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Abstract
Sterigmatocystin (STE) is a possible human carcinogenic compound (2B) according to the International 
Agency for Research on Cancer classification. Structurally, STE is a precursor to aflatoxins, sharing a similar 
polyketide-derived biosynthetic pathway, which underscores its toxicological relevance. It has been 
reported to occur in a variety of foodstuffs including cereals and cereal-based products, spices, cheese, and 
nuts, among others. STE poses a substantial challenge to food safety and addressing this issue requires a 
comprehensive strategy encompassing prevention, monitoring, and regulation to protect both human and 
animal health from its harmful effects. The present paper presents the analytical methodologies for the 
determination of STE in foodstuffs and the reported levels of STE in food, based on a review of scientific 
publications from 2021 to 2024. Significative progress has been made in the development of analytical 
methodologies for STE determination in food; however, further advancements in analytical techniques, 
standardized protocols, and monitoring are essential to improve risk assessment and guide effective 
mitigation strategies.
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Introduction
Mycotoxins are toxic secondary metabolites produced by various fungal species that tend to infest crops, 
leading to contamination both during growth and after harvest. These naturally occurring toxins are 
primarily synthesized by molds such as Aspergillus, Fusarium, and Penicillium species, which can 
contaminate human foods and animal feeds under certain favorable conditions, such as optimal levels of 
moisture, water activity, and temperature [1, 2]. According to data from the Rapid Alert System for Food 
and Feed (RASFF), mycotoxins are the most frequently reported toxic substances and therefore represent a 
significant concern in food safety and public health due to their widespread occurrence and their 
carcinogenic, genotoxic, and hepatotoxic potential. However, the presence of mycotoxins in food and feed 
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also has substantial economic implications due to crop losses and the costs associated with monitoring and 
decontamination processes [3].

Among mycotoxins, sterigmatocystin (STE) is a potent mycotoxin produced by certain fungi, 
particularly those belonging to the genera Aspergillus and Penicillium. The main producers A. versicolor and 
A. nidulans have garnered significant attention due to their widespread presence in cereals and animal feed 
[4]. Structurally, STE is a precursor to aflatoxins, the most potent carcinogenic mycotoxins known, sharing a 
similar polyketide-derived biosynthetic pathway, which underscores its toxicological relevance [2]. 
Specifically, STE is an intermediate in the biosynthetic pathway of aflatoxin B1 (AFB1) and AFG1 (Figure 1). 
In aflatogenic fungal species, STE is quickly converted into O-methylsterigmatocystin (OMST), the direct 
precursor of AFB1 and AFG1. Consequently, STE rarely accumulates, but certain species, such as A. nidulans 
and A. versicolor, appear unable to convert STE into OMST. As a result, substrates colonized by these fungi 
can contain high levels of STE [5].

Figure 1. Scheme showing the conversion of sterigmatocystin and O-methylsterigmatocystin to aflatoxins B1 and G1

Understanding the mechanisms behind the conversion of STE into aflatoxins is essential for identifying 
the factors influencing aflatoxin production and contamination in agricultural commodities. Detailed 
knowledge of the enzymatic steps involved in this process can inform the development of strategies to 
mitigate aflatoxin contamination in food and feed. Additionally, uncovering the regulatory mechanisms of 
this conversion presents opportunities to create novel biocontrol agents or biotechnological approaches to 
inhibit aflatoxin biosynthesis in fungal pathogens, thereby improving food safety [5].

STE’s toxicity primarily stems from its ability to form DNA adducts, leading to mutations and 
carcinogenesis. It inhibits key cellular enzymes and disrupts protein synthesis, resulting in cell death and 
tissue damage. Studies have shown that STE induces oxidative stress and inflammation, contributing to its 
toxic effects [6, 7]. Exposure to STE is associated with various adverse health effects. Acute toxicity can 
result in liver and kidney damage, while chronic exposure is linked to an increased risk of liver cancer. 
Animal studies have demonstrated teratogenic effects, indicating potential risks to fetal development. 
According to the International Agency for Research on Cancer classification, STE is a possible human 
carcinogen (2B) [8].

STE is frequently detected in a variety of foodstuffs, including grains [9, 10], cereal products [11], nuts 
[12–14], coffee beans [15], cheese [16], and spices, among others, where its presence is often indicative of 
poor storage conditions and suboptimal agricultural practices [17]. Once contaminated, these products 
pose a significant risk to human and animal health if consumed.

The maximum levels of STE are not regulated within the European Union. Before their accession to the 
European Union, the Czech Republic and Slovakia had established STE limits of 5 μg/kg for certain cereals 
and milk [18]. Due to the lack of official STE control programs, there are no reliable assessments of human 
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and animal dietary exposure [19]. More occurrence data on STE in food and feed across European countries 
need to be collected to allow assessment of dietary exposure.

Overall, STE poses a substantial challenge to food safety. Addressing this issue requires a 
comprehensive strategy encompassing prevention, monitoring, and regulation to protect both human and 
animal health from its harmful effects.

The present paper presents the analytical methodologies for the determination of STE in foodstuffs and 
the reported levels in food, based on a review of scientific publications from 2021 to 2024.

Regulations
On April 25, 2023, the European Commission introduced a new regulation focused on establishing 
maximum limits for certain contaminants in foodstuffs, such as mycotoxins, including aflatoxins, ochratoxin 
A, patulin, deoxynivalenol, zearalenone, fumonisins, citrinin, ergot sclerotia, and ergot alkaloids [20]. Before 
joining the European Union, the Czech Republic and Slovakia established STE limits of 5 μg/kg for certain 
cereals and milk [18, 21]. However, the maximum limits of STE are not yet regulated within the European 
Union. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) has also evaluated STE, but there 
are no specific regulatory limits set by JECFA [22].

The European Food Safety Authority (EFSA) in Europe delivered a scientific opinion on the risk to 
public health related to the presence of STE in food and feed [19]. However, the EFSA Panel on 
contaminants in the food chain (CONTAM Panel) concluded that the available occurrence data were too 
limited to carry out a reliable human and animal dietary exposure assessment and reinforced the need for 
more occurrence data on STE in food and feed. Regarding the performance criteria of the analytical 
methods, a limit of quantification (LOQ) of less than 1.5 μg/kg should be applied [19].

Analytical methodologies for the determination of STE in food
Advanced detection methods are required to monitor and quantify STE levels in agricultural products, 
considering the LOQ set by EFSA. Current analytical methodologies for determining STE concentration 
levels in food have advanced significantly, enhancing selectivity, sensitivity, and accuracy. Table 1 
summarizes the procedure and the analytical performance of the methodologies developed for the 
determination of STE in food from 2021 to 2024 (Scopus database, Elsevier).

Liquid chromatography (LC) was the most widely employed technique due to its high-resolution 
power, being coupled with diode array (DAD) [30, 37, 44], fluorescence (FD) [56], or mass spectrometry 
(MS) [26, 35, 57] detectors. Reverse-phase chromatography with octadecyl silica (C18) stationary phase 
was the primary type of chromatographic column used for the separation of STE from other mycotoxins 
and food constituents. Columns with an average particle diameter of 5 μm were typically used in 
conventional LC [24, 32, 38], while 1.8 μm diameter columns were employed in ultra-high-performance LC 
(UHPLC) applications [26, 36]. Chromatographic separation was mainly based on reverse phase 
mechanisms, using columns, such as Acquity UPLC BEH C18 [35], Acquity UPLC HSS T3 [26], and 
Symmetry-C18 [24] from Waters Corporation (Milford, MA, USA), Gemini C18 [48] from Phenomenex 
(Torrance, CA, USA), and Zorbax Eclipse Plus C18 [36, 43] from Agilent Technologies (Santa Clara, CA, USA). 
Regarding the mobile phase, methanol/water and acetonitrile (ACN)/water gradients were employed to 
achieve the right separation of STE from other sample constituents, with small amounts of formic acid (FA), 
acetic acid, and/or ammonium buffers added as modifiers.

LC coupled to tandem MS (LC-MS/MS) provides the highest selectivity and sensitivity, making it the 
preferred technique in the currently developed methodologies developed for the identification and 
quantification of STE at trace levels in complex food matrices. Moreover, LC-MS/MS technique allows the 
development of multiresidue analysis for the determination of STE and other mycotoxins in a wide variety 
of food matrices, using electrospray ionization in both positive and negative modes. For example, aflatoxins 
(B1, B2, M1, M2, P1), ochratoxins (A, B), enniatins (A, A1, B, B1), beauvericin, citrinin, dihydrocitrinone, 
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Table 1. Analytical performance of methodologies developed for the determination of sterigmatocystin (STE) in food from 2021 to 2024

Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

Brown rice, wheat 25 g sample, 100 mL ACN:water (17:3, v/v)
SPE (Horiba Aflaking IAC)

Dried and reconstituted

LC-MS/MS
InertSustain C18 (150 mm × 
2.1 mm, 3 µm)
2 mM NH4Ac in water/2 mM NH4Ac 
in ACN

0.02–0.03/0.05–0.09 86–102 Brown rice 0.35–5.70
Polished rice 0.02–0.30

Wheat 0.05–2.20
Bread 0.02–0.20

Baked sweets 0.01–0.20

Noodles 0.01–0.80

[23]

Rice, maize, soybean 5 g sample, 25 mL MeOH:water (7:3, v/v)

30 min shaking
SPE (HMON@MIP)

TFA + hexane derivatization

Dried and reconstituted

LC-FD

Symmetry C18 (250 mm × 4.6 mm, 
5 µm)

ACN:water (32:68, v/v)

- 81–95 - [24]

Chilli, pepper 50 g sample, 10% KCl in ACN

LLE (2x hexane)
LLE (hexane:CHCl3, 1:1 v/v)

Dried and reconstituted

GO-FAM-FRET 24/132 71–89 - [25]

Soaked rice, steamed rice, 
fermented rice, fermented 
wine

QuEChERS LC-MS/MS
Acquity UPLC HSS T3 (100 mm × 
2.1 mm, 1.8 μm)
0.1% FA + 2 mM AF in water/0.1% 
FA + 2 mM AF in ACN

0.01–0.07/0.03–0.25 73–119 - [26]

Wheat 10 g sample, 25 mL ACN:water (9:1, v/v), 1 g 
MgSO4, 1 g NaCl

30 min shacking
20 min centrifugation

MSPE (Fe3O4-MIP) elution 5 mL MeOH:TEA 
(9:1, v/v)
20 min shaking

Dried and reconstituted

LC-DAD 0.63/- 88–97 3.4–4.5 [27]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

Cereals, nuts, vegetables, 
oil, noodle, paste, seasoned 
food, instant food

5 g sample, 20 mL 0.1% FA in ACN:water 
(1:1, v/v)

30 min shaking
10 min centrifugation

SPE (Isolute Myco) elution 2 mL 0.1% FA in 
ACN + 4 mL MeOH

Dried and reconstituted

LC-MS/MS

Imtakt Cadenza C18 (100 mm × 
2 mm, 3 μm)
0.1% FA + 5 mM AF in water/0.1% 
FA + 5 mM AF in MeOH

0.4–0.9/1.2–2.8 69–112 Processed foods 
0.08–1.93 (n = 522, 
4.2%)
Agricultural products 
0.08–10.07 (n = 613, 
3.9%)

[28]

Black, green, and Oolong 
teas

QuEChERS
5.0 g sample, ACN:water (75:25, v/v)

30 min UAE, 1 g NaCl, 1 g MgSO4

5 min centrifugation

dSPE (C18)

5 min centrifugation

LC-MS/MS
Shim-pack XR-ODS III (75 mm × 
2.0 mm, 1.6 µm)
0.1% FA + 5 mM AF in water/0.1% 
FA + 5 mM AF in ACN

0.04–0.12/0.13–0.40 101–118 0.13–0.48 (n = 126, 
13.5%)

[29]

Wheat 5 g sample, 20 mL ACN:water (8:2, v/v)

10 min UAE
5 min centrifugation

MSPE (MHNTs@MIP) elution 5.3 mL 
EtOH:HAc (9:1, v/v)
Dried and reconstituted

LC-DAD

Hedera ODS-2 (250 mm × 4.6 mm)
MeOH:water (60:40 v/v)

1.1/3.5 89–103 - [30]

Roasted coffee bean, black 
pepper

10 g sample, 40 mL MeOH:water (8:2, v/v)
5 min shaking

2 min centrifugation

SPE (Envi-carb SPE) elution 6 mL toluene
Hexane cleaning

SPE (IAC) elution 2 mL ACN

LC-MS/MS
Acquity CSH C18 (150 mm × 
2.1 mm, 1.7 μm)

0.05 M FA and AF in MeOH:water 
(8:2, v/v)/water

0.03/0.10 92–105 0.08–0.87 (n = 18, 22%) [31]

5 g sample, 10 mL ACN:water (8:2, v/v)

10 min UAE

5 min centrifugation

Rice, wheat LC-MS/MS

ODS (250 mm × 4.6 mm, 5 μm)

ACN:MeOH:water (22:22:55, 
v/v/v)/ACN:MeOH:water (35:35:30, 
v/v/v)

0.9–1.5/3.0–4.5 92–102 - [32]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

Dried and redissolved in 10 mL water

15 min dSPE [SiO2@mPMO-IL(im)2] elution 
2 mL MeOH
5 min centrifugation

Dried and reconstituted
Coix seed 5 g sample, 20 mL 0.1% FA in ACN:water 

(7:3, v/v)

30 min mechanically shaking
5 min centrifugation

SIDA-UHPLC-MS/MS 0.03/0.10 83–88 LOQ–23 (n = 60, 83%) [33]

Mango, litchi, longan, and 
their products

2 g sample, 10 mL 1% HAc in ACN:water (8:2, 
v/v)

10 min UAE

5 min centrifugation
dSPE (PSA, C18)

10 min vortex shaking
5 min centrifugation

Dried and reconstituted tube

LC-MS/MS
Acquity BEH C18 (100 mm × 
2.1 mm, 1.7 μm)

Water/0.2% FA in ACN

0.01/0.04 84–116 - [34]

Honey 1.5 g sample, 3 mL water, 2.5 mL ACN, 1 g 
MgSO4, 0.25 g NaCl, 0.25 g Na3Cit, 0.125 g 
Na2HCit
1 min hand shaking

10 min centrifugation

2 min dSPE (MgSO4)
10 min centrifugation

Dried and reconstituted

LC-MS/MS
Eclipse Plus C18 RRHT (100 mm × 
2.1 mm, 1.8 µm)
0.2 M NH4HCO3 in water/0.2 M 
NH4HCO3 in ACN

0.3/1.0 101–103 0.4–18.7 (n = 57, 3.5%) [35]

Pale lager beer 25 mL sample, pH adjustment to 7.4

SPE (11+Myco MS-PREP IAC) elution 2 mL 
MeOH
Dried and reconstituted

LC-MS/MS

Acquity UPLC BEH C18 (100 mm 
× 2.1 mm, 1.7 µm)
1 mM NH4Ac + 0.5% HAc + 0.1% 
FA in water/0.5% HAc + 0.1% FA 
in MeOH

- 27 - [36]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

Rice 5 g sample, 10 mL ACN:water (8:2, v/v)

10 min UAE

5 min centrifugation
Dried and reconstituted in 10 mL water

25 min MSPE (Fe3O4/ZIFs) elution 2 mL 10% 
FA in ACN

Dried and reconstituted

LC-DAD

ODS column (250 mm × 4.6 mm, 
5 μm)
Water/0.05% H3PO4 in ACN

0.4/1.2 79–95 1.2–2.2 (n = 56, 3.6%) [37]

Cocoa beans 7.5 g sample, 18 mL 5% HAc in ACN:water 
(7:3, v/v), 3 g NaCl

60 min shaking
15 min freezing, –70°C

10 min centrifugation

LC-MS/MS
Acquity UPLC BEH C18 (100 mm 
× 2.1 mm, 1.7 μm)
0.1% FA + 5 mM AF + 2% MeOH 
in water/0.1% FA in ACN

3/10 97–109 10–11 (n = 135, 1.5%) [38]

Spice, herb - LC-MS/MS - - 0.4–7.8 (n = 155, 4%) [39]
Rice, wheat 5 g sample, 10 mL 10% FA in water, 10 mL 

ACN, 4 g MgSO4, 1 g NaCl, 1 g Na3Cit, 0.5 g 
Na2HCit

5 min shaking

5 min centrifugation
SPE (Oasis Prime HLB)

LC-MS/MS

Acquity HSS T3 C18 (100 mm × 
2.1 mm, 1.8 μm)

1% HAc + 5 mM NH4Ac in 
water/1% HAc + 5 mM NH4Ac in 
MeOH

2/- - - [40]

Arecae semen 2 g sample, 15 mL 0.2% FA in ACN:water 
(84:16, v/v)

10 min UAE

10 min centrifugation
S-µSPE (MycoSpin 400)

Dried and reconstituted

LC-MS/MS
Acquity UPLC BEH C18 (100 mm 
× 2.1 mm, 1.7 µm)

0.1% FA in MeOH/2 mM AF in 
water

0.3/1.0 94–105 LOQ–2.2 (n = 20, 15%) [41]

No sample treatment ELISAPlant-based milk 
alternatives 10 mL sample LLE (EtAc)

Dried and 
reconstituted in PBS

SPE (VICAM AflaTest 
WB SR+ IAC) elution 
3 mL MeOH

LC-
MS/MS

Phenomenex C18 
(100 mm × 3.0 mm, 5.0 
µm)

0.1% FA + 300 mg/L AF 
in water/0.1% FA + 300 
mg/L AF in MeOH

2/- (ELISA) - Soy (n = 7, 14%)

Almond (n = 7, 0%)
Oat (n = 14, 14%)

Others (n = 26, 8%)

[42]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

Edible oil, soy sauce, bean 
sauce

2 g sample, 20 mL ACN:water (8:2, v/v)

10 min orbital shaking

5 min centrifugation
LLE (Hexane)

3 min centrifugation
SPE (Oasis PRiME HLB)

Dried and reconstituted

LC-HRMS

Accucore aQ C18 (150 mm × 
2.1 mm, 2.6 μm)
0.1% FA in water/0.1% FA in 
MeOH

0.3/1.0 71–104 Sesame oil LOQ–2.9 (n
 = 12, 8%)

[43]

Corn, millet, rice, soybean, 
oats

5 g sample, 25 mL ACN:water (8:2, v/v)
30 min shaking

Centrifugation
SPE (COF@MIP) elution 5 mL ACN

Dried and reconstituted

LC-DAD
Waters Symmetry-C18 (250 mm × 
4.6 mm, 5 µm)
MeOH:water (80:20, v/v)

2/8 79–98 - [44]

Rice bran, maize 1 g sample, 4 mL 1% FA in ACN:water (8:2, 
v/v)

90 min vortex shaking
15 min centrifugation

LC-MS/MS
Gemini C18 (100 mm × 4.6 mm, 
5 μm)
5 mM NH4Ac + 1% HAC in water/5 
mM NH4Ac + 1% HAC in MeOH

0.5/2.5 92–105 Rice bran 2.8–272.3 (n = 
125, 98%)

Maize 0.3–17.9 (n = 125, 
43%)

[45]

Dry-cured meat products QuEChERS
SPE defatting (Captiva EMR-Lipid)

SPE (Easi-extract sterigmatocystin IAC)

LC-MS/MS
Gemini (150 mm × 4.6 mm, 5 µm)

0.02/0.06 114 0.10–3.93 (n = 250, 4%) [46]

Licorice 2 g sample, 20 mL ACN:water (84:16, v/v)

30 min UAE

QuEChERS (4 g MgSO4, 1 g NaCl, 1 g Na3Cit, 
0.5 g Na2HCit)

30 min MSPE [Fe3O4@PDA/MIL-101(Cr)]
Dried and reconstituted

LC-MS/MS

Acquity UPLC BEH C18 (100 mm 
× 2.1 mm, 1.7 μm)
5 mM NH4Ac + 0.1% NH3 in 
water/5 mM NH4Ac + 0.1% NH3 in 
MeOH

0.09/0.30 107–116 - [47]

10 g sample, 50 mL ACN:water (8:2, v/v)

60 min rotary shaking
Filtration, 2 mL PBS

LC-MS/MS

Betasil RP-18 (150 mm × 2.1 mm, 
5 µm)

Long-ripened Grana cheese 0.05/0.15 87–92 LOQ–6.9 (n = 107, 94%) [48]



Table 1. Analytical performance of methodologies developed for the determination of sterigmatocystin (STE) in food from 2021 to 2024 (continued)

Explor Foods Foodomics. 2024;2:687–706 | https://doi.org/10.37349/eff.2024.00059 Page 695

Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

SPE (R-Biopharm-Rhône IAC) elution 6 mL 
ACN

Dried and reconstituted

0.2% FA in water/0.2% FA in ACN

Pseudostellariae Radix ACN:water (8:2, v/v)

1 h shaking
dSPE (PSA + C18 + MgSO4)

LC-MS/MS

Acquity HSS T3 (100 mm × 
2.1 mm, 1.8 μm)

0.1% FA in water/0.1% FA in ACN

- - 1.5–69.6 (n = 26, 38%) [49]

Peanut butter, hazelnut 
butter, chocolate

5 g sample, 20 mL JSM FO 9704
15 min shaking

5 min centrifugation

LC-MS/MS 0.01–0.02/0.05–0.15 94–100 0.2–2.2 [50]

Cocoa 7.5 g sample, 18 mL 0.5% HAc in ACN:water 
(7:3, v/v), 3 g NaCl

60 min shaking
15 min frozen at –70°C

10 min centrifugation

LC-MS/MS

Titan C18 (100 mm × 2.1 mm, 
1.9 μm)

- - 2.4–3.3 (n = 18, 11%) [51]

Carob 1 g sample, 10 mL water, 10 mL 1% HAc in 
ACN

10 min UAE
10 min shaking, 1 g NaCl, 4 g MgSO4

Dried and reconstituted

LC-MS/MS

Titan C18 (100 mm × 2.1 mm, 
1.9 μm)

- - 0.15–0.18 (n = 22, 14%) [51]

Cheese 2.5 g sample, 5 mL 0.1% FA in ACN, 5 mL 
saturated MgSO4

30 min shaking
7 min centrifugation

Defatting, 4 mL heptane
5 min shaking

Dried and reconstituted

LC-MS/MS

Gemini C18 (100 mm × 3.0 mm, 
5.0 μm)
0.1% FA + 300 mg/L AF in 
water/0.1% FA + 300 mg/L AF in 
MeOH

0.01/0.04 100–106 0.08–4.99 (n = 11, 82%) [52]

LC-MS/MS
Acquity HSS T3 (100 mm × 
2.1 mm, 1.8 μm)

Goat, camel, and cow milk 1 mL sample, 1 mL 1% FA in ACN, 0.4 g 
MgSO4, 0.1 g NaCl

10 min centrifugation

- - LOQ–7.7 (n = 135, 14%) [53]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

0.1% HAc + 5 mM NH4Ac in 
water/0.1% HAc + 5 mM NH4Ac in 
MeOH

Cereal-based baby food 2 g sample, 10 mL JSM FO 9704

15 min shaking
5 min centrifugation

LC-MS/MS 0.02/0.07 100 0.02–0.50 (n = 85, 34%) [54]

Rice, peanut, maize, 
sorghum

5 g sample, 20 mL 1% HAc in ACN:water (8:2, 
v/v)

LC-MS/MS - - Peanut 0.1–30 (n = 53, 
40%)
Maize 0.1–12 (n = 142, 
26%)
Rice 0.1–2.2 (n = 23, 
48%)

Sorghum 0.1–2.5 (n = 
24, 12%)

[55]

Hazelnut kernels 25 g sample, 100 mL MeOH:water (8:2, v/v), 
5 g NaCl

3 min extraction

PBS dilution
SPE (Easi-Extract Sterigmatocystin IAC) 
elution 1.5 mL ACN
Dried and reconstituted

LC-FLD
ODS2 C18-300 (150 mm × 
4.6 mm, 3 μm)

120 mg/L KBr + 350 µL/L HNO3 in 
ACN:MeOH:water (10:15:75, v/v)

1.3/4.2 81–87 9–101 (n = 30, 5%) [56]

1 g herb sample, 5 mL 
water, 30 min shaking

5 mL 1% FA in ACN, 
2 g MgSO4, 1 g NaCl
1 h orbital shaking

15 min centrifugation
dSPE (C18, Z-sep+)

Dried and 
reconstituted
5 min centrifugation

5 mL ACN, 2 g 
MgSO4, 1 g NaCl

Herbs, herbal infusions

1 g infusion sample, 
50 mL hot water, 
15 min shacking

LC-MS/MS

Kinetex C18 (150 mm × 4.6 mm, 
2.6 μm)

5 mM NH4Ac in water:MeOH:HAc 
(94:5:1, v/v)/water:MeOH:HAc 
(2:97:1, v/v)

0.5–20/2.5–40 73–101 34–147 (n = 58, 19%) [57]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

5 min centrifugation

Dried and 
reconstituted

5 g malt sample, 2 g 
MgSO4, 1 g NaCl, 
15 mL ACN:water 
(75:25, v/v)

6 min centrifugation

d-SPE (MgSO4, C18)
Dried and 
reconstituted

Malt, beer

5 mL beer sample, 
5 mL ACN, 2 g 
MgSO4, 1 g NaCl

3 min UAE
5 min centrifugation

dSPE (MgSO4, C18)
Dried and 
reconstituted

LC-HRMS/MS

Kinetex Core-Shell F5 100 A (2.6 
µm)

0.1% HAc + 4 mM NH4Ac in 
water/0.1% HAc + 4 mM NH4Ac in 
ACN

5/12 90–97 LOQ (n = 47, 0%) [58]

Rice bran 20 g sample, 80 mL MeOH:water (8:2, v/v)
15 min UAE

5 min centrifugation
DLLME (CHCl3/water)

5 min centrifugation

Dried and reconstituted

LC-MS/MS
Accucore C18 (100 mm × 2.1 mm, 
2.6 μm)

2.5/5.0 99 LOQ (n = 24, 0%) [59]

Milled rice 5 g sample, 20 mL 1% FA in ACN:water (8:2, 
v/v)
90 min shaking

LC-MS/MS

Synergi Hydro-RP (100 mm × 
3 mm, 2.5 µm)

1% FA and 10 mM NH4Ac in 
water/MeOH

0.03/0.09 80 LOQ–7 (n = 200, 74%) [60]

Dairy products 2 g sample, 8 mL 2% FA in ACN

30 min UAE
5 min centrifugation

SPE (Captiva EMR-lipid)

Dried and reconstituted

LC-MS/MS

Shiseido C18 (100 mm × 2.1 mm, 
3 μm)

0.1% FA in water/0.1% FA in 
MeOH

0.005/0.020 73 LOQ (n = 76, 0%) [61]
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Sample Extraction Determination LOD/LOQ
(μg/kg or µg/L)

Recovery 
(%)

Concentration levels 
(μg/kg) (number of 
samples, detection rate)

Ref

Milling oats 5 g sample, 20 mL 1% HAc in ACN:water (8:2, 
v/v)

90 min shaking
S-µSPE (MycoSpin 400)

Dried and reconstituted

LC-MS/MS

Eclipse Plus C18 (100 mm × 
2.1 mm, 1.8 µm)
0.1% HAc + 5 mM NH4Ac in 
water/0.1% HAc + 5 mM NH4Ac in 
MeOH

-/1 95 1–7 (n = 281, 2.3%) [62]

Garlic 5 g sample, 20 mL 1% HAc in ACN:water (8:2, 
v/v)
Vortex shaking

LC-MS/MS

Gemini C18 (150 mm × 4.6 mm, 
5 μm)

0.05/0.14 90 3–32 (n = 36, 100%) [63]

Coix seed 5 g sample, 20 mL 1% FA in ACN:water (7:3, 
v/v)

20 min vortex shaking

5 min centrifugation

LC-HRMS
CORTECS C18 (100 mm × 
2.1 mm, 1.6 μm)

0.1% FA + 1 mM NH4Ac in 
water/0.1% FA + 1 mM NH4Ac in 
MeOH

-/1 76–89 1–51 (n = 77, 30%) [64]

-: not indicated. SPE: solid-phase extraction; LOD: limit of detection; LOQ: limit of quantification; LC: liquid chromatography; MS: mass spectrometry; HMON@MIP: hollow-structured microporous 
organic networks coated with molecularly imprinted polymers; FD: fluorescence; GO-FAM-FRET: graphene oxide-aptamer-FD resonance energy transfer; QuEChERS: quick, easy, cheap, 
effective, rugged, and safe; MSPE: magnetic SPE; DAD: diode array; UAE: ultrasound-assisted extraction; dSPE: dispersive SPE; SiO2@mPMO-IL(im)2: ionic liquid-functionalized mesoporous 
multipod silica; UHPLC: ultra-high-performance LC; PSA: primary secondary amine; ZIFs: zeolitic imidazolate frameworks; COF@MIP: MIPs-coated covalent organic framework nanoflowers; 
DLLME: dispersive liquid-liquid microextraction; HRMS: high-resolution MS; ELISA: enzyme-linked immunosorbent assay; ACN: acetonitrile; IAC: immunoaffinity column; TFA: trifluoroacetic acid; 
LLE: liquid-liquid extraction; FA: formic acid; AF: ammonium formiate; TEA: triethylamine; SIDA: stable isotope dilution assay; S-µSPE: spin micro SPE; PBS: phosphate buffer saline; FLD: 
fluorescence detector; MHNTs@MIP: magnetic halloysite nanotubes coated molecular imprinted polymer

zearalanol, and alternariol monomethyl ether were detected in camel, cow, and goat milk (36 analyzed mycotoxins) [53]; and 3-acetyl-deoxynivalenol, 15-acetyl-
deoxynivalenol, fusarenone-X, patulin, deepoxy-deoxynivalenol, tenuazonic were also detected in fresh and dried mango, litchi and longan fruits, and processed 
products (44 analyzed mycotoxins) [34].

One of the most relevant and recent innovations in the development of methodologies for the multiresidue analysis of mycotoxins focuses on the use of high-
resolution MS (HRMS). This technique allows not only the unambiguous identification of the mycotoxins present in food samples but also allows the non-targeted 
analysis of the obtained data, enabling the identification of additional compounds. In this sense, LC-HRMS/MS has been applied in the determination of STE in food 
samples, providing extreme selectivity and high sensitivity. Some recent examples include the simultaneous determination of legislated and emerging mycotoxins 
in rice and wheat grains [37], malted barley and beer [58], and coix seeds [33], using quadrupole-time of flight MS detectors. Moreover, LC-HRMS/MS approaches 
enable the identification of emerging mycotoxins and unknown compounds without analytical standards in current and retrospective analyses, especially using 
Orbitrap mass spectrometers. This includes the determination of STE and other mycotoxins in coix seeds [64], as well as in edible oil, soy sauce, and bean sauce 
[43].
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The use of immunoassays, such as enzyme-linked immunosorbent assays (ELISAs), is a valuable 
alternative or complementary approach to LC-MS/MS, offering a rapid and cost-effective screening tool 
suitable for high-throughput analysis. However, it may be less specific and sensitive compared to 
chromatographic techniques. In the last decades, ELISA has been widely employed for determining 
mycotoxins in food [65]. Recently, ELISA has been widely employed for the determination of STE, AFB1, 
ochratoxin A, deoxynivalenol, and T-2/HT-2-toxin in soy, oat, almond, and coconut-based milk alternatives. 
Significant sample matrix interferences were observed even with a 1:8 dilution, compromising both result 
accuracy and detection limits [42]. With significant technological advancements in LC-MS instrumentation 
enabling highly sensitive multitoxin analysis, ELISA is now losing its prominent position. Nevertheless, 
rapid and cost-effective ELISA tests still hold great potential as a screening tool to reduce the number of 
samples that need to be analyzed by reference official methodologies.

Moreover, cutting-edge methodologies have been developed, such as the graphene oxide-aptamer-FD 
resonance energy transfer (GO-FAM-FRET) one-step FD turn-on aptasensor for the one-step detection of 
STE in chili and pepper, with insignificant interferences from salts and detergents and negligible cross-
reactivity with other mycotoxins [25].

Despite the great advancements in analytical methodologies, challenges remain in ensuring consistent 
and reliable STE detection across various food products. Matrix effect may complicate the accuracy and 
precision of LC-MS/MS measurements. Thus, efforts to standardize sample preparation protocols and 
improve extraction efficiencies are ongoing to address these issues. Quick, easy, cheap, effective, rugged, 
and safe (QuEChERS) based methodologies have been validated for the multianalyte determination of 
mycotoxins, including STE, in a wide variety of food samples, such as mango, litchi, longan, and their 
products [34], black, green, and Oolong teas [29], Pseudostellariae Radix [49], and dry-cured meat products 
[46]. STE extraction is carried out using ACN:water or methanol:water buffers, usually accelerated by using 
ultrasound-assisted extraction (UAE) [27], followed by a dispersive solid-phase extraction (dSPE) to clean 
up the extracts, using MgSO4 [35], C18 [29], MgSO4 and C18 [58], MgSO4, C18, and primary secondary amine 
(PSA) [49], or even specifically dedicated sorbents like an ionic liquid-functionalized mesoporous multipod 
silica [SiO2@mPMO-IL(im)2] [32].

The use of SPE was frequently employed for a more selective extraction of STE from extracts using 
immunoaffinity columns (IACs), such as Easi-extract sterigmatocystin (R-Biopharm AG, Pfungstadt, 
Germany) specific for STE extraction [46, 48, 56], Aflaking (Horiba, Kyoto, Japan) [23] and AflaTest WB SR+ 
(VICAM, Watertown, MA, USA) [42] specific for aflatoxin related mycotoxins, and Isolute Myco (Biotage, 
Uppsala, Sweden) [28] and 11+Myco MS-PREP (R-Biopharm AG, Pfungstadt, Germany) [36] for a generic 
extraction of mycotoxins. Conventional SPE cartridges have also been proposed for clean-up purposes, such 
as Oasis PRiME HLB (Waters Corporation) [40, 43] and Supelclean Envi-carb (Merck KGaA, Darmstadt, 
Germany) [31]. Captiva EMR-lipid (Agilent Technologies) SPE columns were employed for lipid removal of 
fatty samples, such as dry-cured meat [46] and dairy products [61]. Additionally, specifically synthesized 
solid sorbents were also employed for mycotoxin extraction, such as hollow-structured microporous 
organic networks coated with molecularly imprinted polymers (HMON@MIP) [24], and MIPs-coated 
covalent organic framework nanoflowers (COF@MIP) [44] for the specific enrichment of STE and aflatoxins 
from cereal extracts.

Magnetic SPE (MSPE) has been proposed by many authors to improve the cleaning-up of sample 
extract in QuEChERS-based methodologies, using Fe3O4-based magnetic sorbents coated with MIPs [27], 
zeolitic imidazolate frameworks (ZIFs) [37], and polydopamine/metal-organic framework [PDA/MIL-
101(Cr)] [47] for the determination of STE in wheat, rice, and licorice samples, respectively. Moreover, 
magnetic halloysite nanotubes were also proposed as magnetic sorbents coated with a specific MIP for the 
selective enrichment of STE in wheat samples [30].

Finally, other minority approaches have been employed for the clean-up of samples extracts, such as 
centrifugation-assisted SPE using selective MycoSpin 400 (Romer Labs, Tulln, Austria) cartridges in survey 
of mycotoxins made in Arecae semen [41] and milling oats [62], and dispersive liquid-liquid 
microextraction (DLLME) with chloroform for multi-mycotoxin determination in rice bran [59].



Explor Foods Foodomics. 2024;2:687–706 | https://doi.org/10.37349/eff.2024.00059 Page 700

Concentration levels and detection rate of STE in food
Occurrence data of STE in food raises an important issue in food safety due to its carcinogenic potential. 
Data from scientific publications from the year 2021 to 2024 are shown in Table 1. As can be seen, the 
presence of STE in foodstuffs has been reported in a limited number of publications. Figure 2 shows the 
concentration levels (on a logarithmic scale), classified in the food categories cereals and cereal-based 
products (in green); herbs, seeds, and spices (in orange); and miscellanea (in blue; including cocoa, coffee, 
cheese, honey, meat products, nuts, garlic, and others). Results show that concentrations of STE in cereal 
and cereal-based products range from a few μg/kg up to more than 250 μg/kg. The highest level of STE 
(272.3 μg/kg) was detected in rice bran from Southeast Asia [45], while the lowest levels were detected in 
cereal products, such as noodles (0.01–0.8 μg/kg) [23], cereal-based baby food (0.02–0.5 μg/kg) [54], and 
bread (0.02–0.2 μg/kg) [23]. STE was also detected in maize (0.1–17.9 μg/kg) [24, 45, 55], oats (1–7 μg/kg) 
[62], brown rice (0.35–5.7 μg/kg) [23], white rice (0.02–2.2 μg/kg) [23, 37, 55], and wheat (0.05–2.2 μg/kg) 
[23]. Overall, the STE concentration levels in cereals and cereal-based products show that the highest levels 
were found in bran or non-treated cereals, whereas products like polished rice or cereal-based products 
presented the lowest levels. The comparative analysis of mycotoxin levels in whole cereals versus cereal-
based products underscores the importance of food processing and quality control in reducing mycotoxin 
contamination. While whole cereals are more prone to higher mycotoxin contamination due to direct 
exposure and favorable conditions for fungal growth, cereal-based products benefit from processes that 
reduce mycotoxin levels, making them generally safer for consumption.

Figure 2. Decimal logarithm of maximum concentration levels of sterigmatocystin in cereals and cereal-based products (green 
bar), herbs, seeds, and spices (orange bar), and miscellanea (blue bar). The numbers on the bars indicate the concentration 
(μg/kg)

Regarding the category herbs, seeds, and spices, the highest level of STE (34–147 μg/kg) was found in 
herbs and herbal infusions [57] and the lowest levels were detected in tea (0.13–0.48 μg/kg) [29]. STE 
levels were found also in Pseudostellariae Radix (1.5–69.6 μg/kg) [49], coix seed (1–51 μg/kg) [33, 64], 
sesame oil (LOQ–2.9 μg/kg) [43], and Arecae semen (LOQ–2.2 μg/kg) [41].

In the miscellanea category, data showed that high concentrations of STE were found in nuts such as 
hazelnut (0.02–101 μg/kg) [50, 56], peanuts (0.1–30 μg/kg) [55], and garlic (3–32 μg/kg) [63]. STE was 
also found in honey (0.4–18.7 μg/kg) [35], cocoa (2.4–11 μg/kg) [38, 51], milk (LOQ–7.7 μg/kg) [53], 
cheese (0.08–4.99 μg/kg) [52, 61], meat products (0.1–3.93 μg/kg) [46], coffee (0.08–0.87 μg/kg) [31], and 



Explor Foods Foodomics. 2024;2:687–706 | https://doi.org/10.37349/eff.2024.00059 Page 701

carob (0.15–0.18 μg/kg) [51]. In cheese, contamination occurs particularly on the surface after fungal 
deterioration during ripening and storage.

On the other hand, the frequency of detection of STE is influenced by food type, geographical region, 
and the testing methods used. Cereals and grains show the highest prevalence, particularly in regions with 
conducive climates for fungal growth. As can be observed in Figure 3, no differences were observed in the 
frequency of detection between food categories (cereal and cereal-based products 2.3–98%, herbs, seeds, 
and spices 4–83%, and miscellanea 1.5–100%). The highest detection frequency of STE (100%) was found 
in garlic [63], followed by rice bran (98%) [45], and cheese (82–94%) [48, 52].

Figure 3. Detection rate of sterigmatocystin in cereals and cereal-based products (green bar), herbs, seeds, and spices (orange 
bar), and miscellanea (blue bar). Legend shows the number of analyzed samples

Conclusions
The ongoing development and refinement of analytical methodologies are crucial for maintaining the safety 
of the food supply. Collaborative efforts between researchers, regulatory bodies, and industry stakeholders 
are essential to enhance detection capabilities, standardize testing protocols, and ensure effective 
regulatory enforcement. Additionally, continued research into the occurrence, distribution, and toxicity of 
STE will inform risk assessments and guide the development of more targeted and effective mitigation 
strategies.

In conclusion, while significant progress has been made in the analytical determination of STE and 
other mycotoxins in food, continued advancements are necessary to address existing challenges and ensure 
the safety of the food supply. Enhanced analytical techniques, standardized protocols, and rigorous 
monitoring are critical components of an integrated approach to managing STE contamination and 
assessing the risk assessment of dietary exposure in populations. By prioritizing these efforts, we can 
protect public health and maintain consumer confidence in the safety of our food systems.
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