNN-based architecture, performed well only with larger datasets, revealing its limitations in 
generalisation.

The performance differences between these models align with their design choices. SegFormer combines the benefits of lightweight design with multi-scale 
contextual reasoning, making it ideal for real-time inference and deployment. SegFormer-B2 was chosen for edge deployment using NVIDIA Jetson Orin with 
TensorRT optimisation, where it achieved low latency and high segmentation accuracy, confirming its suitability for clinical integration.

To assess the real-world utility of the DeepPolyp framework, a questionnaire was administered as part of the ENDO-AI project to both specialised and general 
medical personnel. The results confirmed strong interest in key features such as automatic polyp detection and data historization.

Feedback from specialised personnel:

Universal agreement on the usefulness of AI-assisted diagnostic tools.•

Strong interest in automatic polyp detection (82% rated it “Very” or “Extremely” useful).•

A preference for quick workflows: Only 75% saw preliminary visualisations as “Very” useful.•

Mixed opinions on 3D reconstruction and measurements: Most found them only “Somewhat” useful.•

Broad consensus (91%) that this technology can improve diagnostic accuracy.•

Feedback from non-specialist personnel:

94% rated the system as “Very” or “Extremely” useful for diagnostics.•

Automatic detection was rated as useful by 94%.•
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3D reconstruction and measurements were seen as “Extremely” useful by over 75%.•

Preliminary result viewing received strong support (84%), though some warned about over-reliance.•

Clear endorsement of the system’s role in real-world clinical diagnostics.•

This analysis confirms that DeepPolyp addresses clinical needs effectively. Automatic detection, 
consistent accuracy, and reliable deployment on embedded systems make the framework highly suitable 
for modern diagnostic workflows. However, the feedback also emphasises areas for future improvement. 
For example, while 3D visualisation is appreciated, its integration must consider clinical workflow 
constraints. Training programs should be implemented to ensure balanced use of automation, preserving 
clinical judgement.

Future work should explore optimising SSFormer with hybrid architectures that combine 
convolutional and transformer-based layers. Lightweight transformer designs will be evaluated for better 
efficiency on edge devices. Domain adaptation, generative data augmentation, and semi-supervised learning 
can enhance generalisation and reduce reliance on manual annotations.

Additionally, the framework’s flexibility makes it adaptable to other medical imaging tasks, such as 
tumour segmentation in radiology and histopathology. DeepPolyp offers a reliable and extensible platform 
for advancing AI-driven diagnostics in diverse clinical contexts.
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