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Abstract
Aim: To investigate the effects of allitol on the cecal microbiota profile of high-fat diet-induced obese rats to 
obtain basic data and to predict the pathway of butyric acid production from allitol using bioinformatic 
techniques. Moreover, this study examined whether the anti-obesity effect of allitol was due to butyric acid 
produced by gut microbiota.
Methods: Sixteen male Wistar rats were divided into two groups: control (C) and 5% allitol-supplemented 
(A). The rats were provided free access to the experimental diets for 11 weeks. Following the feeding 
period, the body weight, body fat, cecal short-chain fatty acids, and cecal microbiota profiles were 
determined.
Results: Body fat percentage was significantly lower in Group A than in Group C. Group A had a 
significantly higher abundance of the phylum Bacteroidota than Group C, whereas there were no 
differences in the abundance of Bacillota, Actinomycetota, and Pseudomonadota. Changes in the microbiota 
indicated a significant increase in the abundance of 10 genera and a significant decrease in the abundance 
of 14 genera in Group A compared to Group C. The cecal butyric acid content was significantly higher in 
Group A than in Group C. Functional analysis of PICRUSt2 showed that many enzymes belonging to the 
metabolic pathway that produces butyric acid from allitol are induced. However, the cecal bacteria involved 
in the anti-obesity effect differed from those involved in butyric acid production.
Conclusions: This study demonstrated several compositional changes in the cecal microbiota and an 
increase in butyric acid production following dietary allitol supplementation. The anti-obesity effect of 
allitol was confirmed; however, it was suggested that the butyric acid produced by the intestinal bacteria 
may not be responsible for this effect.
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Introduction
Obesity is a long-lasting and complex condition characterized by excess fat accumulation that can affect 
health. Obese increases the risk of developing type 2 diabetes, heart disease, and specific types of cancer, 
including all that can affect the overall quality of life [1]. Recently, rare sugars have gained attention 
because of their potential as functional foods with anti-obesity properties. According to The International 
Society of Rare Sugars (2002), rare sugars are monosaccharides and their derivatives that are naturally less 
common than typical sugars, such as D-glucose and D-fructose, and can serve as supplements, functional 
food additives, and medications. Multiple studies have shown that rare sugars may have positive health 
effects when used as low-calorie carbohydrate sweeteners and bulking agents [2–6]. In the last two or three 
decades, rare sugars such as D-allulose (D-psicose), D-sorbose, D-tagatose, and L-sugars, have been 
developed as alternative sweeteners [5–8]. Allitol, a rare sugar, is a sugar alcohol formed by linking D- and 
L-hexoses in a process known as izumoring [9], and is created by converting D-allulose [10]. In nature, 
allitol, along with D-allulose, grows naturally in Itea plant, which are deciduous shrubs belonging to the 
saxifrage family [11]. We have previously shown that allitol may have anti-obesity effects in rats that are 
comparable to or stronger than those of D-allulose and that allitol has been determined to be somewhat 
safe for rats and humans to consume [12–14].

Our previous studies showed that dietary allitol resulted in a greater increase in cecal weight and 
surface area of rats than maltitol [15] or fructooligosaccharide [16], which are both highly fermentable 
carbohydrates. This suggested that allitol is a highly fermentable sugar alcohol. Moreover, we showed that 
the content of cecal short-chain fatty acids (SCFAs) was significantly increased by allitol, primarily butyric 
acid [17]. Recent studies have reported that the intestinal microbiota produces butyric acid, which has anti-
obesity effects [18–21]. Therefore, we hypothesized that the anti-obesity effect of allitol was due to the 
production of butyric acid by the gut microbiota. However, the mechanisms underlying the microbial 
activity of allitol remains unclear. Thus, this study aimed to investigate the effect of allitol on the cecal 
microbiota profile of high-fat diet-induced obese rats to obtain basic data and predict the pathway of 
butyric acid production from allitol using bioinformatic techniques. Furthermore, this study examined 
whether the anti-obesity effect of allitol was due to butyric acid produced by gut microbiota.

Materials and methods
Materials

Allitol was sourced from the International Institute of Rare Sugar Research and Education (Kagawa, Japan). 
Soybean oil and beef tallow were purchased from Yamakei Industry Co. Ltd. (Osaka, Japan). Mineral and 
vitamin mixtures (AIN-76) were obtained from Oriental Yeast Co. Ltd. (Tokyo, Japan). The remaining 
components of the diet were food-grade and sourced from Fonterra (Auckland, New Zealand), Mitsui DM 
Sugar Holdings, Nippon Paper Industries, and Oji Cornstarch (Tokyo, Japan). All other reagents were 
provided by FUJIFILM Wako Pure Chemical Industries (Osaka, Japan) and Nacalai Tesque (Kyoto, Japan).

Animals, diets, and experimental design

Sixteen male Wistar rats (mean weight: 52 g, range: 42–58 g), aged 3 weeks, were bought from Japan SLC 
(Shizuoka, Japan) and were housed separately at a temperature of 22° ± 1°C, with lighting from 08:00 to 
20:00. The rats were fed MF, a commercial rodent diet (Oriental Yeast Co., Ltd., Tokyo, Japan), and water for 
three days. Rats were randomly divided into two groups: control (C) and allitol (A). The rats in Group C 
were fed a control diet, whereas those in Group A were fed an allitol diet. The control diet was a synthetic 
diet containing the following ingredients in grams per kilogram: casein, 200.0; DL-methionine, 3.0; corn 
starch, 149.9; sucrose, 300.0; soybean oil, 20.0; beef tallow, 230.0; mineral mixture, 35.0; vitamin mixture, 
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10.0; cellulose, 50.0; choline chloride, 2.0; butylhydroxytoluene, 0.1. The allitol diet was prepared by 
replacing 50 g of sucrose in the control diet with 50 g of allitol. The rats were provided free access to the 
experimental diets and water for 11 weeks. High doses of allitol can induce diarrhea in rats (data not 
shown); hence, Group A rats were incrementally acclimated to 1−5% allitol for the initial 3 weeks. Daily 
measurements included body weight and food consumption. Following the feeding period, all rats were 
euthanized by decapitation at 09:00 without prior fasting. The intra-abdominal adipose tissues and cecum 
were removed and stored at −80°C. Carcass samples were provided by removing the head and remains 
from the intra-abdominal and intra-thoracic tissues and were stored at −20°C.

Analysis

Carcass fat (almost equivalent to subcutaneous fat) was quantified using the method described by 
Mickelsen and Anderson [22], and total body fat, including intra-abdominal fat, was determined using the 
method described by Paik and Yearick [23]. Analysis of SCFAs in the cecal contents was performed by 
Techno Suruga Laboratory Co., Ltd. (Shizuoka, Japan). DNA was extracted from the cecal contents using the 
ZymoBIOMICS DNA Mini Kit (Zymo Research, CA, USA). Microbial community profiling was performed on 
an Illumina MiSeq (San Diego, CA, USA) using 16S rRNA amplicon sequencing of DNA from cecal contents 
with primers that specifically targeted the 16S rRNA V3/V4 region. PCR amplification, purification, and 
quantification, according to the Illumina (CA, USA) 16S Metagenomic Sequencing Library Preparation 
Protocol, were outsourced to Genome-Lead, Co. Ltd. (Takamatsu, Kagawa). Raw data were visualized and 
analyzed using QIIME2 (https://qiime2.org). The predicted functional characteristics of the microbial 
community based on Enzyme Commission numbers (EC) were determined using PICRUSt2 [24] based on 
the proportion of marker gene sequences in the samples.

Data analysis

All phenotypic data are expressed as mean and SE. Statistical analyses were performed using Excel 
Statistics (Social Survey Research Information Co. Ltd., Tokyo, Japan). The statistical significance of α-
diversity between Groups C and A was evaluated using Mann-Whitney U-test. The statistical significance of 
β-diversity between Groups C and A was evaluated using Pairwise PERMANOVA. All other data from Groups 
C and A were analyzed using the Welch’s t-test. For all analyses, statistical significance was set at P < 0.05.

Results
No differences were observed in weekly mean body weight (Figure 1), final body weight and food intake 
between Groups C and A, whereas the body fat percentage was significantly lower in Group A than in Group 
C (Figure 2). The cecal weight and surface area were significantly greater in Group A than in Group C 
(Figure 2).

α-Diversity between the two groups was compared using two different indices (the Chao 1 index 
[operational taxonomic unit (OTU) richness estimation]) (Figure 3A) and Pielou’s evenness index (OTU 
evenness index) (Figure 3B). These α-diversities revealed no statistically significant differences between 
Groups C and A. The overall structure of the cecal microbiota between Groups C and A was evaluated using 
the β-diversity indices calculated for weighted (Figure 3C) and unweighted (Figure 3D) UniFrac distances. 
Principal coordinate analysis (PCoA) revealed microbial structural differences between Groups C and A in 
weighted (P = 0.033) and unweighted (P = 0.182) UniFrac distances.

Differences in the cecal microbial structure were initially assessed taxonomically at the phylum level 
(Figure 4A). Consistent with a previous study [25], the microbiota composition of both groups was 
dominated by four main phyla, Bacillota (Figure 4B), Bacteroidota (Figure 4C), Actinomycetota, and 
Pseudomonadota. Group A had a significantly higher abundance of the phylum Bacteroidota than Group C, 
whereas there were no differences in the abundance of Bacillota, Actinomycetota, and Pseudomonadota.

Pearson’s correlations between the relative abundance of representative microbiota and body fat 
percentage in rats was examined (Figure 5). Body fat percentage was significantly positively correlated 
with Bacillota (Figure 5A) and significantly negatively correlated with Bacteroidota (Figure 5B).

https://qiime2.org
https://qiime2.org
https://qiime2.org


Explor Foods Foodomics. 2025;3:101072 | https://doi.org/10.37349/eff.2025.101072 Page 4

Figure 1. Weekly changes in the mean body weight (n = 8) of rats in the control (C) and allitol (A) groups

Figure 2. Basic characteristics of control (C) and allitol (A) groups. BW: body weight; FI: food intake; BF: body fat; CW: 
cecal weight; CSA: cecal surface area. Values are the mean and SE for eight rats. P-values were obtained using Welch’s t-test

Figure 3. α-Diversity indices and principal coordinate analysis plots of the control (C) and allitol (A) groups. α-Diversity 
indices, the Chao 1 index (OTU richness estimation) A and the Pielou’s evenness index (OTU evenness estimation) B were 
compared using Mann-Whitney U-test. β-Diversity was calculated using weighted C and unweighted D UniFrac distances, and 
significance was analyzed using the Pairwise PERMANOVA test. OTU: operational taxonomic unit
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Figure 4. Relative abundance of the taxonomic composition of the cecal microbial community at the phylum level in the 
control (C) and allitol (A) groups. C and A represent the control and allitol groups, respectively. Each component of the 
cumulative bar graph on the left indicates a phylum A. On the right side of the image shows the representative phyla (Bacillota B
; and Bacteroidota C) evaluated using Welch’s t-test

Figure 5. Correlation between body fat (%) and relative abundance of the representative phyla (Bacillota A; and 
Bacteroidota B) in the control (C) and allitol (A) groups. BF: body fat

Taxonomic changes in the microbial communities were assessed at the genus level. As shown in 
Figure 6 and Table 1, changes in the microbiota indicated a significant increase in the abundance of 10 
genera and a significant decrease in the abundance of 14 genera in Group A compared with Group C. These 
were characterized by an increase in the abundance of the genera Tannerellaceae, uncultured 
Lachnospiraceae, Alistipes, RF39, Mitochondria, Anaerostipes, Bacteroides, Muribaculaceae, 
Lachnospiraceae_UCG-010, uncultured Unassigned, and by a decrease in the abundance of the genera 
Bifidobacterium, Parvibacter, Paludicola, Adlercreutzia, Romboutsia, uncultured Eggerthellaceae, Blautia, 
[Eubacterium]_xylanophilum_group, Streptococcus, uncultured Anaerovoracaceae, Candidatus_Stoquefichus, 
uncultured Atopobiaceae, uncultured Desulfovibrionaceae, Mucispirillum (Table 1).
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Figure 6. Comparative analyses of the taxonomic composition of the microbial community at the genus level. The 
significant differences (P < 0.05) in genera between the control and allitol groups were presented. Genera that increased with 
the allitol diet are indicated by red bars, and genera that decreased are indicated by blue bars. LDA: linear discriminant analysis

SCFAs production results are provided in Figure 7. Cecal acetic acid content was significantly lower in 
Group A than in Group C, whereas propionic acid content did not differ between the two groups. Cecal 
butyric acid and total SCFAs contents were significantly higher in Group A than in Group C. The predicted 
main microbial pathway for butyrate production from allitol in rat cecum is shown in Figure 8. After 
conversion to D-allulose, allitol pass through D-allulose-6-phosphate, D-fructose-6-phosphate, and the 
glycolytic system produces pyruvic acid. Butyryl-CoA is generated via pyruvic acid and acetyl-CoA or the 
citric cycle and succinate. Butyryl-CoA is converted to butyric acid by the key enzyme, butyryl-CoA:acetate-
CoA transferase (BAT). Potential differences in the function of the microbial community were evaluated 
using the PICRUSt2 software. The relative abundances of the predicted enzymes in the cecal microbiota 
associated with butyric acid production from allitol in Groups C and A are shown in Figure 9. The relative 
abundances of D-allulose-6-phosphate 3-epimerase (APE), 6-phosphofructokinase (PFK), fructose-
bisphosphate aldolase (FBA), phosphoglycerate mutase (PM), pyruvate carboxylase (PC), BAT, trans-2-
enoyl-CoA reductase (NAD+) (TER), 4-hydroxybutyrate CoA-transferase (HBT), and 3-hydroxybutyryl-CoA 
dehydratase (3HBD) were significantly higher in Group A than in Group C.

Using multiple regression analysis, six genera of cecal bacteria were identified as predictor variables 
for cecal butyric acid levels, and eight genera were identified as predictor variables for body fat percentage. 
The correlations between these bacteria and cecal butyric acid or body fat are shown in Table 2. The 
abundances of Tannerellaceae, RF39, and Anaerostipes were significantly and positively correlated with 
c e c a l  b u t y r i c  a c i d .  T h e  a b u n d a n c e s  o f  Bacteroides, L a c h n o s p i r a c e a e _ U CG - 0 1 0 ,  
[Eubacterium]_xylanophilum_group, and Mucispirillum were significantly and negatively correlated with 
body fat, whereas Bifidobacterium, Adlercreutzia, and Streptococcus were significantly and positively 
correlated with body fat.
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Table 1. Relative abundance (%) of cecal microbiota at the genus level in the control (C) and allitol (A) groups

Domein Phylum Class Ordaer Family Genus C A P

Bacteria Bacteroidota Bacteroidia Bacteroidales Tannerellaceae Tannerellaceae 0.01 ± 0.00 0.02 ± 0.01 0.027
Bacteria Bacillota Clostridia Lachnospirales Lachnospiraceae Uncultured 0.00 ± 0.00 0.01 ± 0.00 0.047
Bacteria Bacteroidota Bacteroidia Bacteroidales Rikenellaceae Alistipes 0.03 ± 0.00 0.19 ± 0.07 0.031
Bacteria Bacillota Bacilli RF39 RF39 RF39 0.02 ± 0.00 0.15 ± 0.05 0.018
Bacteria Pseudomonadota Alphaproteobacteria Rickettsiales Mitochondria Mitochondria 0.01 ± 0.00 0.07 ± 0.02 0.012
Bacteria Bacillota Clostridia Lachnospirales Lachnospiraceae Anaerostipes 3.89 ± 2.37 18.7 ± 2.05 < 0.001
Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 0.76 ± 0.19 3.60 ± 0.01 0.023
Bacteria Bacteroidota Bacteroidia Bacteroidales Muribaculaceae Muribaculaceae 1.23 ± 0.42 5.74 ± 1.95 0.035
Bacteria Bacillota Clostridia Lachnospirales Lachnospiraceae Lachnospiraceae_UCG-010 0.18 ± 0.04 0.73 ± 0.26 0.049
Unassigned Uncultured Uncultured Uncultured Uncultured Uncultured 0.05 ± 0.01 0.14 ± 0.02 0.005
Bacteria Actinomycetota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 2.74 ± 0.77 1.21 ± 0.51 0.045
Bacteria Actinomycetota Coriobacteriia Coriobacteriales Eggerthellaceae Parvibacter 0.06 ± 0.02 0.02 ± 0.01 0.044
Bacteria Bacillota Clostridia Oscillospirales Ruminococcaceae Paludicola 0.03 ± 0.00 0.00 ± 0.00 0.007
Bacteria Actinomycetota Coriobacteriia Coriobacteriales Eggerthellacea Adlercreutzia 0.07 ± 0.01 0.02 ± 0.01 0.008
Bacteria Bacillota Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia 7.01 ± 1.35 1.85 ± 0.37 0.008
Bacteria Actinomycetota Coriobacteriia Coriobacteriales Eggerthellaceae Uncultured 0.08 ± 0.02 0.02 ± 0.00 0.041
Bacteria Bacillota Clostridia Lachnospirales Lachnospiraceae Blautia 1.76 ± 0.37 0.35 ± 0.08 0.002
Bacteria Bacillota Clostridia Lachnospirales Lachnospiraceae [Eubacterium]_xylanophilum_group 1.07 ± 0.38 0.20 ± 0.07 0.041
Bacteria Bacillota Bacilli Lactobacillales Streptococcaceae Streptococcus 0.20 ± 0.07 0.03 ± 0.01 0.005
Bacteria Bacillota Clostridia Peptostreptococcales-Tissierellales Anaerovoracaceae Uncultured 0.04 ± 0.00 0.00 ± 0.00 0.008
Bacteria Bacillota Bacilli Erysipelotrichales Erysipelatoclostridiaceae Candidatus_Stoquefichus 3.13 ± 0.88 0.49 ± 0.18 0.026
Bacteria Actinomycetota Coriobacteriia Coriobacteriales Atopobiaceae Uncultured 0.12 ± 0.03 0.01 ± 0.00 0.006
Bacteria Desulfobacterota Desulfovibrionia Desulfovibrionales Desulfovibrionaceae Uncultured 0.18 ± 0.06 0.00 ± 0.00 0.033
Bacteria Deferribacterota Deferribacteres Deferribacterales Deferribacteraceae Mucispirillum 0.16 ± 0.07 0.00 ± 0.00 0.046
Values are the mean ± SE for eight rats. The P-values were obtained using Welch’s t-test

Discussion
In the current study, body fat accumulation in rats was suppressed by the long-term consumption of the allitol diet without altering their body weight or food 
intake (Figure 2). Furthermore, the allitol diet considerably increased cecum weight, surface area, and SCFAs, especially butyric acid, in rats. These results 
indicated that allitol has anti-obesity properties and is strongly fermentable in the gastrointestinal tracts. These results support our previous studies [12, 14–17]. 
SCFAs regulate almost every cellular and physiological function in the body by acting as ligands for G protein-coupled receptors (GPCRs) [26]. GPR41 and GPR43 
are the most important SCFA receptors in the GPCR family [27] and are abundantly expressed in sympathetic ganglia and fatty tissues, respectively [27, 28]. SCFAs 
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Figure 7. Short-chain fatty acids in rat cecal contents in the control (C) and allitol (A) groups. AA: acetic acid; PA: 
propionic acid; BA: butyric acid; SCFA: short-chain fatty acid. Values are the mean and SE for eight rats. The P-values were 
obtained using Welch’s t-test

Figure 8. Prediction of the microbial pathway for butyrate production from allitol in rat cecum. APE: D-allulose-6-
phosphate 3-epimerase; PFK: 6-phosphofructokinase; FBA: fructose-bisphosphate aldolase; PM: phosphoglycerate mutase; 
PC: pyruvate carboxylase; BAT: butyryl-CoA:acetate-CoA transferase; TER: trans-2-enoyl-CoA reductase (NAD+); HBT: 4-
hydroxybutyrate CoA-transferase; 4HBD: 4-hydroxybutyryl-CoA dehydratase; 3HBD: 3-hydroxybutyryl-CoA dehydratase

have been reported to increase energy expenditure and lipolysis via these receptors [27, 28]. Acetic, 
propionic, and butyric acids are the most common SCFAs found in the bodies of mammals, especially in 
their intestinal tracts [29]. Butyric acid is the SCFA with the most significant systemic effect. Numerous 
studies have indicated a strong association between butyric acid and obesity [18–21]. Research on 
microbiota composition has shown that individuals with obesity tend to have decreased levels of bacteria 
that produce butyric acid [30]. Therefore, we hypothesized that the anti-obesity effect of allitol was due to 
the production of butyric acid by the gut microbiota and investigated the mechanism underlying the 
microbial activity of allitol.

We described the changes in the relative abundance of the cecal microbiota due to dietary allitol. To the 
best of our knowledge, this is the first study to examine the effects of the rare sugar allitol on rat gut 
microbiota. First, the overall differences in microbial structure between Groups C and A were analyzed 
using both weighted and unweighted UniFrac distances. As shown in Figure 3C, the weighted PCoA 
indicated significant structural differences between these two groups. Thus, a shift from Group C to Group A 
was observed in the composition of cecal microbiota. No significant differences were observed in the α-
diversity indices between the two groups, indicating that diversity was not enhanced by dietary allitol 
within the group.
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Figure 9. Relative abundance of predicted enzymes in the cecal microbial community related to butyrate production in 
the control (C) and allitol (A) groups. Values are the mean and SE for eight rats. The P-values were obtained using Welch’s t-
test. APE: D-allulose-6-phosphate 3-epimerase; PFK: 6-phosphofructokinase; FBA: fructose-bisphosphate aldolase; PM: 
phosphoglycerate mutase; PC: pyruvate carboxylase; BAT: butyryl-CoA:acetate-CoA transferase; TER: trans-2-enoyl-CoA 
reductase (NAD+); HBT: 4-hydroxybutyrate CoA-transferase; 4HBD: 4-hydroxybutyryl-CoA dehydratase; 3HBD: 3-
hydroxybutyryl-CoA dehydratase

Table 2. Correlation between cecal microbiota and butyric acid and between cecal microbiota and body fat

Butyric acid Body fatGenus

R P R P

Tannerellaceae 0.36 0.036
RF39 0.44 0.012
Anaerostipes 0.74 < 0.001 –0.18 0.181
Blaitia –0.68 0.090
Atopobiaceae uncultured –0.68 0.076
Bacteroides 0.44 0.191 –0.64 0.006
Lachnospiraceae_UCG-010 –0.47 0.046
Bifidobacterium 0.48 < 0.001
Adlercreutzia 0.46 0.001
[Eubacterium]_xylanophilum_group –0.02 0.009
Streptococcus 0.42 0.007
Mucispirillum –0.02 < 0.001
R: correlation coefficient

The important finding in this study was that dietary allitol significantly increased the Bacteroidota 
phylum (Figure 4C), and the abundance of Tannerellaceae, Alistipes, Bacteroides, and Muribaculaceae, 
belonging to the Bacteroidota phylum (Table 1), at the genus levels in Group A. Moreover, body fat 
percentage was a significantly positively correlatied with Bacillota (Figure 5A) and a significantly negative 
correlation with Bacteroidota (Figure 5B). Obese mice have a lower percentage of Bacteroidota and a 
higher percentage of Bacillota than lean mice [31], and similar results have been established in humans 
[32]. Several studies have confirmed that obesity due to a high-fat diet increases the Bacillota-Bacteroidota 
ratio, which has been reported as a good marker for predicting obesity [33, 34]. In this study, the Bacillota-
Bacteroidota ratio was lower in the Group A (8.2 ± 1.1) than in the Group C (33.2 ± 5.0). These results were 
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consistent with those of previous studies. Another important finding of this study is that dietary allitol 
altered many cecal bacteria at the genus level (Figure 6, Table 1). The relative abundance of Bacteroides, 
which is known to improve obesity [34, 35], and Anaerostipes and Muribaculaceae, known butyric acid and 
SCFAs producers [36, 37], were higher in Group A than in Group C. Santacruz et al. [38] reported that 
Bacteroides numbers were lower in overweight women, and that increased Bacteroides numbers were 
associated with increased levels of high-density lipoprotein cholesterol and lower levels of triacylglycerol. 
The abundances of Adlercreutzia, Streptococcus, and Romboutsia which are known to increase in obesity 
[39–42], were lower in Group A than in Group C. These results suggest that dietary allitol promotes anti-
obesity effects and butyrate production by altering the composition of the intestinal microbiota.

In this study, we demonstrated that dietary allitol promotes SCFAs production, especially butyric acid, 
by increasing the abundance of butyric acid-producing bacteria. Furthermore, functional analysis of 
PICRUSt2 showed that several enzymes belonging to the metabolic pathway that produces butyric acid 
from allitol were induced (Figures 8 and 9). However, as shown in Table 2, the cecal bacteria involved in the 
anti-obesity effect differed from those involved in butyric acid production. Furthermore, cecal butyric acid 
and total SCFAs did not correlate with body fat percentage in rats (R = –0.335, P = 0.820 and R = –0.333, P = 
0.853, respectively). These facts refute the hypothesis that the anti-obesity effect of allitol is primarily due 
to butyric acid produced by the intestinal microflora. Of course, butyric acid and other SCFAs are involved 
in the suppression of obesity; therefore, the anti-obesity effects of butyric acid may not be entirely absent. 
The anti-obesity effects of dietary allitol may be attributed to unknown mechanisms that need to be 
elucidated in the future. Butyric acid has been reported to have many beneficial effects. Gao et al. [43] 
reported that dietary supplementation with butyric acid can prevent and treat diet-induced insulin 
resistance in mice and that the mechanism is related to the promotion of energy expenditure and induction 
of mitochondrial function. Canani et al. [44] showed that butyric acid regulates the transport of fluids 
across epithelial cells, improves mucosal inflammation and oxidative status, strengthens the protective 
barrier of epithelial cells, and affects the sensitivity of internal organs and intestinal movements. Moreover, 
an increasing number of studies have highlighted the importance of butyric acid in the prevention and 
inhibition of cancer [45]. Furthermore, butyric acid affects the brain function. Sodium butyrate 
pharmacologically affects gene expression in the brain and has various positive effects on 
neurodegenerative diseases and behavioral disorders by inhibiting histone deacetylases [46]. These 
findings suggest that dietary allitol exerts various beneficial effects via butyric acid production by the 
intestinal microbiota, which should be investigated in the future.

Finally, we report on the inconvenience of using dietary allitol. The abundance of Bifidobacterium, a 
beneficial bacterium [47], was reduced by an allitol diet and was significantly positively correlated with 
body fat percentage. This result was unexpected and contradicted the results of many previous studies; 
however, the details remain unknown. Further studies are needed to investigate changes in dietary 
conditions and concurrent ingestion of various non-digestible sugars. Functional analysis using PICRUSt2 
revealed that more than 200 metabolic pathways were altered by the allitol diet (data not shown). 
Therefore, it is necessary to examine the various functions of allitol as a functional carbohydrate.

The limitations of this study should be mentioned. First, this study focused exclusively on allitol and did 
not compare it to other rare sugars such as D-allulose or non-digestible sugars. Perhaps, allitol produces 
butyric acid more effectively than other sugars; therefore, we would like to study this in more detail. 
Second, in this experiment, we specifically decided to examine the cecal microbiota in detail and did not 
analyze serum or liver biomarkers. Alterations in the cecal microbiota may affect serum and liver 
biomarkers. Third, there was a great deal of individual rat variation in the relative abundance of the 
taxonomic composition of the cecum. Whether the strain of rats (Wistar) and the number of animals (n = 8) 
used in this study were appropriate is slightly questionable. There is room to reconsider these limitations.

In conclusion, this study demonstrated several compositional changes in the cecal microbiota and an 
increase in butyric acid production following dietary allitol supplementation. The anti-obesity effect of 
allitol was confirmed; however, it was suggested that the butyric acid produced by the intestinal bacteria 
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may not be responsible for this effect. However, since allitol intake increases the abundance of bacterial 
genera such as Bacteroides and Muribaculaceae, which are associated with anti-obesity effects, probably the 
cecal microbiota profile is involved in the anti-obesity effects of dietary allitol. Althogh many beneficial 
effects of butyric acid have been reported, the unknown effects of dietary allitol, a precursor of butyrate, 
need to be investigated in the future.
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