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Abstract
Aim: In lung cancer research, AI has been trained to read chest radiographs, which has led to improved 
health outcomes. However, the use of AI in healthcare settings is not without its own set of drawbacks, with 
bias being primary among them. This study seeks to investigate AI bias in diagnosing and treating lung 
cancer patients. The research objectives of this study are threefold: 1) To determine which features of 
patient datasets are most susceptible to AI bias; 2) to then measure the extent of such bias; and 3) from the 
findings generated, offer recommendations for overcoming the pitfalls of AI in lung cancer therapy for the 
delivery of more accurate and equitable healthcare.
Methods: We created a synthetic database consisting of 50 lung cancer patients using a large language 
model (LLM). We then used a logistic regression model to detect bias in AI-informed treatment plans.
Results: The empirical results from our synthetic patient data illustrate AI bias along the lines of (1) patient 
demographics (specifically, age) and (2) disease classification/histology. As it concerns patient age, the 
model exhibited an accuracy rate of 82.7% for patients < 60 years compared to 85.7% for patients ≥ 
60 years. Regarding disease type, the model was less adept in identifying treatment categories for 
adenocarcinoma (accuracy rate: 83.7%) than it was in predicting treatment categories for squamous cell 
carcinoma (accuracy rate: 92.3%).
Conclusions: We address the implications of such results in terms of how they may exacerbate existing 
health disparities for certain patient populations. We conclude by outlining several strategies for 
addressing AI bias, including generating a more robust training dataset, developing software tools to detect 
bias, making the model’s code open access and soliciting user feedback, inviting oversight from an ethics 
review board, and augmenting patient datasets by synthesizing the underrepresented data.
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Introduction
According to the American Cancer Society [1], lung cancer is the second most common type of cancer in the 
United States. In 2024, an estimated 116,310 men and 118,270 women will be diagnosed with lung cancer, 
meaning that the disease affects both genders relatively equally [1]. Not only is lung cancer one of the most 
common cancers in both the U.S. and global context, but it is also the deadliest, with the highest mortality 
rates of any other cancer worldwide [2]. However, mortality rates and treatment plans vary depending on 
the type of lung cancer and the stage at which it is detected.

In medical nosology, lung cancer is refined into two types: small cell lung cancer (SCLC) and non-SCLC 
(NSCLC). SCLC is a faster-growing type of lung cancer, but tends to be less common, representing fewer 
than 1 out of 10 new lung cancer cases [3]. NSCLC, on the other hand, is slower growing but is more 
common, accounting for approximately 9 out of 10 lung cancer diagnoses. In terms of classification-specific 
treatment plans, for SCLC, chemotherapy is the gold standard, whereas for NSCLC, assuming that the cancer 
has not become metastatic, surgery is often the first course of action [4]. The modality of treatment is also 
determined by the stage of advancement, with early-stage detection and localization of the disease dictating 
one protocol and late-stage or metastatic lung cancer calling for another. Despite concerning mortality and 
morbidity rates, however, AI shows promise in augmenting both the detection and treatment plans of lung 
cancer of all types.

AI in its various forms is becoming increasingly more useful for a variety of healthcare purposes, from 
performing fetal ultrasounds [5] to training medical students and residents [6], to reviewing patient 
records [7]. It is therefore likely not surprising then that AI has come to play a central role in lung cancer 
research [8, 9].

As it concerns lung cancer, specifically, AI has proven beneficial in several regards. For one, AI can help 
enhance the accurate detection of lung cancer by improving image quality for precise tumor targeting, thus 
facilitating early detection and drastically improving treatment outcomes. To illustrate, Ardila et al. [10] 
found that when using AI to detect lung cancer in a database of over 40,000 computed tomography (CT) 
scans, the system’s ability to analyze entire 3D scans as opposed to just a series of 2D slices, rendered it 
more accurate than a human reader. This 3D perspective furthermore allowed the AI system to look for 
tumors in unexpected areas, further contributing to the diagnostic advantages it affords. In fact, the relative 
advantages AI holds over a radiologist have even led some to conclude that AI effectively “Beats 
Radiologists for Accuracy in Lung Cancer Screening” [11].

Additionally, AI supports dynamic treatment response assessment and outcome predictions, enabling 
more personalized and effective disease management strategies for lung cancer patients. AI has the 
potential to save more lives, not just with respect to more accurate detection rates, but with the ability to 
reach greater numbers of patients. From a pragmatic standpoint, AI may serve as an instrumental 
supplement to the radiology and oncology workforces. The American College of Radiology reports an 
ongoing global radiology labor shortage [12]. Such shortages are moreover exacerbated during times of 
health crises, as was witnessed with the COVID-19 pandemic. As an assistive technology, however, AI is 
poised to function as an auxiliary to clinicians in these fields, effectively ensuring that labor shortages do 
not prevent patients from receiving potentially life-saving care.

Despite the manifold advantages accompanying the use of AI in clinical settings, though, it is not 
without its own set of drawbacks, with bias being foremost among them. Bias in the use of AI within health 
settings has become an object of debate among both clinicians and researchers alike. To join this ongoing 
debate, and to provide further guidance as to how AI may be accurately and equitably applied in healthcare 
settings, we created a synthetic database consisting of 50 lung cancer patients using a large language model 
(LLM). We then used a logistic regression model to detect bias in AI-informed treatment plans. Our 
experiment was guided by the following two research questions:

To what extent does AI bias impact the accuracy of defining appropriate treatment categories for 
patients with various demographic backgrounds and types of lung cancer?
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In what regard(s) is bias present? In other words, which features of the patient case were more 
susceptible to bias?

The article begins with our situating the present study within the larger scholarly discourse on the 
numerous benefits AI can bring to healthcare delivery, as well as how these benefits are often mitigated by 
different forms of bias. In the following section, we account for our methodological approach and describe 
our experiment design, before then presenting our results. The next section then proceeds to interpret said 
results. We conclude by reflecting on the implications of these results in terms of larger discussions of 
health equity and then examine how these pitfalls of AI may be overcome.

Materials and methods
Problem formulation

Before delving into the applications of AI in healthcare, however, an operating definition must first be 
established. “AI” is a broad term encompassing a variety of processes and applications, each with a different 
end goal. “AI” refers to tasks that a computer can perform with little to no assistance from human agents. 
Subsumed within the more inclusive category of AI is a subcategory of technologies that involve machine 
learning (ML). Simply put, “ML” denotes computer systems that learn from experience. Deep learning (DL) 
is one specific type of ML technology and the one that will be analyzed in this article. Coccia [13] defines DL 
as “a family of computational methods that allow an algorithm to program itself by learning from a large set 
of examples that demonstrate the desired behavior, removing the need to specify rules explicitly”. DL 
simulates how the human brain processes information through the creation of synthetic neural networks.

Regardless of the AI type, though, AI technologies as a whole have witnessed a preponderance of 
growth in the healthcare domain, particularly in the diagnosis and treatment of lung cancer. Coccia [14] 
claims that the growth of AI has occurred alongside and in tandem with growth in quantum technologies, 
the latter of which have played an increasingly important role in lung cancer detection and treatment via 
medical imaging. Given the symbiotic and synergistic relationship between AI and quantum technologies, 
investigation into one area inferably stands to benefit the other, in what the author conceptualizes as a 
cross-fertilization of innovation. He notes that there is an area of significant convergence between AI 
technologies and quantum technologies, and this study seeks to insert itself at this point of convergence.

Despite its growth, however, a primary reason that AI has not been more thoroughly integrated into 
clinical workflows for lung cancer treatment is that its accuracy remains inconclusive. The accuracy of AI in 
detecting thoracic cancer and assigning appropriate treatment categories based on those findings varies 
widely and lacks sufficient evidence to make determinations regarding its efficacy. That is why some, like 
Yang et al. [15], have issued a call for researchers to develop a more systematic analysis, and this study 
seeks to respond to this call by attempting to gauge the accuracy of AI for lung cancer detection and 
treatment.

Other barriers to improving the use of AI in lung cancer treatment lie with difficulty confirming its 
findings. Looking specifically at the use of AI for lung nodule detection via CT, Sourlos et al. [16] note that 
this technology often serves as an auxiliary one, not to be used in lieu of a qualified radiologist. For example, 
the authors conclude that how well AI will perform when it comes to detecting lung nodules in CT scans will 
depend, in large part, on whether it is enlisted as the first, second, or third reader of these images. 
Furthermore, evaluating the accuracy of AI in its ability to effectively detect lung cancer nodules is also 
contingent upon biopsy results for confirmation. These biopsies, considered the gold standard for 
confirmation of disease, are difficult to obtain, making evaluating the accuracy of AI in such applications 
equally difficult.

But accuracy and bias are two sides of the same coin. In other words, an inaccurate model is often a 
biased one. Tasci et al. [17] define the problem with AI bias as this: “If the bias is high, the model cannot 
capture the pattern (e.g., essential features) of the data, it misses the relations between the features and 
targets, and the learning model cannot generate appropriate predictions on testing data”. As one could 
therefore infer from this statement, AI bias largely stems from the quality and robustness of the data it is 
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trained on, whether that is electronic medical health records (EMHR), insurance claims data, or medical 
device readings [18].

AI bias may assume many forms. In their review of bias and class imbalance in oncologic data, Tasci et 
al. [17] point out such AI bias may be broken down into two categories. The first of these categories of bias 
is clinical in nature and pertains to the over- or under-representation of certain patient populations. It is in 
this regard, and within the context of cancer, specifically, that the use of AI can exacerbate existing health 
disparities. To illustrate, consider Guo et al.’s systematic review [19] of the literature on skin cancer. The 
authors found that of the 136 studies included in their dataset, the race/ethnicity of the subject (39,820) 
was disclosed only 8.82% of the time. Therefore, if an AI model was to be trained on such an incomplete 
dataset, it could overlook this patient population with respect to cancer detection, thereby worsening 
health outcomes for them [20].

In addition to AI bias along the lines of race and ethnicity, it may also demonstrate bias according to 
other patient features, such as gender. In their study of AI-assisted image-based diagnoses for 12 different 
thoracic diseases, Larrazabal et al. [21] examined how an imbalanced dataset could lead to skewed 
diagnostic results. The authors used X-ray images, a well-regarded classifier, and a training dataset with a 
gender balance of 25%/75%, women to men. Not surprisingly, the model performance was significantly 
lower than that of one trained on a more balanced dataset.

Tasci et al. [17] also note that AI bias in the analysis of oncologic data may also be present in the 
heterogeneity of the disease. In other words, outside of patient demographics, the pathological 
classification of the disease can also be a significant source of AI bias, with AI being more adept at 
diagnosing some diseases than others. If, as these studies show, diagnostic AI is only as good as the dataset 
it is trained on, then it would be less effective in accurately detecting less common disease types and 
subtypes, as these would be less represented in the dataset. This line of reasoning holds important 
implications for lung cancer therapy because, as previously described, certain types of lung cancer (e.g., 
NSCLC and SCLC) are more or less common than others. If these types are underrepresented in the AI 
training set, this could lead to biases in diagnosis and therapy.

As Figure 1 below illustrates, treatment plans are developed in accordance with disease type and stage 
of progression. In the case that this figure represents, the disease type was classified as NSCLC, for which 
radiotherapy is a common course of action. Should an AI model fail to accurately classify the disease type, 
the prescribed treatment plan could be ineffective at best, and at worst, outright harmful.

Figure 1. An example radiotherapy plan of a real lung cancer patient. The radiation isodose line is optimized to achieve 
tumor coverage and normal tissue sparing. Over 60% of patients with non-small cell lung cancer (NSCLC) require radiotherapy. 
Collected data was authorized through Johns Hopkins University’s Institutional Review Board’s guidelines for retrospective 
patient data use. Ethics committee name: JHU IRB; approval code: IRB-1 (retrospective patient data); approval date: 3/18/2020

In sum, while AI in healthcare—lung cancer diagnosis and treatment in particular—has consistently 
demonstrated improved health outcomes for some patient populations, it nonetheless represents the 
proverbial double-edged sword. One of the most significant drawbacks to the effective application of AI for 
lung cancer lies with the bias inherent in it. As this review has shown, the origin of such bias is not singular 
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in nature; bias may occur along the lines of race or ethnicity, gender, or even disease type if the dataset the 
AI model is trained on is imbalanced. To systematically and empirically investigate the conditions that give 
rise to AI bias and the various ways that it may manifest, we developed our own experiment based on a 
synthetic patient database. The details of the data for analysis, as well as our methodological approach, are 
presented in the section that follows.

Data preparation

To analyze AI bias in recommendations for lung cancer treatment protocols, we created a synthetic 
database consisting of 50 patients using an LLM (Claude 3 Opus). A sample medical report items list was 
developed and selected as the prompt for the LLM. The report items included synthetic patient name, date 
of birth (DOB), stage of progression, treatment prescribed, radiology report with scan dates, tumor size, and 
location, pathology report with lymph node involvement, pathologic staging, treatment course, and follow-
up visit report. While Figure 1 above was derived from real patient data, the data analyzed in this article 
was generated manually, meaning that no real data was used. Figure 2 below shows the sample distribution 
of this manufactured data, and is followed by an in-depth breakdown of the specific characteristics of this 
database.

Figure 2. Distribution of 50 LLM-generated sample cases in terms of tumor size and PET SUV values vs different 
stages. LLM: large language model; PET: positron emission tomography; SUV: standard uptake value

Our selection of the specific features for our database was also informed by current practices using 
biomarkers to deliver immunotherapy for lung cancer. Recent advancements in lung cancer treatment have 
increasingly focused on immunotherapy, particularly through the exploitation of biomarkers such as 
programmed death ligand 1 (PD-L1) [22], which has been pivotal in managing NSCLC. PD-L1 is currently 
the only immunotherapy biomarker with an approved treatment for NSCLC; it enhances patient selection 
for therapies that block this pathway, thereby inhibiting tumor growth and progression. Immune 
checkpoint inhibitors (ICIs) directed against programmed cell death 1 (PD-1) and PD-L1 have markedly 
improved survival for patients with advanced NSCLC. Additionally, the utilization of other critical genomic 
biomarkers such as EGFR, ALK, and NTRK has been standardized, offering targeted therapies that 
significantly improve outcomes by personalizing treatment approaches based on individual genetic profiles. 
Therefore, in our database, we have included PD-L1 expression as a feature and variable of analysis as well.

Features and variables

The database comprises detailed records for 50 lung cancer patients, systematically organized across 
multiple dimensions to facilitate comprehensive analyses. Demographic variables include age, captured as a 
continuous variable, and gender. Clinical data features tumor size, measured in centimeters and recorded 
from chest CT scans, and PET (positron emission tomography) SUV (standard uptake value) values, which 
quantify the metabolic activity of the tumor. Cancer staging is thoroughly documented and is presented in 
two formats: a detailed traditional stage (I–IV) and a simplified categorization (stages 1–4), which 
simplifies the dataset for trend analysis and easier statistical handling. Treatment data encapsulates the 
type (surgery, chemotherapy, radiation, immunotherapy) and specifics, including drug names and radiation 
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doses, the latter quantified in Gray (Gy). Biomarkers are extensively covered, with PD-L1 expression 
quantified as tumor proportion score (TPS) percentages. Performance status is rated using the Eastern 
Cooperative Oncology Group (ECOG) scale, ranging from 0 (fully active) to 5 (deceased). Complication 
severity following treatment is cataloged on a scale from mild to severe, and time to progression or 
recurrence is measured in months, providing a timeline of patient response post-treatment. Follow-up data 
includes the duration of follow-up in months and survival status, allowing for longitudinal outcome 
analysis. The specific features of this synthetic database are as follows:

Age distribution: The median age of patients was 58 years, with a range from 44 to 68 years.•

Tumor size distribution: The average tumor size was 5.0 cm, with a range from 1.5 cm to 7.5 cm.•

Tumor type distribution: 74% of the synthetic cases were diagnosed as adenocarcinoma and 26% 
were diagnosed with squamous cell carcinoma.

•

PET SUV distribution: The average PET SUV was 14.6, with a range from 3.2 to 24.5. PD-L1 
expression: Among patients with available PD-L1 data, 36% had high PD-L1 expression (TPS ≥ 50%), 
while 64% had unknown.

•

In addition to classifying the dataset according to patient demographic information, tumor size and 
type, and stage of progression, we also differentiated the data according to treatment categories. The initial 
unique treatment categories constructed were as follows: lobectomy, systemic therapy with 
pembrolizumab, lobectomy followed by adjuvant chemotherapy, concurrent chemoradiation followed by 
immunotherapy, systemic therapy with carboplatin, pemetrexed, and pembrolizumab, neoadjuvant 
chemotherapy followed by lobectomy and adjuvant radiation systemic therapy with carboplatin, 
pemetrexed, and bevacizumab, stereotactic body radiation therapy (SBRT), systemic therapy with 
carboplatin, paclitaxel, and bevacizumab, wedge resection, and segmentectomy. After consolidation of the 
categories, we recategorized the cases into the classes of surgery, immunotherapy, radiation therapy, 
chemotherapy, or a combination of these.

Data analysis procedure

Once we had established the above-described clinical feature variables, we then employed a logistic 
regression model to predict treatment categories based on this information. The logistic regression model 
was implemented using the Scikit-learn library in Python. For model inputs, key features included the 
clinical stage of cancer, tumor size measured via chest CT, and PET SUV values. The reason we selected 
these features is because previous studies, such as by Tsutani et al. [22], for instance, demonstrate the 
importance of these variables. These features were standardized using Scikit-learn’s StandardScaler to 
normalize the data. The dataset was divided into a training set (80%) and a testing set (20%). The logistic 
regression model was evaluated using accuracy as the primary metric. Accuracy is defined as the 
proportion of correct predictions over the total number of predictions made.

Results
In terms of the overall model performance, the trained logistic regression model achieved an accuracy rate 
of 90%, a precision rate of 68.8%, a recall rate of 75%, and an F1 score of 0.714 on the testing set. The 
accuracy is calculated as (True Positive + True Negatives)/Total Incidences. The precision is calculated as 
True Positive/(True Positive + False Positives). The recall is calculated as True Positives/(True Positives + 
False Negatives). The F1 score is calculated as 2 × (Precision × Recall)/(Precision + Recall).

It is noteworthy, however, that the model’s performance varied across two different patient subgroups, 
the first of which is age. The model exhibited lower accuracy for patients younger than 60 years (82.7%) 
compared to those 60 years and older (85.7%) in the full datasets. We repeated the analysis by reducing the 
data from 50 to 20 from the synthetic database. When analyzed in the reduced datasets, the model was less 
accurate for patients younger than 60 years (75.0%) compared to those 60 years and older (87.5%). The 
results of these analyses are presented in Table 1 below.



Explor Digit Health Technol. 2024;2:302–12 | https://doi.org/10.37349/edht.2024.00030 Page 308

Table 1. Results of the large language model (LLM) on the synthetic patient dataset

Category Subcategory Accuracy rate

< 60 years 82.7%Patient age
≥ 60 years 85.7%
Adenocarcinoma 83.7%Disease type
Squamous cell carcinoma 92.3%

As Table 1 shows, discrepancies also occurred according to histological subtype with the full and 
reduced datasets. Our results indicate that the model was less adept in identifying treatment categories for 
adenocarcinoma, with an accuracy rate of 83.7%. When it came to predicting treatment categories for 
squamous cell carcinoma, however, the model performed better, with an accuracy rate of 92.3%. We 
present a summary of these results in the form of a strengths, weaknesses, opportunities, and threats 
(SWOT) analysis, summarized in Table 2 below.

Table 2. SWOT analysis for AI in lung cancer treatment protocol recommendation

Strengths Weaknesses Opportunities Threats

Precision and accuracy: AI 
algorithms can analyze 
complex medical imaging 
and genetic data to identify 
subtle patterns for more 
precise and accurate 
treatment 
recommendations.

Algorithm bias: AI models can 
inherit biases from training data, 
which may lead to skewed 
recommendations if the data is 
not representative of diverse 
patient populations.

Continuous advancements 
in personalized medicine: 
AI has the potential to 
advance personalized 
medicine in lung cancer by 
analyzing individual patient 
data to tailor treatments.

Ethical and legal concerns: The 
ethical issues that accompany 
certain decisions and the 
potential legal implications of AI 
errors, pose significant 
challenges. Human physicians 
will need to review and sign off 
on patient charts in the current 
clinical setting.

Speed of diagnosis: AI can 
rapidly process and analyze 
large datasets, significantly 
reducing time expenditures.

High implementation costs: 
Developing, testing, and 
implementing AI systems for 
lung cancer treatment can be 
costly, requiring significant 
investment in technology and 
clinician expertise.

Integration with emerging 
technologies: Combining AI 
with emerging technologies 
like genomics can lead to a 
better understanding of 
lung cancer at the 
molecular level.

Technological disparities: There 
may be disparities in access to 
AI technologies between high 
and low-resource settings, 
potentially widening health 
inequities.

Consistency: AI systems 
provide consistent 
recommendations based on 
learned data, reducing 
variability in treatment 
suggestions among different 
oncologists.

Dependency on data quality: 
The effectiveness of AI 
recommendations is highly 
dependent on the quality and 
comprehensiveness of the data 
used, including historical 
treatment outcomes and patient 
demographics.

Global reach: AI can extend 
expert-level lung cancer 
treatment 
recommendations to 
underserved regions, 
improving outcomes where 
the access to oncologists is 
limited.

Resistance from healthcare 
professionals: There may be 
resistance to AI 
recommendations from 
healthcare professionals who 
are skeptical of replacing 
traditional clinical judgment with 
algorithmic decisions.

Discussion
In their study of AI applications for lung digital pathology, Viswanathan et al. [23] note that AI errors in 
such applications tend to originate from the training phase; the results of our study are consistent with 
such a claim. As expected, the model’s performance shows less dependency on the age categories (younger 
than 60 years vs 60 years and older) when there are larger training datasets when we use the full database 
(50 cases) compared to the reduced database (20 cases). Most real-world lung cancer diagnoses occur after 
age 65, with the median age of diagnosis being 66 [24]. The median age for our dataset, however, was 58, a 
fact that thus highlights the importance of a sound training set. This becomes problematic when one takes 
into account that age is a primary social determinant of health (SDOH) [25]. If a training dataset is not well-
aligned with epidemiological realities and patient needs, then it could exacerbate existing health disparities 
among the aging population.

It is also significant that the model was more accurate in predicting treatment recommendations for 
squamous cell carcinoma, compared with adenocarcinoma, an NSCLC, and arguably the most common 
variety of lung cancer [26]. In this case, the training data set did not reflect the incidence rate of this disease 
in the general population. Such a finding is concerning, as adenocarcinoma is the most prevalent NSCLC 
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type, comprising an estimated 30% of cases [26]. This means that if this model was enlisted in actual 
clinical settings, it would presumably fail to identify a significant portion of the patient population.

Lessons for greater health equity

While this study yielded noteworthy findings, it is not without its limitations. The most pronounced 
limitation is that it is based on a small dataset. With a dataset consisting of only 50 patients, the findings 
extrapolated should not be regarded as decisive. It is also worth pointing out that this dataset drew from an 
exclusively Western (i.e., American) patient sample. Yet as Carini et al. [27] advise, inclusive algorithms that 
utilize data from global populations exhibit greater accuracy when it comes to predicting cancer across 
diverse populations. In light of these limitations, then, future studies wishing to build upon the present one 
may want to broaden the dataset to not only include a greater number of cases, but also expand the 
geographical scope from which patient data was sampled to likewise broaden the scope of the 
generalizability of the findings. Doing this would work to fulfill the call presently issued in research on AI in 
healthcare applications to develop ML models in healthcare “so that protected and non-protected 
demographic groups derive equal clinical benefits performing equally between the groups”.

Additionally, though the current study focused on logistic regression due to its suitability to 
demonstrate the AI bias inherent in small datasets and their interpretation, several other ML models could 
potentially be applied to investigate this problem in future research. Other potential models can be used but 
are out of the scope of this study; these include support vector machines (SVM) if the data exhibits a high-
dimensional space more effectively separable through hyperplanes or neural networks if large-scale data 
becomes available or imaging data is integrated (e.g., radiomics).

Another limitation of this study, which likewise presents as an opportunity for future work to consider, 
is that we only analyze AI’s ability to perform two tasks: data mining and data analysis. Therefore, the 
results of this study cannot be used to make claims regarding the efficacy or accuracy of AI for other 
applications. Considering that human interpretation of images is subject to several limitations, He et al. [28] 
have called for the introduction of AI to analyze raw data from medical images in a “signal-to-knowledge” 
approach that bypasses the image reconstruction stage in a traditional “signal-image-knowledge” model. 
The promise of AI vis-à-vis medical imaging will ideally prompt future work to examine AI bias in the 
context of computer vision. This would hold important implications for lung cancer therapy in particular, as 
traditional diagnostic and therapeutic technologies such as detecting molecular biomarkers of lung biopsies 
and blood testing are accompanied by several disadvantages (e.g., invasive surgical interventions, 
prolonged wait times for test results) [29]. AI for computer vision and interpretation of medical imaging is 
poised to circumvent these limitations, and so represents a worthy area of further study.

In acknowledging these drawbacks to the use of AI in lung cancer diagnosis and treatment, a few 
relevant points of consideration for future AI applications emerge. The first reminds researchers and 
clinicians to engage in diligent reporting in patient records so as to help create a more robust natural data 
set for AI to learn from. With greater information supplied by actual clinical practices and observations, the 
diagnostic and therapeutic findings derived from AI can more realistically mirror clinical experiences. The 
second key takeaway from this brief experiment is that AI does not only demonstrate bias towards specific 
patient populations, but towards disease type, as well. Training the model on disease types with the highest 
incidence rates will help ensure that there are fewer instances of a failure to diagnose, and will ensure that 
greater numbers of individuals receive the care they need.

To address these relative shortcomings, we recommend implementing several of the following 
practices. The first practice involves developing software tools to detect and monitor AI bias. The second 
would seek out user feedback and invite an ethics review board to perform a manual audit. Relatedly, 
making the model and code open access would allow for such feedback, thus evolving the model through 
continuous improvement and imbuing the research process with transparency. Finally, we would 
recommend augmenting patient datasets by synthesizing the underrepresented data to improve the 
model’s performance. We believe that by taking such steps, AI can lead to innovation, not just in lung cancer 
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detection and treatment, but for cancer care in general. These innovations may, in turn, directly translate to 
better patient health outcomes, improved quality of life, and ultimately, lives saved.
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