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Abstract
This narrative review aims to appraise the evidence on artificial intelligence models for early diagnosis and 
risk stratification of oral cancer, focusing on data modalities, methodology differences, applications in the 
diagnostic flow and models’ performance. Models for early diagnosis and screening provide non-invasive 
diagnosis without the need for specialized instruments, which is ideal for early detection as a low-cost 
system. Supervised learning with well-annotated data provides reliable references for training the models, 
and therefore, reliable and promising results. Risk prediction models can be built based on medical record 
data, demographic data, clinical/histopathological descriptors, highly standardized images or a 
combination of these. Insights on which patients have a greater chance of malignancy development or 
disease recurrence can aid in providing personalized care, which can improve the patient’s prognosis. 
Artificial intelligence models demonstrate promising results in early diagnosis and risk stratification of oral 
cancer.
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Introduction
The use of machine learning (ML) and deep learning (DL) models targeting oral squamous cell carcinoma 
(OSCC) diagnosis can be divided into diagnostic (detection and classification) and prognostic (risk 
stratification) models. Diagnostic models can be constructed based on a wide range of data inputs, either 
based on computer vision or natural language processing. In the field of computer vision for OSCC 
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screening and early diagnosis, the types of clinical imaging data made available through clinical evaluation 
includes white light photographs either taken with professional cameras [1–17] or smartphones [18–27], 
and fluorescence images [26]. Risk stratification models target the identification of people at risk of 
developing cancer and models for predicting malignancy development either based on 
clinical/demographic/histopathological descriptors or highly standardized images [28–40].

Therefore, the diversity of proposals and architectures to address the complexity of these tasks 
highlights the need for personalized methodologies, as each approach has specific strengths and limitations. 
This underscores the importance of a comprehensive and critical review when selecting techniques for 
different clinical applications, reinforcing the relevance of a literature review on the topic. This narrative 
review aims to summarize the published evidence regarding artificial intelligence (AI) models for improved 
oral cancer detection (early diagnosis) and risk stratification.

Diagnostic models for the early detection of cancer: photography-based 
models
Overall, photography-based diagnostic models are constructed based on the data often acquired for 
documentation purposes and readily available (i.e., clinical photographs), which represents a standout of 
such simpler approaches for OSCC early detection. Image processing usually focuses on three main tasks: 
object detection, segmentation, and classification (Table 1).

Object detection is a computer vision technique that identifies and locates specific objects within 
images, using bounding boxes to mark their position (Figure 1A). According to the international literature 
on OSCC and oral potentially malignant disorders (OPMD), YOLO versions are commonly implemented for 
this task as reported by Tanriver et al. [11] and Warin et al. [14, 15], followed by Faster R-CNN [14, 15], 
among others [14, 18]. The performance of object detection models varies greatly across architectures and 
according to the diagnosis as reported by Warin et al. [14]. In this study, OPMDs had worse detection 
metrics [area under the curve (AUC) varying from 0.34 to 0.64] compared to OSCC (AUC varying from 0.81 
to 0.91), which can be explained by the challenging recognition of OPMDs features, even by professionals. 
When comparing architectures, it seems that Faster R-CNN performs better than YOLO [14, 15]. However, 
these findings need more extensive assessment. Tanriver et al. [11] also implemented versions of YOLO but 
the results, varying from 0.57 to 0.64, are presented in average precision metrics, making conclusive 
comparisons difficult.

Object detection can be a valuable strategy to incorporate into models aimed at referral decisions, as it 
allows the suspicious lesion to be identified in the photograph and further classified. The main objective of 
this type of model, however, is not to diagnose the lesion/disease, but rather to assess whether it is 
worrying enough to justify referring the patient to a specialist, considering this status as the model output. 
This approach simplifies the data annotation process, as it only requires the definition of bounding boxes 
and uses two or three broad classes that encompass different types of injuries, avoiding the need for 
individual diagnostic classes that could increase complexity of the model. In this sense, Lim et al. [6] 
proposed a mouth landmark detection and classification module to classify photographic images based on 
the referral decision (no referral, refer—cancer/high-risk, refer—low-risk, and refer—other reasons). The 
model reached a macro average precision of 61.96%, recall of 61.70%, and F1-score of 61.68%. Welikala et 
al. [16] also developed a screening algorithm for referral decision based on Faster R-CNN and ResNet-101, 
achieving 67.15% precision, 93.88% recall, and 78.30% F1-score for the “referral” vs. “non-referral” 
classification.

Segmentation techniques are applied to isolate the region of interest within the image (Figure 1B). In 
the context of the semantic segmentation task, Tanriver et al. [11] employed the U-Net architecture, 
achieving expressive results with a Dice index around 0.92, to distinguish the lesion from the background. 
Furthermore, the author used Mask R-CNN with a ResNet backbone for instance segmentation, which 
integrates the concepts of object detection and semantic segmentation, allowing the differentiation of each 
occurrence of an object belonging to the same class.
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Table 1. Photography-based diagnostic models

Author, year Task; classes (n) Feature extractors/Features 
extracted

Classifier Accuracy Specificity 
(TNR)

Sensitivity 
(recall)

Precision 
(PPV)

AUC F1-score or 
Jaccard 
index

- Inception ResNet-v2 86.5% - - - - -Camalan et 
al. [1], 2021

Classification; suspicious (54) and 
normal (54) ROIs in photographic 
images - ResNet-101 79.3% - - - - -

Figueroa et 
al. [2], 2022

Classification; suspicious (i.e., OSCC 
and OPMD) (~ 2,800) and normal (~ 
2,800) photographic images

- GAIN network 84.84% 89.3% 76.6% - - -

Flügge et al. 
[3], 2023

Classification; OSCC (703) and normal 
(703) photographic images

- Swin-transformer DL 
network

0.98 0.98 0.98 - - 0.98

Jubair et al. 
[4], 2022

Classification; suspicious [i.e., OSCC 
and OPMD (236)] and benign (480) 
photographic images

- EfficientNetB0 85% 84.5% - - 0.92 -

Jurczyszyn et 
al. [5], 2020

Classification; OSCC (35) and normal 
(35) photographic images (1 normal 
and one of leukoplakia in the same 
patient)

MaZda software/Textural features, as 
run length matrix (two), co-occurrence 
matrix (two), Haar Wavelet 
transformation (two)

Probabilistic neural 
network

- 97% 100% - - -

Lim et al. [6], 
2021

Classification; no referral (493), refer—
cancer/high-risk (636), refer—low-risk 
(685), and refer—other reasons (641)

- ResNet-101 - - 61.70% 61.96% - 61.68%

VGG19 98% 97% 89% - - -
AlexNet 93% 94% 88% - - -
GoogLeNet 93% 88% 80% - - -
ResNet50 90% 96% 84% - - -

-

Inceptionv3 93% 88% 83% - - -

Classification; benign and 
precancerous (200) photographic 
images

SqueezeNet 93% 96% 85% - - -
VGG19 97% - - - - -
AlexNet 83% - - - - -
GoogLeNet 88% - - - - -
ResNet50 97% - - - - -
Inceptionv3 92% - - - - -

Shamim et al. 
[7], 2019

Classification; types of tongue lesions 
(300) photographic images

-

SqueezeNet 90% - - - - -
- OSCC: 

0.43
OSCC: 
0.76

OSCC: 
0.92

OSCC: 
0.45

- Normal: 1 Normal: 
0.9

Normal: 
0.99

Normal: 
0.95

VGG19 76%

- OPMD: 
0.78

OPMD: 
0.7

OPMD: 
0.88

OPMD: 
0.74

Sharma et al. 
[8], 2022

Classification; OSCC (121), OPMD 
(102) and normal (106) photographic 
images

-



Explor Digit Health Technol. 2025;3:101147 | https://doi.org/10.37349/edht.2025.101147 Page 4

Table 1. Photography-based diagnostic models (continued)

Author, year Task; classes (n) Feature extractors/Features 
extracted

Classifier Accuracy Specificity 
(TNR)

Sensitivity 
(recall)

Precision 
(PPV)

AUC F1-score or 
Jaccard 
index

- - - OSCC: 
0.94

-

- - - Normal: 
0.96

-

VGG16 72%

- - - OPMD: 
0.92

-

- - - OSCC: 
0.88

-

- - - Normal: 
0.99

-

MobileNet 72%

- - - OPMD: 
0.80

-

- - - OSCC: 
0.88

-

- - - Normal: 
0.1

-

InceptionV3 68%

- - - OPMD: 
0.88

-

- - - OSCC: 
0.43

-

- - - Normal: 
0.33

-

ResNet50 36%

- - - OPMD: 
0.42

-

Song et al. 
[9], 2021

Classification; malignant (911), 
premalignant (1,100), benign (243) and 
normal (2,417) polarized white light 
photographic images

- VGG19 80% - 79% 83% - 81%

- SE-ABN 87.7% 88.6% 86.8% 87.5% - -Song et al. 
[10], 2023

Classification; suspicious (1,062), 
normal (978) photographic images SE-ABN + manually 

edited attention maps
90.3% 90.8% 89.8% 89.9% - -

EfficientNet-b4 - - 85.5% 86.9% - 85.8%
Inception-v4 - - 85.5% 87.7% - 85.8%
DenseNet-161 - - 84.1% 87.9% - 84.4%
ResNet-152 - - 81.2% 82.6% - 81.1%

Tanriver et al. 
[11], 2021

Segmentation, object detection and 
classification; carcinoma (162), OPMD 
(248) and benign (274) photographic 
images

-

Ensemble - - 84.1% 84.9% - 84.3%
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Table 1. Photography-based diagnostic models (continued)

Author, year Task; classes (n) Feature extractors/Features 
extracted

Classifier Accuracy Specificity 
(TNR)

Sensitivity 
(recall)

Precision 
(PPV)

AUC F1-score or 
Jaccard 
index

Thomas et al. 
[12], 2013

Classification; 192 sections of 
photographic images from 16 patients

GLCM, GLRL and intensity based first 
order features (eleven selected 
features)

Backpropagation 
based ANN

97.92% - - - - -

Warin et al. 
[13], 2021

Object detection and classification; 
OPMD (350) and normal (350) 
photographic images

- DenseNet-121 - 100% 98.75% 99% 0.99 99%

- OSCC: 
99%

OSCC: 
99%

OSCC: 
98%

OSCC: 
1

OSCC: 
98%

DenseNet-169

- OPMD: 
97%

OPMD: 
95%

OPMD: 
95%

OPMD: 
0.98

OPMD: 
95%

- OSCC: 
94%

OSCC: 
92%

OSCC: 
96%

OSCC: 
0.99

OSCC: 
94%

Warin et al. 
[14], 2022

Object detection and classification; 
OPMD (315) and OSCC (365) 
photographic images

-

ResNet-101

- OPMD: 
94%

OPMD: 
97%

OPMD: 
97%

OPMD: 
0.97

OPMD: 
97%

DenseNet-121 - 90% 100% 91% 0.95 95%Warin et al. 
[15], 2022

Object detection and classification; 
OPMD (300) and normal (300) 
photographic images

-
ResNet-50 - 91.67% 98.39% 92% 0.95 95%

Welikala et 
al. [16], 2020

Object detection and classification; 
referral (1,054) and non-referral (379) 
photographic images

- ResNet-101 - - 93.88% 67.15% - 78.30%

ResNetSt 99.6% 99.6% 100% 97.9% 99.6% 98.9%Xue et al. 
[17], 2022

Classification; ruler (440) and non-ruler 
(2,377) photographic images; first batch 
(2,817 images/250 patients), second 
batch (4,331 images/168 patients)

-
Vit 99.8% 99.8% 100% 0.98 99.8% 99.5%

ANN: artificial neural network; DL: deep learning; GAIN: guided attention inference; GLCM: gray-level co-occurrence matrix; GLRL: grey level run-length matrix; OPMD: oral potentially malignant 
disorders; OSCC: oral squamous cell carcinoma; PPV: positive predictive value; ROI: region of interest; TNR: true negative rate; AUC: area under the curv

Image classification is a computer vision task that involves assigning a label or category to an entire image based on its visual content (Figure 1C). For the 
classification experiments, Tanriver et al. [11] implemented EfficientNet-b4, Inception-v4, DenseNet-161, ResNet-152, and an ensemble model using different 
input sizes, with all architectures performing closely, reaching performance metrics that varied from 0.81 to 0.87. Jubair et al. [4] compared three deep learning 
(DL) models (EfficientNetB0, VGG19, and ResNet101) with pre-trained weights to classify clinical photographs into suspicious (i.e., OSCC and OPMD) and benign 
lesions. EfficientNetB0 performed the best with 85% mean accuracy, 84.5% mean specificity, 86.7% mean sensitivity, and 0.911 (AUC). The similarity in 
performance between the different models can be attributed to several factors. These models may have similar capabilities in feature extraction and 
representation, which are crucial for image classification tasks. Furthermore, variations in input size may not have had a substantial impact on overall 
performance, suggesting that the models were robust at handling different image resolutions. This result also highlights the importance of model tuning, where the 
best configuration may result from a balance between model complexity and data characteristics [41].
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Figure 1. Visual representation of CNNs outputs based on the task. (A) Object detection; (B) segmentation; and (C) 
classification. OSCC: oral squamous cell carcinoma; CNNs: convolutional neural networks

For the multiclass image classification task, Warin et al. [14] implemented DenseNet-169, ResNet-101, 
SqueezeNet, and Swin-S. DenseNet-169 and ResNet-101 outperformed oral and maxillofacial surgeons’ and 
general practitioners’ performance with metrics varying from 0.94 to 0.99. This improvement in 
performance suggests that DL models may be more effective at detecting subtle patterns in medical images 
than human experts, particularly in complex image classification tasks such as distinguishing benign from 
malignant lesions in the oral cavity. One reason for this may be the ability of DL models to process large 
volumes of data and extract features that may not be immediately visible to the human eye. These models 
can identify intricate patterns in images that might otherwise be overlooked by clinicians, especially in 
detecting early-stage disease, where subtle differences in tissue can be crucial to diagnosis.

According to Liyanage et al. [21], EfficientNetV2 achieved an overall accuracy of 75%, while 
MobileNetV3 achieved 76% with recall, precision and F1-score around 61% to 64%, and AUC of 0.88 for 
both models in distinguishing non-neoplastic and OPMD lesions. Fu et al. [18] developed a DL algorithm for 
OSCC detection from photographic images, in which the DL model was trained with an extensive dataset of 
ordinary clinical photos, and further clinically validated using a different data set that included a subset of 
photographs of early-stage OSCC measuring less than two centimeters, reaching accuracy values that 
ranged from 91.5% to 95.3% and AUC values ranging from 0.93 to 0.99. This is an example of how the 
model surpasses its learning by generalizing well on a difficult task. Ideally, after training, these models 
should be tested on an independent dataset comprising patients not included in the initial development 
phase. This external validation is crucial for determining whether a model can generalize beyond its 
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training data and perform reliably in diverse clinical settings. While our review summarizes the 
methodologies and findings of the included studies, we also highlight the need for future research to 
prioritize rigorous external validation to enhance the clinical applicability of AI-driven diagnostic models.

Swin Transformer is an advanced type of Transformer-based architecture designed for computer 
vision applications such as image classification, object detection, and segmentation. This architecture is 
more efficient as it processes images in smaller patches instead of processing all image tokens at the same 
time, hence being called “Swin”, which stands for Shifted Window. These architectures have a global context 
ability and hierarchical processing and are applied when high precision and computational efficiency are 
required, especially for medical imaging processing. In this sense, Flügge et al. [3] implemented a pre-
trained Swin Transformer deep neural network for OSCC detection with performance metrics around 0.98 
facilitated by hierarchical feature maps and shifted window attention. Xue et al. [17] compared two models, 
a ResNetSt and a ViT model (based on transformers and originally designed for natural language 
processing) to classify images into “ruler” (indicates there is a lesion in the image) and “non-ruler”, 
reaching almost perfect performance. Talwar et al. [25] proposed a DenseNet201 and Swin Transformer to 
classify white light images alone, providing a simpler interpretation. The authors considered this model to 
be of great value for frontline-health-workers, as the model is parameter efficient, only requires images 
captured by a smartphone, and reached 73% F1-score in identifying suspicious and non-suspicious lesions.

Approaches that integrate the analysis of textural features (low-order features), such as those 
described by Jurczyszyn et al. [5] and Thomas et al. [12], highlight that feature selection is a fundamental 
step in pre-processing for traditional ML methods. These approaches are not inferior to DL methods based 
on high-order features, but they are more laborious. Despite using different textural features to train their 
models, both studies achieved high performance metrics, ranging between 97% and 100%.

Data abundance is a consistent problem across studies. To address the lack of large datasets for 
training convolutional neural networks (CNNs), all studies applied either pre-training, transfer learning 
and/or data augmentation, which are effective strategies to address the small dataset problem [1–4, 6–11, 
13–16]. Pre-training involves training a CNN on a general and substantially large dataset, with the goal of 
learning fundamental patterns in a robust and versatile way, while transfer learning leverages this 
knowledge in a smaller and specific data set, adapting (fine-tuning) the model to the new task. Data 
augmentation increases the dataset’s size and variability by creating artificial instances/images that will 
ultimately improve the model’s robustness, since it exposes CNN to a wider pattern variation. While studies 
applying traditional ML approaches reached good results using no more than 16 [12] to 35 patients [5], DL 
approaches require a great amount of data and were developed using datasets of variable sizes (from 
approximately 50 to 2,500 patients, sometimes with multiple images per patient) associated with different 
strategies to increase the number of inputs for training. Even when applying transfer learning, CNN 
performance varies greatly depending on the dataset, the architecture and the associated strategies. 
Sharma et al. [8] developed 5 models based on transfer learning (i.e., pretrained with ImageNet) to classify 
oral photographs into normal, OSCC or OPMD, achieving 76% accuracy with their best model. Meanwhile, 
González and Quintero-Rojas [19] developed an application based on a pretrained MobileNetV2 to classify 
normal cases, aphthous stomatitis, leukoplakia, herpes simplex virus type 1 (HSV1), and nicotinic 
stomatitis, reaching accuracies ranging from 88% to 95%, depending on the class. Camalan et al. [1] 
implemented two pretrained models to classify clinical photographs into “suspicious” or “normal” using 
two independent datasets from different countries for training and validation, with accuracies ranging from 
66.7% to 86.5%, depending on the dataset arrangement, which is valuable to assess how population 
variations interfere in the model learning. To deal with the class imbalance problem, Jubair et al. [4] used 
the weighted cross entropy loss, which adjusts the contribution of each image to the training error, 
penalizing suspicious samples 2.5 times more than benign ones. Song et al. [9] and Figueroa et al. [2] 
applied oversampling, undersampling [9], and data augmentation [2], in combination with pre-training or 
transfer learning, both achieving accuracy metrics above 80%. Lin et al. [20] implemented a pretrained CNN 
to classify five categories (normal, aphthous ulcer, low-risk OPMD, high-risk OPMD, and cancer) by applying 
a resampling method to manage image variability and class imbalance. These data-level approaches 
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increase dataset size while mitigating class imbalance, a critical issue that can affect performance and 
interpretation, as models may favor the majority class, limiting learning for minority classes. A 
distinguishing aspect of Song’s approach [9] is the use of polarized white light photographs, which 
eliminate surface reflections. The authors concluded that algorithm-level approaches alone are insufficient 
and recommended combining them with cross-entropy loss. According to Figueroa et al. [2], oversampling 
and data augmentation yielded better results than transfer learning combined with data augmentation 
alone.

Despite these promising results, each protocol presents limitations that can be addressed by 
integrating manual annotation and expert-guided adjustments to improve models’ performance. This 
strategy, incorporating human knowledge to improve CNN outcomes, was explored by Shamim et al. [7]. 
Their method improved tongue lesion screening by using an ensemble approach that combined CNN 
classification with physician evaluation for misclassified images, achieving 100% accuracy in both binary 
(benign vs. precancerous) and multiclass classification (hairy tongue, geographic tongue, strawberry 
tongue, oral hairy leukoplakia). Song et al. [10] developed an attention branch network using ResNet18 as 
baseline, integrated with Squeeze-and-Excitation blocks. This approach improved both model 
interpretability and performance, achieving 87.7% accuracy, 86.8% sensitivity, and 88.6% specificity. By 
manually editing the attention maps generated by the CNN, the authors further improved the model’s 
performance to 90.3% accuracy, 89.9% sensitivity, and 90.8% specificity. They suggested that these 
attention maps could assist in biopsy planning.

Few studies have incorporated interpretability into CNNs [1–3, 10, 13, 14, 17, 20, 31] (Figure 2) by 
employing class activation mapping [42], gradient-weighted class activation mapping [43], eXplanation 
with ranked area integrals [44], attention rollout [45], and local interpretable model-agnostic explanations 
[46] methods. These explainability methods play a crucial role in understanding CNN decision-making, 
providing insights into the contribution and importance of different input features.

Figure 2. Explainability method gradient-weighted class activation mapping (Grad-CAM)

Risk assessment models
Predicting the risk of malignant transformation (MT) in OPMD and assessing the risk of OSCC have been 
widely explored through ML- and DL-based models. Models that utilize clinical and demographic 
information stand out for their simplicity of input. Alhazmi et al. [28] developed an artificial neural network 
(ANN) prediction model based on natural language processing and data mining, incorporating 29 inputs 
derived from risk factors, systemic medical conditions, and clinicopathological features to predict the risk 
for OSCC. The model achieved 78% accuracy, 85.71% sensitivity and 60% specificity. This model holds the 
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potential to be applied as a screening method for predicting individual’s risk for OSCC development. Rosma 
[30] developed two natural language processing-based pipelines using patient’s demographic profile and 
risk habits. The fuzzy neural network model achieved 59.9% accuracy, 45.5% sensitivity, and 85.3% 
specificity, while the fuzzy regression model reached 67.5% accuracy, 69% sensitivity, and 64.7% 
specificity. These results demonstrate that simpler methods can offer good specificity but often sacrifice 
sensitivity. Shimpi et al. [36] developed an oral cancer risk assessment tool for clinical decision support 
based on clinical variables associated to high-risk OSCC and a voting algorithm that uses decision tree, 
radial basis function and multilayer perceptron (MLP) classifiers. The voting system reached 78% accuracy, 
64% recall, 88% precision, 92% specificity, and 0.83 AUC in predicting patients with oral cancer. The 
exclusion of irrelevant variables, such as chemotherapy and alcohol abuse, was essential for improving 
performance, highlighting the importance of a feature selection step. This demonstrates that the best 
results are not necessarily achieved through the complexity of the pipeline, but rather through the selection 
of the most descriptive characteristics.

Advances in image-based models include both supervised and unsupervised methods. Ferrer-Sánchez 
et al. [31] proposed two multi-task CNN for risk prediction and dysplasia grading using standard digital 
photographs of leukoplakia. The single-label model outperformed the multi-task models for risk 
assessment (0.74 accuracy, 1 sensitivity and 0.69 specificity), and high-risk dysplasia prediction (0.76 
accuracy, 0.85 sensitivity and 0.74 specificity). Zhang et al. [39] implemented Inceptionv3 to develop a risk 
stratification model based on WSI. The model achieved 95.4% accuracy in classifying “tumor-like” and 
“nondysplastic-like” image patches. Patients with high-risk lesions had a 52.5% probability of developing 
OSCC within 5 years, compared to 21.3% in those with low risk. Cai et al. [40] developed a powerful 
pathomics-based model to predict the MT of oral leukoplakia using H&E-stained images from multicenter 
cohorts. The model achieved high predictive performance (AUC: 0.899 in the validation set, 0.813 in the 
testing set), outperforming dysplasia grading (AUC: 0.743). Mahmood et al. [34] developed multivariate 
models based on histopathological descriptors to predict MT (AUROC of 0.77) and disease recurrence 
(AUROC of 0.74), surpassing conventional WHO systems. Bashir et al. [29] explored weekly supervised DL 
algorithms to predict MT from WSIs of oral epithelial dysplasia (OED) with iterative drawand-rank 
sampling with an AUC of 0.78. This method is superior as it dynamically learns the representations. Wang et 
al. [37] developed two random forest (RF) models based on visually enhanced lesion (VEL) scope and 
toluidine blue (TB) scores (Model-B) and another incorporating both scores along with additional patient 
information, such as lesion clinical type, site, infiltration, and age (Model-P). Both models performed 
similarly, but Model-P demonstrated superior sensitivity, emphasizing the importance of integrating 
clinical features into pipeline construction. The authors also developed the OPMDRisk web app to assist 
clinicians worldwide in early cancer risk assessment.

Ingham et al. [32] proposed two approaches for predicting MT in OED: one using a ML algorithm and 
another employing traditional principal component analysis-linear discriminant analysis (PCA-LDA) 
algorithm based on Fourier transform infrared spectroscopy. The ML algorithm outperformed PCA-LDA, 
achieving higher overall sensitivity and specificity (84% and 79%, respectively) compared to PCA-LDA 
(79% and 79%). Liu et al. [33] applied a classical ML model to assess cancer risk based on exfoliative 
cytology, histopathology and clinical data, achieving 100% sensitivity and 99.2% specificity. The authors 
used the Peaks-RF model to create an index for quantitatively assessing oral cancer risk (OCRI2 < 0.5 for 
low-risk and OCRI2 ≥ 0.5 for high-risk patients). Among patients with OCRI2 ≥ 0.5, 36% developed MT, 
while only 5.3% of low-risk patients progressed to cancer. Shephard et al. [35] proposed a model for MT 
prediction based on nuclei detection, segmentation and interpretation of morphological and spatial 
features, ultimately introducing a scoring system that performed well in predicting dysplasia progression. 
Patches highly predictive of MT were associated with lymphocyte infiltration, suggesting that whole-
specimen analysis, rather than focusing solely on the epithelium, may enhance image-based OPMD 
processing. Wu et al. [38] developed several models to predict MT based on 35 features encompassing 
demographic, clinical, and pathological information. The gradient boost classifier performed best, achieving 
80% accuracy in MT prediction, with dysplasia emerging as the most important feature. Logistic regression, 
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RF, and LDA also performed well, all reaching 73% accuracy, with dysplasia grade and history of multiple 
lesions being the most significant features. This underscores the substantial impact of feature selection on 
model performance.

The studies analyzed present several limitations that impact their generalizability and validity. Sample 
size constraints are a common issue, with some relying on small datasets [34, 37, 39], which may introduce 
bias, particularly when purposive sampling is used [34] or when cohort from a singles site is used for model 
development and validation [28]. The lack of diversity further limits the applicability of findings, as certain 
datasets are restricted to specific racial and ethnic groups, such as the white, non-Hispanic/Latino 
population [36]. Data sources also present challenges, with some studies being retrospective and relying on 
a single center or a sole pathologist for annotation, which may reduce reproducibility [35]. Additionally, 
missing or incomplete data, such as the absence of standardized biopsy techniques, variations in clinical 
practice, and confounding factors like alcohol consumption, further complicate the interpretation of results 
[36, 38]. Some ML models also fail to incorporate crucial variables, including socioeconomic and genetic 
factors, which are essential for a more comprehensive analysis [38]. Furthermore, the grading of epithelial 
dysplasia carries a degree of subjectivity depending on the pathologist analyzing the case, potentially 
affecting consistency in annotations. To mitigate this issue, some studies have implemented strategies such 
as transfer learning and data augmentation techniques to enhance model training despite small sample 
sizes [31]. These limitations highlight the need for larger, more diverse, and prospectively designed studies 
to improve the robustness and clinical applicability of AI-driven diagnostic models.

Discussion
Choosing the best model for a specific task is impractical due to the vast variability in methodologies and 
the unique characteristics of each model. A relevant example of this is the work of Warin and collaborators 
[13–15]. Since the authors used a similar data set and methods across three studies, it is possible to fairly 
compare the architectures. We can only assume that differences in parameters and hyperparameters 
played a role in the subtle differences that the performance of CNNs. This exemplifies the fact that there is 
no single “best CNN” for a specific application; rather, several factors directly influence CNN performance.

Most studies have trained CNNs to classify images at the “image-level label” [2, 4, 7, 8] by resizing these 
images to fit the CNN kernels. Camalan et al. [1] took an alternative approach, fragmenting clinical 
photographs into smaller patches and assigning labels based on the majority of pixels (80%) associated to a 
given class based on the manual annotation provided by the experts.

In many published studies, malignant samples are more frequently misclassified. Tanriver et al. [11] 
argues that misclassification of suspicious lesions (OSCC and OPMD) is not a significant risk, as both lesions 
will be referred for further examination, whereas misclassifying benign lesions will lead to unnecessary 
referrals. However, we contend that misclassifying malignant samples is the worst possible outcome, 
particularly in the context of non-invasive screening methods of OSCC. According to Sharma et al. [8], 
despite good performance in classifying the normal (100%) and the pre-malignant (7 among 9; 78%) cases, 
CNN misclassifies the malignant cases more frequently, with a sensitivity of only 43%. This is especially 
worrisome in the context of missing a cancer diagnosis.

It is important to highlight that most published applications are supervised learning, meaning that CNN 
training relies on labeled data corresponding to actual diagnoses or outcomes. Consequently, all relevant 
image features learned by the model are linked to specific classes, providing a meaningful reference. 
However, the reliance on large volumes of annotated data, the risk of overspecialization in specific features 
of the training set, and the dependence on ground truth annotations are significant concerns. Araújo et al. 
[47] identified notable variability in clinicians’ interpretations of lesion features and delineation, potentially 
affecting annotation quality. Their study analyzed the mean pixel-wise intersection over union (IoU), 
revealing an average IoU of 0.53 (± 0.22), confirming discrepancies among annotators. To minimize errors 
in reference data for model training, it is recommended to merge annotations from at least three 
experienced stomatologists. Additionally, unsupervised segmentation methods risk excluding crucial lesion 
areas, making supervised methods preferable.
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The need for standardized protocols in data collection is a great concern of researchers. Several 
standardized protocols exist for image acquisition to enhance model generalizability and ensure 
consistency. Proposed guidelines for clinical imaging of oral lesions may include uniform lighting, standard 
camera settings, and proper lesion framing, fixed focal distances and cross-polarized lighting to minimize 
glare and improve image quality [48]. Implementing such guidelines can significantly improve dataset 
quality but there is no evidence regarding the impact of such standardization in model robustness. Lin et al. 
[20] investigated the impact of centering lesions in the model’s performance and found that this approach 
yielded better results than random positioning, achieving 83% sensitivity, 96.6% specificity, 84.3% 
precision, and an 83.6% F1-score. However, this improvement may stem from a specific bias: consistently 
centering lesions could create patterns that favor memorization rather than genuine learning, leading to 
deceptively high-performance metrics. To mitigate this risk, datasets should incorporate variability, even at 
the cost of lower performance metrics. Therefore, despite following good practice recommendations for 
clinical imaging, it is crucial to ensure diversity in image acquisition conditions, such as lesion positioning, 
varying angles, lighting, different capturing devices, and image resolutions. This approach enhances the 
model’s ability to generalize across different real-world scenarios, ultimately improving its robustness and 
clinical applicability.

The need to incorporate variability in the models training also aligns with the need to ensure scalability 
of the proposed AI solutions. In clinical practice, a scalable AI model needs to handle different types of 
image capture equipment (e.g., photographic cameras and cellphones, different images’ size and 
resolution), variations in patient data, and changes in clinical protocols, ensuring broad and reliable 
applicability. Scalability refers to the ability of an AI model to maintain and improve its performance as data 
volume, task complexity, or computational requirements increase and involve: i) computational efficiency; 
ii) generalization; iii) infrastructure and implementation; iv) update capability. It is essential for AI models 
to transition from research settings to real-world applications. A model that performs well in controlled 
environments (i.e., yielding good results when trained with images acquired using highly standardized 
protocols) but fails to generalize, integrate, or update effectively will have limited clinical utility.

The primary advantage of real-time screening methods for oral cancer, particularly those based on 
smartphones—such as those proposed by Fu et al. [18], González and Quintero-Rojas [19], and Song et al. 
[22, 24]—is that they do not require specialized training, instruments, or invasive biopsies. Smartphone-
based algorithms have the potential for widespread use in point-of-care screening, particularly in low-
resource settings [18, 21, 22, 24–26]. In this scenario, MobileNet and EfficientNet are preferred 
architectures due to their low computational cost and feasibility for smartphone applications, achieving 
accuracies of up to 95% [21]. However, deeper state-of-the-art architectures have also been explored [22, 
23].

Despite these advancements, clinicians remain resistant to adopting these AI-driven diagnostic tools. 
This resistance stems from the lack of theoretical clinical descriptors to assist in differentiating between 
OPMD and OSCC, given their similar clinical presentations in some aspects, and particularly because these 
diagnoses fall within the spectrum of OSCC. Such ambiguity introduces potential confounding factors in 
model development. This limitation can be addressed by integrating human expertise and DL to improve 
models’ performance [7, 10]. Clinicians’ acceptance of AI models should be based on well-designed studies 
using well-characterized data and models that effectively separate classes. These studies should extensively 
evaluate results using explainability methods, which are crucial yet underutilized. Furthermore, heatmap 
interpretations in most studies remain subjective and merely illustrative [1–3, 10, 13, 14, 17, 20, 31].

The integration of these models into existing clinical workflows presents both opportunities and 
challenges such as integration with existing systems, training of professionals, and clinical acceptance. One 
of the main obstacles is ensuring efficient interoperability with electronic health records and clinical 
decision support systems, which often require standardized data formats and robust infrastructure. 
Additionally, models must be designed to complement, rather than disrupt, clinical routines, ensuring they 
provide actionable insights without increasing the cognitive load on healthcare professionals. A crucial 
challenge is clinician trust and adoption, which can be enhanced through transparent reporting of model 
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performance, interpretability (e.g., using techniques like Grad-CAM for visual explanations), and continuous 
validation with real-world data. Furthermore, it is essential to address regulatory considerations, 
particularly regarding patient safety, data privacy, and model accountability. To facilitate integration, 
hybrid approaches that combine AI predictions with expert review can increase reliability and acceptance, 
allowing AI to assist, rather than replace clinical judgment. Finally, successful implementation depends on 
iterative feedback cycles between developers and end-users, ensuring that AI tools are both technically 
robust and genuinely useful in clinical practice.

The implementation of AI models in clinical workflows can occur in various ways. In oral medicine 
clinics, an AI model can be integrated into an electronic health record system to pre-assess images of oral 
lesions submitted by patients. Based on this preliminary analysis, suspicious cases can be prioritized for in-
person evaluation by a specialist. In oncology hospitals, ML algorithms can be incorporated into clinical 
decision support systems to provide an automated second opinion on the histopathological classification of 
biopsies, helping pathologists identify subtle patterns and improve diagnostic accuracy. Mobile applications 
can be used by patients under follow-up to periodically photograph oral lesions [19, 20, 22, 25, 26, 49]. AI 
models can analyze these images and alert healthcare professionals if suspicious changes are detected, 
facilitating remote monitoring and early interventions. In head and neck cancer radiotherapy centers, 
predictive models can estimate the risk of severe oral mucositis before treatment begins [50], allowing 
personalized adjustments to radiotherapy prescriptions or preventive measures to minimize adverse 
effects. These examples demonstrate the utility and how AI can be integrated into clinical workflows to 
optimize screening, diagnosis, monitoring, and decision-making, improving efficiency and precision in 
patient care.

AI models have the potential to significantly enhance clinical decision-making by serving as decision-
support tools rather than standalone diagnostic systems. These models can assist practitioners by 
providing probabilistic assessments, identifying patterns that may be overlooked, and reducing diagnostic 
variability. One of the key advantages of AI-driven decision support is its ability to process large volumes of 
complex data efficiently, offering insights that can aid in early detection, risk stratification, and treatment 
planning. For example, in the context of oral pathology, AI models can highlight regions of interest in 
histopathological slides or clinical images, guiding pathologists toward areas that warrant closer inspection 
[51]. However, despite these advantages, AI should never overshadow the clinician’s expertise. The 
nuanced nature of clinical decision-making involves factors that AI alone cannot fully capture, such as 
patient history, symptoms, and contextual variations in disease presentation. Overreliance on AI-generated 
outputs without critical evaluation may lead to misdiagnosis or inappropriate treatment recommendations.

Ensuring the continuous improvement of AI models is essential for their successful implementation in 
clinical practice. As new data becomes available, model retraining is necessary to maintain accuracy and 
adaptability to evolving disease patterns, imaging techniques, and demographic variations. Without 
periodic updates, models risk becoming outdated, leading to decreased performance and potential biases. 
Therefore, future studies should emphasize mechanisms for ongoing validation, integration of new patient 
cohorts, and the incorporation of real-world clinical feedback. Establishing standardized protocols for 
model updates and re-evaluations will be crucial in bridging the gap between research and practical 
application, ultimately improving diagnostic reliability and patient outcomes.

Patient-specific factors play a crucial role in the performance and applicability of AI models in clinical 
settings. Variations in age, sex, underlying conditions, and even lifestyle factors may contribute to 
differences in disease manifestation, influencing model predictions. Some studies have incorporated 
demographic and clinical variables into their models, while others rely solely on imaging features, 
potentially overlooking key contributors to disease progression and risk stratification. A promising 
approach involves the integration of multimodal AI models that combine various data inputs, such as 
histopathological or radiological images alongside demographic and clinical information. These models can 
enhance predictive accuracy by leveraging complementary data sources, leading to more personalized and 
clinically relevant outcomes. The inclusion of diverse patient populations and a broader range of clinical 
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parameters is essential to improving the robustness and fairness of AI models, ensuring their effectiveness 
across different demographic and clinical subgroups. Future studies should emphasize the integration of 
multimodal AI approaches into model training and validation processes to enhance generalizability and 
minimize potential biases. Nevertheless, researchers should recognize that CNNs are performing 
exceptionally well. These algorithms may identify intrinsic image patterns that are not immediately 
apparent to the human eye. Instead of skepticism, researchers should embrace the potential of novel image 
processing techniques. These tools hold great promises for reducing referral delays by general practitioners 
to oral medicine specialists, ultimately improving patient outcomes.

Limmitations of studies

Sample size limitations are a critical factor influencing the reliability and generalizability of AI models in 
healthcare. Several studies included in this review relied on small or single-center datasets, which may 
introduce bias and limit the external validity of their findings [1, 5, 7, 8, 11, 12, 17, 21, 27, 47]. Smaller 
datasets can lead to overfitting, where models learn patterns specific to the training set rather than 
generalizable features applicable to broader populations. To mitigate these issues, many studies have 
employed techniques such as data augmentation and transfer learning to enhance model performance 
despite limited data availability. Additionally, future research should prioritize the inclusion of larger, more 
diverse, and multi-institutional datasets to improve model robustness and ensure clinical applicability 
across different populations and healthcare settings. Addressing these limitations is essential for the 
development of AI models that can be effectively translated into real-world practice.

Long-term validation is essential to ensure the reliability of models. However, most published studies 
fall into categories of internal validation considering the TRIPOD classification [52, 53]. For a robust long-
term assessment, level 4 studies (external validation) would be required. While the importance of 
longitudinal studies to monitor model performance and strategies for continuous updates with new data is 
undeniable, there is still insufficient evidence to support this discussion.

Lack of performance metrics in reporting is a consistent flaw. In previous work, our team emphasized 
the importance of using standardized and consistent performance metrics for evaluating ML models, 
particularly in medical contexts. Relying on simplistic metrics like accuracy can be misleading, especially in 
imbalanced datasets, and may not fully represent the model’s ability to meet clinical needs. Metrics like 
sensitivity, specificity, precision, F1-score, and AUC provide more comprehensive insights into the model’s 
true performance, especially in the context of cancer diagnosis and survival analysis [54]. We have shown 
that multiple evaluation metrics should be reported in research to ensure a holistic understanding of a 
model’s effectiveness.

In medical approaches, the cost of a false negative (FN) is particularly critical, as it means a malignant 
condition is incorrectly classified as benign, potentially delaying necessary treatment and worsening 
patient outcomes. This can lead to disease progression, reduced survival rates, and increased healthcare 
costs due to more intensive treatments required at later stages. Therefore, minimizing FNs is a primary 
concern in diagnostic AI models, often requiring a trade-off with false positives (FP), which, while leading to 
unnecessary follow-up tests or biopsies, are generally considered less harmful than missed diagnoses [54, 
55].

Suggested criteria for success in AI model performance

The model should achieve a high level of accuracy, but results should be interpreted carefully, as 
imbalanced datasets may highly impact the results.

•

High sensitivity is crucial to minimize FN, especially in cancer detection, where missing a diagnosis 
can have severe consequences.

•

The AUC should be ≥ 0.90 to indicate strong discriminatory power [18].•

For segmentation tasks, a Dice coefficient of ≥ 0.80 and an IoU of ≥ 0.70 could be considered 
successful [11].

•
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The model should perform consistently across diverse datasets, including external validation 
cohorts, to ensure it is not overfitted to a specific population. However, a drop in performance is 
expected when tested on external datasets.

•

The model should provide actionable insights that improve clinical workflows.•

The model should include explainability features, such as Grad-CAM or attention maps [7, 22].•

The model should maintain performance across variations in image quality, lighting, and patient 
demographics [1].

•

The model should be validated in real-world clinical settings, not just on curated datasets. Metrics 
such as precision, recall, and F1-score should remain stable when applied to real-world data [13].

•

Conclusion
The integration of AI models into clinical workflows for early diagnosis and risk stratification of oral cancer 
show promising results, especially for early and non-invasive detection of OSCC. Real-time screening, using 
photo-based approaches, offers non-invasive diagnosis without the need for specialized instruments. 
Supervised models with well-annotated data provide reliable benchmarks and improve interpretability. 
However, achieving accessibility and scalability remains a key goal, and clinicians’ resistance to accepting 
these algorithms remains a challenge. To encourage acceptance, continuous development and validation of 
ML models with well-characterized data and explainability of the methods is essential. Combined with user-
friendly interfaces, this can pave the way for widespread adoption in low resource settings and significantly 
improve patient outcomes and disease prognosis.
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