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Abstract
Over the last four decades, lung cancer has been the leading cause of death in the United States. Non-small 
cell lung cancer (NSCLC) is the most common type of lung cancer, and historically, treatment consists of 
surgical resection, chemotherapy, and/or radiotherapy. Over the past decade, targeted immunotherapy has 
improved overall survival and treatment response. However, immunotherapy is expensive, and only select 
patients respond to immunotherapy. Recently, there has been much interest in using biomarkers to better 
identify and predict which patients will respond to therapy. There is much hope that the combined use of 
artificial intelligence (AI) and omics-based technology will provide enhanced capability to predict response 
to immunotherapy in patients with NSCLC. We performed a literature review and summarized the various 
approaches in which AI has been integrated with genomics, radiomics, pathomics, metabolomics, 
immunogenomics, and breathomics to better understand the tumor immune microenvironment and predict 
response to immunotherapy.
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Introduction
Lung cancer is the leading cause of cancer-related death and the second most common cancer diagnosed 
within the United States; the American Cancer Society estimates that there will be a total of 234,580 newly 
diagnosed patients with lung cancer in the United States in 2024 [1]. Non-small cell lung cancer (NSCLC) 
accounts for approximately 84% of all lung cancers and has a five-year survival rate of 23% [2]. Classically, 
for patients with stage I or II NSCLC, treatment is primarily surgical resection with adjuvant therapy, and 
for stage III or IV disease, treatment consists of chemotherapy and/or radiotherapy. Traditional 
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chemotherapy agents have several limitations though, such as non-specific targeting, low bioavailability, 
toxicity, and drug-resistance that limit efficacy [3].

The tumor immune microenvironment is a complex and dynamic ecosystem of interactions between 
tumor cells, immune cells, stromal cells, and various cytokines. Knowledge of these complex interactions 
led to the development of immunotherapy strategies, which encompass CAR T-cell therapy, monoclonal 
antibodies, and immune checkpoint inhibitors (ICIs) capable of targeting specific pathways (PD-1/PD-L1, 
CTLA-4) and promoting immune activation and recognition by T-cells [4]. Notably, ICIs have revolutionized 
treatment paradigms for NSCLC patients in the neoadjuvant and adjuvant setting, offering an alternative to 
traditional cytotoxic chemotherapies [5]. Due to significant improvements in overall survival and 
progression-free survival (PFS), there is much emphasis placed on the role of ICIs in the treatment of 
NSCLC; however, the sobering reality is that only a subset of patients respond to treatment [6].

Approximately 20–30% of individuals with NSCLC have a durable response with PD-1 or PD-L1 
inhibitors [6]. Additionally, the risk of toxicity is well recognized and can lead to a hyperinflammatory state, 
causing reversible and non-reversible tissue damage and fibrosis (i.e., pneumonitis, colitis, hepatitis) [3]. Of 
concern, a growing body of evidence also suggests the cost-effectiveness of immunotherapy may be 
prohibitive without the use of biomarkers capable of selecting patients who benefit from immunotherapy 
[7].

In general, biomarkers are used to improve the diagnosis, prognostic prediction, management 
strategies, and outcomes of individuals from different populations; however, the number of biomarkers in 
medicine that have performed well enough to impact patients’ lives is limited. Classically, biomarkers have 
been thought of as a laboratory-derived value derived from a biospecimen that is indicative of a disease or 
disease-state, however the pipeline for conventional biomarker development has significant hurdles and 
often results in biomarkers of questionable clinical utility [8]. Over the last two decades, technology has 
evolved to such a degree that the concept of biomarkers in human health and disease has expanded. The 
omics revolution has resulted in the curation of massive public and private datasets, and the cost and access 
to imaging technologies such as computed tomography (CT) and magnetic resonance (MR) imaging have 
improved, resulting in the increased use of imaging modalities. Furthermore, recent advances in the 
artificial intelligence (AI) community are pioneering an approach in medicine that promises the benefit of 
systems-level computational analysis on a personalized scale.

As a field, AI can now perform tasks that historically required human-level intelligence, such as image 
processing, reasoning, and decision making. AI-derived algorithms are adaptive and can learn to process 
complex tasks. Machine learning (ML, a subset of AI) involves the application of various learning strategies 
(supervised learning, unsupervised learning, reinforcement learning) and a wide spectrum of 
computational models (i.e., statistical models, neural networks, model ensembles, multi-modal models, 
large language models) that arguably represent how reasoning/logic occur. While the performance of each 
learning strategy and model varies significantly based on the domain and type of data used during 
training—a common goal for all models is to identify patterns in the data and leverage these patterns for 
prediction and higher-order reasoning. Specifically, within the fields of pulmonary medicine, radiology, and 
oncology, a multitude of AI-derived algorithms and prediction models have been developed to assist in the 
early diagnosis of cancer [9]. For example, algorithms such as Sybil, AdaBoost-SNMV-CNN, and Res-trans 
have shown great promise in their potential to not only detect malignant pulmonary nodules but also to 
predict future risk for lung cancer based on CT scans [10–12]. In NSCLC, AI models have shown the ability 
to assess patterns and interactions among biomarkers to help with earlier diagnosis, cancer type 
classification, predict response and prognosis, model the complex plasticity of the tumor 
microenvironment, and detect potential neoantigens [13]. Additionally, improvements in algorithm design 
and the development of large ground-truth data sets have expanded the potential for AI to facilitate 
predictive biomarker discovery, helping to identify patients responsive to immunotherapy [14].

The response to immunotherapy has been assessed by AI through multiple data modalities, including 
genomics, radiomics, pathomics, metabolomics and lipidomics, immunogenomics, breathomics, and 
electronic medical record (EMR).
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In this manuscript, we provide a general overview of how the architecture of ML models in clinical 
medicine have evolved over the past decade, and we discuss the potential for AI-derived models to unify 
disparate data modalities to more comprehensively assess the nuances of the tumor immune 
microenvironment, allowing for improved models capable of diagnosing NSCLC and predicting 
immunotherapy treatment response (Figure 1).

Figure 1. The tumor immune microenvironment refers to the complex and dynamic ecosystem of interactions between 
tumor cells, immune cells, stromal cells, and various cytokines. This image shows how multi-omics, such as genomics, 
radiomics, pathomics, breathomics, immunogenomics, electronic health records (EHR), and metabolomics can be used to better 
understand the tumor immune microenvironment. By using artificial intelligence alongside multi-omics-based technology, there 
is potential for an enhanced capability to screen, diagnose, stage, treat, and monitor non-small cell lung cancer (NSCLC)

Evolution of AI in medicine
The initial concept of AI was first described in 1950 by Alan Turing, but it wasn’t until the mid-2000s that 
widespread interest in the use of AI in medicine spurred an impressive number of clinical applications, 
innovation, and development of custom deep learning (DL) models in the medical domain [15]. Prior to the 
development of DL models, limitations of AI algorithms were computationally constrained due to existing 
hardware limitations, the slowing down of Moore’s law, a lack of large annotated datasets, and the public’s 
general lack of access to high-performance computing resources. The advent of the graphics processing unit 
and investment in cloud computing solved many of these problems, spawning brand new research efforts 
into the curation of high-quality labeled datasets (a vital component in the development of modern AI 
models/systems).

In the 2010s, AI applications in medicine became more pronounced as clinical decision support 
systems became integrated into EMR systems. Early applications of AI in medicine were limited by small 
datasets and high risk for model overfitting, but as larger and more robust datasets were curated over the 
past two decades, these limitations have become more manageable as data science methods have improved. 
In 2017, following a seminal demonstration of deep neural networks by Krizhevsky et al. [16], the rate of 
scientific progress in the AI field has taken off, achieving the same amount of discovery in a couple of years 
that previously took a decade. The leading application for AI in medicine is the classification of medical 
images. A recent review by Muehlematter et al. [17] found that of the AI-based medical devices approved in 
the US (n = 220) and Europe (n = 240) between 2015–2020, 58% and 53%, respectively, were approved for 
radiological diagnostics. CardioAI was the first AI-derived application to receive FDA approval in 2017 for 
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assessment of cardiac MR imaging. In the 2020s, the impact of AI has progressed further to include 
applications in early detection and diagnosis, patient management, and drug development (Figure 2).

Figure 2. The evolution of artificial intelligence (AI) in medicine. EMR: electronic medical record; MRI: magnetic resonance 
imaging

Genomics
Genomics encompasses the various technologies used to identify a particular cell’s genotype. Examples of 
current techniques include direct deoxyribonucleic acid (DNA) sequencing, DNA allele specific testing, and 
next generation sequencing (NGS), to name a few. Direct sequencing of the whole genome can be done in a 
week or less, but is less sensitive than other techniques because the presence of mutations can be hidden if 
tumor cellularity is low. DNA allele specific testing has replaced direct sequencing because it is faster and 
more cost effective; however, it can only detect pre-defined mutations. NGS has become a very popular 
method because it is fast, cost effective, and can analyze multiple genes.

Through the identification of driver mutations, genomics is already being used to select targeted 
therapy for patients and has been shown to improve outcomes in NSCLC [18–20]. For example, the 
detection of mutated epidermal growth factor receptor (EGFR) allows for the selection of receptor tyrosine 
kinase-specific inhibitors against EGFR [21]. Whole genome sequencing of malignancies has also shown 
clinical relevance. In 2017, Jamal-Hanjani et al. [22] demonstrated the relationship between tumor cell 
variation and the likelihood of resistance to treatment and a tendency to evolve.

Given the large volume of data inherent to the field of genetics, DL models are particularly suited to 
analyze genomic data to assess relationships between genotype and clinical endpoints. DeepVariant-AF, 
created by Google Health, has been applied to large data sets and has been shown to have considerable 
reliability in identifying gene variants [23]. Aradhya et al. [24] trained DL models using Invitae’s Evidence 
Modeling Platform to predict protein structure and function based on sequence data. AI has also been used 
in laboratory settings to identify chromosomal abnormalities such as translocations, deletions, and 
duplications [25].

The use of AI to evaluate genomic data for predicting treatment response in patients with NSCLC is not 
currently utilized in routine clinical practice, but several groups are developing models that have this 
capability. For example, the DL model DrugCell, developed on data from the Cancer Therapeutics Response 
Portal v2 and the Genomics of Drug Sensitivity in Cancer databases, can predict the in vitro response of 
tumor cell lines to various drugs. Interestingly, the performance of their interpretable model of drug 
response was not significantly different from conventional black-box models [26]. In the clinical setting, 
Sammut et al. [27] created a predictive model using combined sequence and digital pathology data to 
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predict response to neo-adjuvant therapy in breast cancer patients. The predictive features were processed 
by univariable selection followed by an unweighted ensemble classifier. The resultant predictive function of 
this model was derived from the average of three underlying algorithms and was validated by applying 
them to an external cohort of 75 patients. The authors showed that their integrated model could accurately 
derive predictors of response with good discrimination power [area under the curve (AUC) 0.87] [27].

Genomics is being used to guide the selection of targeted therapy, but AI is not routinely used to assess 
the likelihood of response for a given therapy based on the specific genotype. While its abilities have been 
demonstrated in research settings, its lack of validation and questions regarding the explainability of these 
models have limited its routine use in clinical practice. As the use of these models becomes more 
mainstream in other areas, their reliability, accuracy, and reproducibility will likely improve. More work is 
needed to train these DL algorithms to analyze database information. Multidisciplinary collaboration within 
the fields of oncology, bioinformatics, and pathology will be crucial for the accurate validation and 
improved predictive analytics of AI-based algorithms and databases.

Digital path (“Pathomics”)
Digital pathology refers to the electronic digitization of pathological specimens. In the late 1990s, this 
technology expanded to include whole-slide imaging. As the name suggests, lab instruments can now read 
and piece together the entirety of the slide for subsequent storage and analysis by pathologists.

In oncology, digital pathology occupies a central role because tissue analysis remains the foundation of 
accurate diagnosis. Microscopic features of tissue and individual cells have both diagnostic and prognostic 
value. Advancements in the digitization of pathology specimens have allowed improvements in the storage 
and sharing of large amounts of data. In oncology, immunohistochemistry (IHC) staining techniques are 
commonly used to identify the expression of oncoproteins. This information often guides the choice of 
therapy. For example, the FLEX study demonstrated that the presence of EGFR can be used to select 
patients for cetuximab and platinum-based chemotherapy in the setting of advanced NSCLC [28]. Since 
digital pathology data collection has quickly become a technological requirement in modern clinical 
practice, the integration of AI can positively impact the pathologist’s workflow by aiding in the 
identification of new biomarkers of disease, improving quality assurance, and consolidating clinical and 
pathological information.

DL models have been used to analyze whole-slide digital images. Specifically, convolutional neural 
networks (CNNs), which are a standard in DL-based approaches to computer vision and image processing, 
can process complex 2D images by utilizing convolutional and pooling layers to maximize the processing 
power and analysis of digital path images. DL models that incorporate segmentation of specific cellular and 
tissue features, cellular and mitosis detection, and tissue classification have demonstrated their diagnostic 
abilities as well as their ability to predict genotype. For example, the pretrained OverFeat model has been 
shown to accurately predict the Gleason score using region-level tissue classification [29].

Additionally, the use of AI in digital pathology has shown the potential to predict treatment response. 
Hoang et al. [30] developed a two-step model, ENLIGHT-DeepPT, which can predict genome-wide tumor 
mRNA expression and treatment response to targeted and immune therapies based on digital pathology 
images of hematoxylin and eosin-stained (H&E) tumor slides. This model successfully predicted responders 
in five independent cohorts of patients, which included six different primary malignancies (including 
NSCLC) and four different treatments [30]. In 2020, Hu et al. [31] showed that a CNN model could predict 
response to immune-checkpoint blockade based on the analysis of H&E slides alone. This is particularly 
interesting because it highlights the possibility that AI may be able to predict response to therapy based on 
morphologic features of tissue specimens alone, without the additional use of specialized stains and 
reagents [31].

A 2023 analysis of 380 patients with small cell lung cancer showed that PathoSig, an unsupervised DL 
model with a contrastive clustering computational framework (DL-CC), could predict response to 
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chemotherapy by identifying phenotypic clusters from H&E digital images. The group observed that 
patients categorized as high-risk by PathoSig had a statistically significant shorter disease-free survival 
compared to patients with low and intermediate risk labels. Additionally, the high-risk patients had higher 
rates of recurrence. Furthermore, PathoSig maintained its independent prognostic efficacy even after 
adjusting for various clinical features using multivariable Cox regression analysis [32].

A common challenge in the clinical interpretation of pathological imaging is the degree of positivity of 
staining seen on IHC. Recent development of DL models to address this issue has shown promise. In 2022, 
Cheng et al. [33] developed a DL model to assess the immunohistochemical expression of PD-L1 in lung 
cancer patients. Their study included 1,288 patients with lung cancer, and they evaluated the performance 
of three AI models (M1, M2, and M3) to quantitatively score PD-L1 expression. Even in samples with low 
PD-L1 expression (< 1%), which can be problematic for pathologists to accurately assess, their AI models 
(particularly M2 and M3) demonstrated high accuracy (96.4%) and specificity (96.8%) [33]. Given the 
degree of discordance that can occur when evaluating PD-L1 expression between pathologists, an AI model 
developed by Choi et al. [34] demonstrated the ability to improve consensus of reads between pathologists 
as well as predict response to treatment in patients with NSCLC.

In 2024, Ligero et al. [35] developed a Retrieval with Clustering-guided Contrastive Learning RetCCL 
model to quantify the degree of positivity of PD-L1 on IHC slides, which was then used to predict the 
response to ICIs by estimating PFS [35]. They created a two-step process: feature extraction was performed 
with the RetCCL model, followed by aggregation and classification by a weakly supervised attention-based 
multiple instance learning model. Cox proportional-hazards and Kaplan–Meier curve analysis demonstrate 
an association between PD-L1 positivity and PFS. Their model demonstrated the proof of concept that a 
weakly supervised DL model is capable of distinguishing different histologic patterns in IHC and 
quantifying PD-L1 expression.

Currently, clinical use of AI in the field of digital pathology is limited. In 2021, van der Laak et al. [36] 
considered that the lack of generalizability of DL algorithms is likely the biggest barrier for use in clinical 
practice, in addition to the inherent ambiguity of “black-box” algorithms [36, 37]. The lack of 
generalizability was attributed to the lack of variation of data sources in the research setting compared to 
data encountered in clinical practice [38]. Clinically, it has been recognized that there are limitations in data 
resources due to a lack of population diversity, and this can result in decreased performance of algorithms 
when they are applied to large external datasets [39]. In the future, the development of large, 
heterogeneous databases that have been carefully curated will drive the generalizability of AI models in 
clinical practice.

Radiomics
Radiomics involves extracting a diverse array of features from medical images, including shape, size, 
texture, and intensity. These features can then be quantified and analyzed by advanced algorithms and 
computational methods. This quantitative approach offers a more objective measure compared to 
traditional visual assessments. The extracted radiomic features can be input into ML models to create 
algorithms, which can help in diagnosing disease, predicting treatment response, and evaluating prognosis 
based on imaging data [40, 41].

Radiomics in predicting PD-L1 and tumor mutation burden expression

In a study by Mu et al. [42], a small residual convolutional network was employed to analyze PET/CT 
images and clinical data from NSCLC patients, to develop a DL score that predicted PD-L1 expression. 
Achieving an AUC of 0.82 in two external validation cohorts, this model was able to distinguish between PD-
L1 positive and negative patients. This study presents an attractive alternative to traditional IHC for the 
assessment of PD-L1 expression [42].
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Tumor mutation burden (TMB) is a key predictor of the efficacy of ICIs. He et al. [43] developed a novel 
non-invasive biomarker by integrating DL technology with CT characteristics. Their approach was 
successful in differentiating between NSCLC patients with high-TMB and low-TMB tumors as well as 
predicting outcomes and treatment efficacy.

Predicting treatment response

Several studies have explored the use of radiomics to predict response to immunotherapy in lung cancer. A 
systematic review by Dercle et al. [44] evaluated 87 studies on the integration of AI-based models and 
radiomics in the care of patients receiving immunotherapy. Of the 87 studies reviewed, the primary goal of 
the algorithms that were developed was prognostication (33%), prediction of treatment response (27%), 
and characterization of tumor phenotype (16%) or immune environment (15%). Although many of the 
studies demonstrated proof of concept, the median radiomics quality score was 12 (max score of 36), which 
suggests that the field of radiomics needs to establish more robust and innovative methodologies behind 
model development before AI-based algorithms can be expected to have a widespread clinical impact [44, 
45].

In a study by Trebeschi et al. [46], 1,055 primary and metastatic lesions from 203 patients with 
advanced melanoma and NSCLC undergoing anti-PD1 therapy were analyzed. The authors utilized AI to 
characterize each lesion based on pretreatment contrast-enhanced CT imaging data to develop a 
noninvasive ML biomarker that would distinguish between immunotherapy responders and non-
responders. Their biomarker demonstrated good performance in patients with NSCLC lesions, with AUC 
0.83 (P < 0.001), and a borderline significant result for melanoma lymph nodes, AUC 0.64 (P = 0.05). When 
these lesion-level predictions were aggregated at the patient level, the biomarker achieved an AUC of 0.76 
for both cancer types (P < 0.001) and indicated a 1-year survival difference of 24% (P = 0.02) [46].

Mu et al. [47] demonstrated that radiomic features from baseline pre-treatment 18F-FDG-PET/CT 
scans can predict clinical outcomes for NSCLC patients undergoing checkpoint blockade immunotherapy. 
Their study included 194 patients with histologically confirmed stage IIIB-IV NSCLC who had pre-treatment 
PET/CT images. Radiomic features were extracted from PET, CT, and PET + CT fusion images using 
minimum Kullback–Leibler divergence criteria. Their model successfully predicted patients who 
experienced durable clinical benefit, achieving an AUC of 0.86 (95% CI: 0.79–0.94) in the training cohort, 
0.83 (95% CI: 0.71–0.94) in the retrospective test cohort, and 0.81 (95% CI: 0.68–0.92) in the prospective 
test cohort [47].

Predicting hyper progression

Hyperprogression is an unusual response pattern to immune checkpoint inhibition observed in NSCLC. In a 
study by Vaidya et al. [48], image-based radiomic markers extracted from baseline CT scans of advanced 
NSCLC patients treated with PD-1/PD-L1 inhibitors were investigated for their potential to identify patients 
at risk of hyperprogression. Using a random forest classifier with key features associated with 
hyperprogression, the model achieved an AUC of 0.85 ± 0.06 in the training set (D1 = 30) and 0.96 in the 
validation set, effectively distinguishing hyperprogression from other radiographic response patterns [48].

Li et al. [49] developed a CT-based radiomics model that accurately predicted hyperprogression and 
pseudoprogression in NSCLC patients undergoing immunotherapy. They retrospectively analyzed 105 
NSCLC patients from three institutions who were treated with ICIs, dividing them into training and 
independent testing sets. The logistic regression model demonstrated excellent performance in 
distinguishing between pseudoprogression and hyperprogression, achieving an AUC of 0.95 [95% 
confidence interval (CI): 0.91–0.99] in the training set and 0.88 (95% CI: 0.66–1.00) in the test set [49].

Metabolomics
Metabolomics encompasses the study of the metabolome, which includes the composition and complex 
interactions of small-molecule metabolites. Metabolites of interest include sugars, amino acids, lipids, and 
other organic compounds. Metabolomics has been used to evaluate the functional capacity and cellular 
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activity of both single-cell processes and whole biological systems in various stages of disease. This data can 
then be integrated with various omics domains to provide a more comprehensive, holistic assessment of 
disease status.

Two of the most common analytical techniques for studying metabolomics are nuclear MR 
spectroscopy and mass spectrometry (MS). Metabolomics results in large data sets, containing thousands of 
data points representative of known and unknown metabolites with complex relationships [50]. Targeted 
metabolomics measures the concentration of metabolites determined a priori, while untargeted 
metabolomics represents a semi-quantitative and unbiased measurement of thousands of metabolites. In 
the 1990s, Curry et al. [51] developed an artificial neural network to help classify MS spectrometry. 
Subsequently, in 2002, Ball et al. [52] illustrated the use of ML approaches to analyze MS data and identify 
metabolic signatures that could differentiate patients with low versus high-grade astrocytoma [51, 52].

AI algorithms that process raw MR and MS data have been developed to identify metabolites and 
metabolic signatures as novel biomarkers of disease, as further discussed by Barberis et al. [53]. A 2016 
study by O’Shea et al. [54] coupled an artificial neural network model with sputum metabolomics to identify 
six metabolites (phenylacetic acid, L-fucose, caprylic acid, acetic acid, propionic acid, and glycine) that were 
elevated in patients with small cell lung cancer compared to NSCLC. As a proof of concept, Xie et al. [55] 
used multiple different ML techniques to identify six metabolites (proline, L-kynurenine, spermidine, 
amino-hippuric acid, palmitoyl-L-carnitine, and taurine) that distinguished stage 1 lung cancer patients 
from healthy controls.

Many of the metabolomic studies that have been completed thus far are focused on identifying specific 
metabolites and metabolic profiles that could be used as diagnostic biomarkers for diagnosis, but very few 
have been assessed for prognostic significance. For example, metabolomic studies have identified 
metabolites that could be used to predict treatment response in rheumatoid arthritis [56]. There are a few 
proof of concept studies that have been performed that illustrate the potential for changes in the 
metabolome to predict response to treatment, but none have been performed in patients with NSCLC to our 
knowledge. In patients with HER2+ breast cancer, metabolomic and transcriptomic analyses were used to 
identify a metabolic signature and develop a prediction model of the treatment response to neoadjuvant 
chemotherapy [57]. A separate study involving patients with breast cancer showed some changes in serum 
metabolites and lipids in response to neoadjuvant chemotherapy [58]. Additionally, similar studies that 
assess metabolic changes in response to treatment have been performed in patients with colorectal cancer, 
bladder cancer, and melanoma [59–61].

Lipidomics
Lipidomics is considered a subfield within metabolomics. Lipids are essential in energy storage, signal 
transduction, and cell membrane formation, and disruption of lipid homeostasis has a role in 
tumorigenesis; thus, there has been interest in using lipidomics to monitor treatment response. As 
discussed in the prior section, AI algorithms have also been used to identify and evaluate changes in various 
lipid species [62].

In patients with NSCLC, Jiang et al. [63] used lipidomic profiling to identify six key lipids and develop a 
predictive model capable of predicting treatment response to chemo-immunotherapy with AUC of 0.87. 
Utilizing lipidomics, Yu et al. [64] identified nine distinct lipids that were able to predict immune related 
adverse events in NSCLC patients undergoing treatment with ICIs.

Immunogenomics
Immunogenomics is an interdisciplinary field that integrates genomics and immunology to understand the 
genetic basis of immune responses and their implications in various diseases, particularly cancer. This field 
leverages the power of high-throughput sequencing technologies and computational analyses to analyze 
the interaction of both tumor and immune cells within the tumor immune microenvironment. For example, 
techniques such as T-cell receptor sequencing and immune microenvironment deconvolution have been 
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utilized to reveal important insights into the tumor-immune microenvironment [65, 66]. In a prospective 
cohort study of patients with pulmonary nodules, Chen et al. [67] showed that ground-glass associated lung 
cancers were less metabolically active and had a less active immune microenvironment compared to 
patients with solid lung nodules. A separate study by Sun et al. [68], which utilized IHC and RNA-sequencing 
data, suggests that NSCLC patients who lack either PD-L1 expression or immune infiltration may not benefit 
from immunotherapy.

Immunogenomic technology and methods have been used to assess the repertoire of T-cell and B-cell 
receptors in lung cancer patients, and identify infiltrating immune cells and neoantigens that influence the 
efficacy of ICIs [65, 69]. By integrating genomic data with immunological insights, immunogenomics 
provides a foundation for precision medicine approaches in oncology, enabling the development of 
personalized therapeutic strategies based on the unique genetic and immunological landscape of each 
patient’s tumor. Genetic polymorphisms in immune-related genes can influence the efficacy and survival 
outcomes of patients undergoing PD-1/PD-L1 blockade therapy. For instance, polymorphisms in genes such 
as ATG7, CD274, and TLR4 have been identified as predictors of response to PD-1/PD-L1 blockade, with 
certain alleles associated with increased risk of tumor progression and poorer PFS [66]. In lung cancer, 
germline polymorphisms in immune-related genes, such as HLA-DRB5, KIR3DL1, and KIR3DL2, have been 
shown to negatively impact the response to EGFR tyrosine kinase inhibitors, resulting in decreased PFS and 
overall survival [70]. This data illustrates that polymorphisms expressed in genes expressed by immune 
cells can influence the response to immunotherapy.

Recently, Liu et al. [71] combined data from scanned histology slides and RNA-sequencing to develop 
an AI-based immunoscore model capable of predicting survival outcomes in patients with NSCLC who had 
received chemoimmunotherapy [71]. Additionally, recent work by Kong et al. [72] illustrated an AI 
framework that uses network-based analyses to identify biomarkers that were highly predictive of ICI 
treatment response in patients with melanoma, gastric cancer, and bladder cancer [72]. Integration of 
immunogenomic technology with AI-based algorithm design processes is still in its infancy and will 
continue to elicit profound insights into the tumor immune microenvironment.

Breathomics
Breathomics refers to the molecular analysis of exhaled breath. In 1971, Pauling et al. [73] used gas 
chromatography methods to show the presence of volatile compounds in human breath and urine [74]. 
Since then, there have been more than 3,000 volatile organic compounds (VOCs) that have been discovered 
[74]. Gas chromatography-MS (GC-MS) is a method in which samples of exhaled breath are collected and 
stored in containers [75]. Helium subsequently pushes the sample of breath through a column, and the 
VOCs undergo separation [75]. In 1985, Gordon et al. [76] used GC-MS to investigate breath samples from 
12 individuals with lung cancer and 17 individuals without disease. Of the individuals in that study, 22 
VOCs were identified that showed the largest difference between those with or without lung cancer [76]. 
Three VOCs (acetone, methyl ethyl, and n-proponal) were further assessed due to increased occurrence and 
peak. Using the three VOCs, Gordon et al. [76] were able to accurately classify 93% of the samples. In 1999, 
Phillips et al. [77] used GC-MS to investigate breath samples from 108 individuals who had abnormal chest 
imaging that were scheduled to have a bronchoscopy. They were able to confirm lung cancer in 60 of the 
patients. Out of the breath samples, 22 VOCs had 100% sensitivity and 81.3% specificity [77]. In a 2010 
study by Poli et al. [78], the total amount of exhaled aldehydes was increased in individuals with NSCLC 
compared to individuals without disease.

Some previous studies show that GC-MS analysis of VOCs could prove to be beneficial in diagnosing 
lung cancer; however, there have been notable discrepancies in the literature. In a 2010 study by Kischkel 
et al. [79] that compared individuals with lung cancer to healthy controls and smokers, they found that age, 
sex, smoking history, and inspired substance concentrations were confounding factors that impacted 
exhalation profiles. Other confounding factors that can affect the exhalation profile when using GC-MS is 
how the breath collection is obtained, the stability of different compounds, and the storage container used 
for sample collection [75]. Overall, GC-MS is a method that shows potential to help with screening and 
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diagnosing cancer, but there are weaknesses with the method that need to be further investigated prior to 
routine clinical use.

Nanoarray analysis, such as the electronic nose (e-nose), is another promising technology that may 
prove to be beneficial in the future for screening and diagnosing lung cancer. The e-nose works similarly to 
a human nose, however, it possesses the ability to have breath samples filtered into several different 
sensors and further analyzed by AI-derived algorithms to determine a “breath print” comprised of VOC’s 
[74, 75]. In 2003, Di Natale et al. [80] used an e-nose (composed of eight quartz microbalance gas sensors) 
combined with partial least squares discriminant analysis (an AI method for classification tasks of high-
dimensional data) to correctly classify 100% of lung cancer patients (n = 35). In 2008, Dragonieri et al. [81] 
used e-nose technology to separate 85% of individuals with NSCLC from people with COPD and 90% of 
individuals with NSCLC from healthy controls.

Other types of sensors and nanoarray analysis, such as colorimetric sensors, are being investigated for 
their potential to diagnose lung cancer. In 2007, Mazzone et al. [82] used colorimetric sensors to accurately 
predict individuals with lung cancer versus individuals with other lung diseases. Overall, the e-nose 
technology is very promising; however, it is early in development, and the clinical impact of this technology 
in real-world settings remains unclear at this time. Although there may be a role for the use of breathomics 
to monitor treatment response to immunotherapy in the future, current limitations of the methodology and 
issues with generalizability prevent its routine use in clinical oncology.

Electronic health record
Over the past few decades, electronic health records (EHRs) have revolutionized the health care industry. 
Important information included in EHRs are patient’s biographical information, past medical history, 
symptoms, immunization history, medication history, laboratory results, pathological reports, as well as 
any imaging that was completed [83]. Recently, research has started to investigate EHR based interventions 
to help with identifying patients at higher risk for lung cancer and/or poor prognosis.

In 2024, Marmarelis et al. [84] used a nudge-based intervention with an EMR to investigate whether it 
led to increased molecular testing and better guideline-concordant care. Using a nonrandomized 
prospective trial design at the University of Pennsylvania hospitals, and molecular genotyping with tissue- 
and/or plasma-based NGS methods, the authors included 533 patients with NSCLC; 376 in the 
preintervention and 157 in the post-intervention. Following the intervention with the EMR-based nudge, 
more patients successfully underwent comprehensive molecular genotyping in the postintervention period.

In 2021, Yuan et al. [85] assembled a large cancer cohort from an EHR. They used a ML algorithm, 
incorporating extraction strategies for both unstructured and structured data. In their study, they identified 
patients with at least one lung cancer diagnostic code in an EHR in the Massachusetts General Brigham 
health system from July 1988 to October 2018. Among 42,069 people with lung cancer, they were able to 
extract structured data and notes by creating a customized natural language processing tool using the EHR. 
The positive predictive value of this study was 94.4% [85]. The authors then went on to develop a 
prognostic model for NSCLC using the EHR cohort. Their findings suggest that a prognostic model based on 
data commonly found in the EHR may facilitate the prediction of NSCLC survival [85]. Overall, there has not 
been a significant amount of work utilizing AI-based methods that further assess data already contained 
within EHR’s though. As generative AI and large language models, such as ChatGPT, become more 
advanced, this type of data may be further integrated in a multi-omics approach toward further 
understanding and predicting lung cancer diagnosis and treatment response.

Conclusions
Toward the integration of multiomics technology and AI

Over the past two decades, AI has had a profound impact on the ability of multiomics to diagnose NSCLC 
and identify biomarkers capable of predicting treatment response. While many of the current AI 
applications in lung cancer primarily utilize imaging characteristics or digital biomarkers to diagnose, 
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assess prognosis, and predict treatment response, there has been widening interest in the use of AI to 
combine analyses of other data modalities, such as genomics, metabolomics, proteomics, histopathology 
imaging, and immunogenomics to improve diagnostic accuracy and provide a more holistic understanding 
of the tumor immune microenvironment (Table 1). This unique approach promises more robust models 
capable of implementing the nuances of personalized medicine into predictive analytics and patient care.

Table 1. Studies illustrating the potential of artificial intelligence in multiomics

Study Genomics

Chen et al. [23] A DL model, DeepVariant-AF, created by Google Health is applied to large data sets and reliably 
identifies gene variants.

Aradhya et al. [24] DL models were trained using Invitae’s Evidence Modeling Platform to predict protein structure and 
function based on sequence data.

Kuenzi et al. [26] A DL model, DrugCell, predicts the in vitro response of tumor cell lines to various drugs.
Sammut et al. [27] A predictive model using combined sequence and digital pathology data predicts response to neo-

adjuvant therapy in breast cancer patients.
Pathomics
Källén et al. [29] The DL model, OverFeat, accurately predicts the Gleason score using region-level tissue classification.
Hoang et al. [30] A two-step model, ENLIGHT-DeepPT, predicts genome-wide tumor mRNA expression and treatment 

response to targeted and immune therapies based on digital pathology images of hematoxylin and 
eosin-stained (H&E) tumor slides.

Hu et al. [31] CNN model predicts response to immune-checkpoint blockade based on the analysis of H&E slides 
alone.

Zhang et al. [32] The DL model, PathoSig, predicts response to chemotherapy by identifying phenotypic clusters from 
H&E digital images.

Cheng et al. [33] A DL model and three AI models quantitatively score PD-L1 expression.
Choi et al. [34] A DL model improves the consensus of reads between pathologists and predicts response to treatment 

in patients with NSCLC.
Ligero et al. [35] A Retrieval with Clustering-guided Contrastive Learning (RetCCL) model quantifies the degree of 

positivity of PD-L1 on IHC slides and predicts response to ICIs by estimating progression-free survival.
Radiomics
Mu et al. [42] A small residual convolutional network was employed to analyze PET/CT images and clinical data from 

NSCLC patients in order to develop a DL score that predicted PD-L1 expression.
He et al. [43] Developed a novel non-invasive biomarker by integrating DL technology with CT characteristics to 

differentiate between NSCLC patients with high-TMB and low-TMB tumors and predict treatment 
efficacy.

Mu et al. [47] Radiomic features from baseline pre-treatment 18F-FDG-PET/CT scans can predict clinical outcomes 
for NSCLC patients undergoing checkpoint blockade immunotherapy.

Vaidya et al. [48] Radiomic markers extracted from baseline CT scans of advanced NSCLC patients treated with PD-
1/PD-L1 inhibitors identifies patients at risk of hyperprogression.

Li et al. [49] A CT-based radiomics model accurately predicts hyperprogression and pseudoprogression in NSCLC 
patients undergoing immunotherapy.

Metabolomics
Curry et al. [51] Developed an artificial neural network to help classify MS spectrometry.
Ball et al. [52] Machine learning approaches to analyze MS data and identify metabolic signatures can differentiate 

patients with low versus high grade astrocytoma.
O’Shea et al. [54] Use of an artificial neural network model with sputum metabolomics identifies six metabolites that were 

elevated in patients with small cell lung cancer compared to NSCLC.
Xie et al. [55] Machine learning techniques identify six metabolites that distinguish stage 1 lung cancer patients from 

healthy controls.
Lipidomics
Jiang et al. [63] Lipidomic profiling identifies six key lipids, used to develop a predictive model for treatment response to 

chemo-immunotherapy.
Yu et al. [64] Nine distinct lipids were used to predict immune related adverse events in NSCLC patients undergoing 

treatment with ICIs.
Immunogenomics
Chen et al. [67] Ground-glass associated lung cancers were less metabolically active and had a less active immune 

microenvironment compared to patients with solid lung nodules.
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Table 1. Studies illustrating the potential of artificial intelligence in multiomics (continued)

Study Genomics

Sun et al. [68] Immunohistochemistry and RNA-sequencing data show that NSCLC patients who lack either PD-L1 
expression or immune infiltration may not benefit from immunotherapy.

Liu et al. [71] Combined data from scanned histology slides and RNA-sequencing to develop an AI-based 
immunoscore model capable of predicting survival outcomes in patients with NSCLC who had received 
chemoimmunotherapy.

Breathomics
Gordon et al. [76] Gas chromatography-mass spectrometry (GC-MS) analysis of breath samples classifies 93% of 

patients with vs. without lung cancer.
Philipps et al. [77] GC-MS analysis of 108 individuals confirms lung cancer in 60 patients.
Di Natale et al. [80] Use of the electronic nose combined with partial least squares discriminant analysis correctly classifies 

100% of lung cancer patients.
Mazzone et al. [82] Colorimetric sensors accurately predict individuals with lung cancer versus individuals with other lung 

diseases.
Electronic health record
Marmarelis et al. [84] A nudge-based intervention with an EMR increases molecular testing and better guideline-concordant 

care.
Yuan et al. [85] Developed a machine-learning-based prognostic model for NSCLC by the extraction of unstructured 

and structured data.
DL: deep learning; CNN: convolutional neural network; NSCLC: non-small cell lung cancer; EMR: electronic medical record

To integrate multiomics data with AI, there are several key steps that must be considered: 1) data 
collection and pre-processing, 2) feature selection and dimensionality reduction, 3) data integration 
strategies, 4) ML model selection, and 5) model interpretability and validation (Figure 3). With the cost of 
genomic technology plummeting and widespread use of NGS in the care of lung cancer patients, there are 
ever-increasing databases of genomic and laboratory data such as the Lung Cancer Gene database, Lung 
Cancer Explorer, and the All of US database hosted by the National Institute of Health [86–88]. As the work 
toward multiomics integration occurs, the importance of accurately curated and shared data is paramount 
to the success and generalizability of future models; resources such as the Omics Discovery Index, which 
aim to link publicly available omics datasets, will prove invaluable [89].

Figure 3. Key steps for the integration of multiomics data with artificial intelligence

Feature selection and dimensionality reduction are particularly important in complex, heterogeneous 
disease states as found in NSCLC and have been discussed in several recent reviews [90]. The most common 
linear dimensionality reduction technique used in medical research is principal component analysis, but 
recent evidence by Khadirnaikar et al. [91] and Alanis-Lobato et al. [92] suggests that non-linear 
dimensionality reduction techniques exhibit superior performance when assessing biological data. For 
example, several groups have illustrated the effectiveness of an autoencoder (a non-linear DL-based 
technique) for dimensionality reduction in multiomics analysis [93–95].
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Various data integration strategies to analyze noisy and highly dimensional datasets have been 
developed, each with pros and cons. These can be categorized as early, mixed, intermediate, late, or 
hierarchical and have been discussed in depth in prior publications [90]. Although many of the currently 
used AI models were designed for single-omics analysis, new multiomics integration techniques are 
continuously being proposed. DL architectures are quite flexible, allowing for the integration of multi-layer 
datasets, highlighting their unique potential for NSCLC research and patient care. However, compared with 
radiology datasets, DL algorithms have been used less frequently in lung cancer clinical studies that 
incorporate omics data. These specific types of models can be difficult to train and often result in 
overfitting; thus, newer techniques such as transfer learning (used in image recognition) are currently 
being investigated and applied in multiomics research.

Although there have been many promising results over the past 5–10 years in the field of AI and 
medicine, rapid improvement in multiomics data integration strategies is still needed prior to routine use in 
clinical care. As previously discussed, many of the AI models that have been developed are at high risk of 
model overfitting and not generalizable across different patient populations. Advancements in 
computational methodologies throughout the previous steps highlighted in this section and across the 
different omics fields highlight a robust potential for AI-derived algorithms to assist in the diagnosis of 
patients with NSCLC and the prediction of treatment response to immunotherapy. Furthermore, 
multidisciplinary collaboration between clinicians, bioinformaticians, data scientists, and basic science 
researchers will be needed to develop robust models that undergo multisite external validation to illustrate 
true generalizability and clinical efficacy.
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