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Abstract
Steroid-resistant asthma (SRA) is clinically significant, approximately 10–15% of individuals with asthma 
do not exhibit a positive response to standard treatments. While this subset represents a relatively small 
proportion of asthma patients, severe refractory asthma places a substantial burden on healthcare 
resources and contributes significantly to illness and death. Additionally, the quality of life of patients is 
greatly affected by the adverse effects of excessive steroid consumption, there is a need to identify 
individuals who do not react well to steroid medication and the ongoing difficulties of these asthma 
patients in controlling their diseases, which have a large socio-economic impact. The current short article 
reviews the common molecular mechanisms responsible for steroid resistance in asthma patients.
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Introduction
According to the Global Initiative for Asthma (GINA), asthma is defined as “a heterogeneous disease, usually 
characterized by chronic airway inflammation with a history of respiratory symptoms such as wheeze, 
cough, shortness of breath, and chest tightness that vary over time and in intensity, together with variable 
expiratory airflow limitation” [1]. The prevalence rates for adults wheezing are 8.6%, 4.3% for clinical/
treated asthma, and 4.5% for doctor-diagnosed asthma worldwide [2]. In 2019, 262 million people were 
affected with asthma, and 455,000 deaths were seen [3]. According to the Institute for Health Metrics and 
Evaluation (IHME), 0.82% of total deaths globally are due to asthma, 1.18% of years lived with disability 
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(YLDs), and 0.85% disability-adjusted life years (DALYs). In India asthma accounts for 2.12% of total 
deaths, 0.81% of YLDs, and 1.25% of total DALYs [4].

The common treatment for inflammatory diseases such as asthma is steroids and the burden of asthma 
morbidity and mortality is increasing globally due to 5% to 10% of asthma patients, who have greater 
severity of the disease and insensitivity to high doses of steroids, described as steroid-resistant asthma 
(SRA) which accounts for 50–80% of all healthcare-associated expenses [5–9]. In 1968, the first instances of 
glucocorticoid (GC) resistance in asthma were observed and reported in six patients diagnosed with asthma 
who had poor disease control and did not respond clinically or experience a decrease in blood eosinophilia 
despite receiving large doses of systemic GCs [10]. SRA is defined as “less than 15% improvement in 
baseline forced expiratory volume in one second (FEV1) even after two weeks of an adequate dose of 
prednisolone (40 mg/day)” [11, 12]. The clinical diagnosis of SRA is based on the history, and pulmonary 
function test with respect to the steroid dose intake to reduce the symptoms. GCs’ primary purposes are to 
prevent and regulate the emergence of inflammation. Several mechanisms that may vary between patients 
who can cause resistance to the anti-inflammatory actions of GCs at the molecular level. Host and 
environmental factors like genetic predisposition, modifications in steroid receptors and/or their ligands, 
their binding ability, increased expression of transcription factors involved in the inflammatory process, 
neutrophilia, immunomodulation, respiratory virus and bacterial infections, cigarette smoking, air 
pollution, allergen exposure, a high-fat diet, and/or obesity can lead to SRA, each factor or interaction of 
host and environment factors interact with different molecular pathways leading to the severity of the 
disease (Figure 1) [11, 13, 14].

Figure 1. Graphical representation of SRA phenotype. The external factors (bacterial and viral infection, particulate matter 
generated from the construction, transportation, and vehicles, indoor air pollution like cooking, cooker, and smoking, volcano 
eruption, occupational like asbestos and silica) and the internal factors responsible the steroid insensitive phenotype. Th2: T 
helper type 2

Due to its heterogeneity, the term “asthma” should be used to refer to a variety of phenotypes. Two 
distinct endotypes can be characterized: allergic asthma, atopic which is triggered by Th2 cell responses, 
and non-allergic, non-atopic (non-Th2) asthma, which is triggered by other immune cells such as 
neutrophils [15–18]. SRA is characterized by a lack of response to corticosteroid therapy, leading to 
persistent symptoms and exacerbations. The complex molecular mechanisms underlying steroid resistance 
play a pivotal role in disease progression and treatment outcomes. In 1968, SRA was first reported in six 
patients who did not respond to large doses of oral gluco-corticosteroids with poor disease control [11]. 
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Later, detailed investigations revealed that the poor response to steroid treatment arises from the 
comparatively lower efficacy of steroids in exerting their anti-inflammatory effects compared to their 
endocrine or metabolic functions showing a low eosinopenic response [19, 20]. SRA is linked to the non-
eosinophilic endotypes of asthma, whereas neutrophilic asthma is characterized by the activation of innate 
immune responses, specifically, this involves the triggering of Toll-like receptor 2 (TLR2) and TLR4 
responses, as well as nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 
3 (NLRP3), inflammasome, and interleukin (IL)-1β responses [16, 21]. Anti-inflammatory corticosteroids, 
like GCs, are the primary treatment for patients with asthma, which can be administered orally or through 
inhalation [22]. The inhaled corticosteroids (ICSs), which are synthetic and lipophilic, are absorbed into the 
tissue of the airways upon inhalation, where they bind and activate GC receptors (GRs). The GRs bind to GC 
response elements (GREs) in turn which can regulate gene expression, thereby exerting an anti-
inflammatory effect by interacting with transcription factors like nuclear factor kappa B (NF-κB), activating 
protein-1 (AP1), and leucine zipper. NF-κB is a crucial regulator of immune genes and pro-inflammatory 
cytokines, and evidence suggests that GR can reduce inflammation by inhibiting NF-κB activity (Figure 2) 
[23–25]. GR inhibits the phosphorylation of mitogen-activated protein kinase (MAPK) proteins, which is 
essential for their activation [26]. GR indirectly inhibits protein synthesis by decreasing RNA stability, 
which encodes cyclooxygenases [26]. GR is a homo-dimer that belongs to the nuclear receptor type 1 family 
with a common structure that consists of a highly conserved DNA-binding domain (DBD), activation 
function-1 (AF-1) located in the N-terminal region of the receptor, ligand binding domain (LBD) situated at 
the C-terminal region of the receptor, and a ligand-dependent AF-2, which is regulated by binding of GC 
hormones and co-regulatory proteins [27, 28]. The human GR gene consisting of nine exons is located on 
chromosome 5q31.3 with the protein-coding regions between exons 2 and 9 [29]. The human GR gene has 
three different promoters: 1A, 1B, and 1C, and the GR gene contains multiple GC boxes but does not contain 
TATA or CCAAT boxes [30]. Four distinct isoforms, GRα, GRβ, GRγ, and GRδ, are produced by alternative 
splicing of the primary transcript [pre-messenger RNA (mRNA)] of GR among these GRα and GRβ are 
dominant forms. The only isoform that is physiologically active is GRα and translocated to the cytoplasm, it 
is widely expressed in tissues and facilitates the genomic action of GCs. GRβ is ineffective in binding to GC 
due to the non-functional LBD, which instead remains inside the nucleus where it acts as a dominant 
negative inhibitor [31–34]. Studies have shown that GRβ expression is increased by tumor necrosis factor 
alpha (TNF-α) and IL-1, which may interfere with the binding of GR to DNA that influences the GC 
sensitivity and formation of the GRβ/GRα heterodimer weakens the functionality of GRα. GRβ has been 
shown to have a potential role in GC resistance in various diseases [32]. The GR protein structure is similar 
to the nuclear receptor family and consists of three primary domains: 1) a variable N-terminal domain 
(consisting of 421 amino acids), 2) a central DBD (consisting of 65 amino acids), and 3) a C-terminal 
domain (consisting of 250 amino acids) and both the DBD and the LBD contain the nuclear localization 
motif [27]. The GCs have three primary mechanisms, which include: 1) the binding of heterodimer 
receptors to the GRE for the activation of transcription, 2) GR heterodimer binding to the negative GRE 
which inhibits the target gene expression, and 3) transactivation or trans-repression by physical interaction 
with the other transcription factors [35]. The GR translocates into the nucleus when it binds with the 
ligands. GRα stays inside the cytoplasm through its interaction with various proteins like immunophilin 
p23, p59, heat shock protein 90 (Hsp90), and Hsp70. When the ligand binds to the receptor the protein 
complex separates, exposing the signals of nuclear localization and changing the shape of the receptors. As 
a result, the GR is translocated through nuclear pores into the nucleus [36, 37]. The GR protein undergoes 
post-translational modifications which modulate the receptor activity. GRα has a basal level of 
phosphorylation and increases in response to the GC binding and has six known phosphorylation sites 
(serine 113, 141, 203, 211, 226, 404) located on the N-terminal binding domain of the receptor [38]. 
Phosphorylation at different locations has different effects on the response of gene activity. The 
phosphorylation plays another post-translational modification of GR, which is the ubiquitination and 
proteasomal degradation, to regulate the turnover of GR. The GR, activated hormone-bound receptor enters 
the nucleus where it dimerises and the DBD with the zinc finger motif binds to the GRE which brings the 
conformational changes in the GR and facilitates the GR to interact with the other coactivators like p300, 
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cyclic adenosine monophosphate response element binding protein, Switch/Sucrose Nonfermentable 
(SWI/SNF), steroid receptor coactivator-1, and nuclear receptor coactivator-1 (NCoA-1) activates 
transcription of the genes by chromatin unwinding [34, 35]. The anti-inflammatory response is generated 
by corticosteroids generated by APs like secretory leuko-protease inhibitors, annexin-1, inhibitor of NF-κB 
alpha (IκBα), and IL-10. The endogenously produced GC is involved in the various physiological processes 
in the cells like epithelial cells, immune cells, neurons, cardiomyocytes, and hepatocytes. GC regulates 
multiple pathways like inflammation, amino acid metabolism, carbohydrate metabolism, and programmed 
cell death [35, 38]. Mechanisms associated with steroid resistance comprise both genetic as well as 
acquired factors from the environment of the individual that affect steroid sensitivity [39]. Observational 
study shows that hospitalizations increase the time of greater air pollution, which is in accordance with the 
fact that many asthma patients occasionally experience exacerbations [40]. Air pollution increases the 
oxidative stress in the lungs which leads to inflammation and enhances asthma symptoms [41]. Evidence 
from epidemiological research typically supports a link between increased usage of bronchodilators like 
short-acting beta agonists (SABAs) and maintenance drugs like ICS and higher exposure to air pollution 
[42]. Steroid resistance in asthma patients is inherited from one generation to another, which indicates that 
hereditary factors determine corticoid sensitivity [43]. Several pathways and mechanisms have been 
investigated in ten years to elucidate the molecular causes of steroid resistance; however, the pathways 
contributing to SRA were discussed here. The study suggests that 13-hydroxy octadecadienoic acid, a 
metabolite of omega-6 fatty acids causes symptoms of severe asthma in mice and is unresponsive to 
treatment with steroids [42, 44]. This finding is especially important since it has demonstrated that asthma 
patients’ serum has higher levels of 13-hydroxy octadecadienoic acid than controls. This suggests that 13-
hydroxy octadecadienoic acid is an internal factor that leads to steroid resistance in patients with asthma. 
Therefore, nutritional supplementation may potentially play a significant impact in the development of 
steroid-resistant traits in asthma patients. The common molecular and cellular mechanisms responsible for 
steroid resistance in asthma were discussed here [45].

Figure 2. Molecular mechanism of steroid resistance in asthma. PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and 
tensin homologue; AKT: protein kinase B; MyD88: myeloid differentiation primary response 88; IRAK-1: IL-1 receptor-associated 
kinase 1; HDAC: histone deacetylase; JNK: c-Jun N-terminal kinase
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Impaired GR binding, nuclear translocation, and elevated GRβ expression 
in asthma
Studies have shown that IL-2, IL-4, and IL-13 are upregulated in the airways of SRA patients, physiologically 
this cytokine combination reduces the GR binding affinity and nuclear translocation in the inflammatory 
cells and T cells. Serine 226 on the GR is phosphorylated by IL-2, IL-4, IL-5, and IL-13, while p38MAPK also 
induces the phosphorylation of GR which inhibits nuclear translocations [10, 43]. Studies have shown that 
the p38MAPK inhibitor enhances the response to steroids in peripheral blood mononuclear cells (PBMCs) 
and alveolar macrophages of patients with severe asthma [46]. Additionally, the phosphorylation of GR at 
serine 226 by TNF-α-induced JNK inhibits its binding with GRE in PBMC that are isolated from patients with 
severe asthma [47, 48]. MAPK phosphatase-1 (MKP-1) expression was shown to be significantly 
downregulated in the alveolar macrophages of individuals who had a poor response to steroids and to be 
adversely correlated with p38MAPK activity. Corticosteroids and long-acting beta agonists (LABAs), such as 
formoterol, can stimulate the MKP-1 and protein phosphatase 2A (PP2A), endogenous inhibitors of the JNK 
and p38MAPK pathways, which counteracts the inefficiency of GR caused by phosphorylation [10, 49]. 
Elevated levels of inducible nitric oxide synthase (iNOS) have been observed in patients with severe asthma 
and smoker’s nitric oxide has been shown to alter the ligand binding site of GR by nitrosylation of the 
Hsp90 interaction site, which prevents GR from moving into the nucleus [50, 51]. It needs to be investigated 
whether or not this applies to people who are steroid-resistant. Microbial superantigens like staphylococcal 
enterotoxins, which also boost GRβ expression, may be responsible for some patients’ steroid resistance 
when they have severe non-allergic asthma [10]. In patients with GC resistance, the expression of GRβ, a 
dominant negative isoform of GR, is increased in PBMC, lymphocytes, and neutrophils [31].

Defective histone acetylation and PI3K/HDAC signaling pathway
In patients with steroid resistance and severe asthma, there has been literature that suggests that HDAC2 
expression is reduced in alveolar macrophages, airways, and peripheral lungs [52, 53]. The formation of 
peroxy-nitrite due to nitrative and oxidative stress can result in the nitration of tyrosine residues on 
HDAC2, leading to its ubiquitination, degradation, and subsequent inactivation [54, 55]. Additionally, 
oxidative stress can trigger the phosphorylation of PI3K-δ, which can further phosphorylate and inactivate 
HDAC2 (Figure 2) [56]. The clinical relevance was confirmed in a small group of subjects the steroid anti-
inflammatory benefits were found to be reduced, and their adverse effects were also diminished when 
HDAC2 was inactivated [39]. This was linked to GR’s failure to acetylate lysine residue as a result that 
prevents the transactivation of genes, which is necessary for both the anti-inflammatory effects and the 
adverse effects of GCs [39]. HDAC2 is called upon to deacetylate chromatin and alter its structural 
properties, hence suppressing gene expression. The isoform of PI3K-δ is a critical determinant of steroid 
resistance in asthma patients, PI3K-δ phosphorylates the AKT, and this phosphorylated AKT induces the 
HDAC2 gene to undergo phosphorylation and inactivation. At the peripheral lung region and the alveolar 
macrophages of patients with severe asthma and SRA, HDAC2 is also expressed to a lesser degree. PI3K 
plays a significant function in this. As a result, HDAC2 can be selectively upregulated and activated by 
inhibiting PI3K. The cell’s endogenous PI3K inhibitor, known as PTEN, is a tumor suppressor. PTEN 
overexpression results in decreased PI3K activity and increased nuclear HDAC2 expression (Figure 2) [57].

Exosomes
Cells produce extracellular vesicles called exosomes that contain metabolites, proteins, lipids, and nucleic 
acids. They influence different facets of cell biology act as a mediator of adjacent and distant intercellular 
communication and affect cell biology. Exosomes produced by the airway epithelium in response to 
ovalbumin (OVA) are powerful mediators that increase aryl hydrocarbon receptor (AHR) and cause 
macrophage, neutrophil, and eosinophil infiltration or activation in the airways [58]. Recent research has 
shown that neutrophil-derived exosomes can increase the migration and proliferation of airway smooth 
muscle cells in response to lipopolysaccharide (LPS) stimulation, which may contribute to airway 
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remodeling in asthma [59]. According to this research, exosomes may play a significant role in the 
development of neutrophilic asthma [59].

NLRP3-inflammasome
The NLRP3-inflammasome plays a vital role in the innate immune system’s response to microbial infection 
and cellular injury by promoting activating caspase-1 and the release of pro-inflammatory cytokines IL-1 
and IL-18. In neutrophilic asthma, the expression of NLPR3 and caspase activity increases, and higher levels 
of IL-1β protein in their sputum are observed. The neutrophil chemo-attractants IL-8 and IL-1β were found 
to be correlated with SRA which leads to the IL-1β-dependent inflammatory response [60]. Recent studies 
have shown that asthma patients with the clinical indicators of severe SRA exhibit elevated levels of IL-1β 
and NLPR3 mRNA expression in their sputum samples [61]. A correlation was seen between airway 
obstruction and neutrophil occurrence with the IL-1β and NLPR3 expression. Another group of researchers 
has shown the obesity-driven SRA and NLRP3-inflammasome relation, which shows the upregulation in the 
gene expression of the NLPR3 and nucleotide oligomerization domain 1 (NOD1) [62]. Individuals with 
asthma who were not obese were fed saturated fatty acids-rich food. Following 4 h of eating, there was an 
observed elevation in neutrophils, TLR4, and NLRP3 expression. Consequently, the NLRP3-inflammasome 
plays a vital role in regulating the IL-1β pathway in patients with SRA [63].

Cellular mechanisms of SRA
Wenzel [16] classified asthma patients with neutrophilic inflammation and obesity-induced asthma as 
exhibiting non-Th2/type 2 asthma (Figure 2). The chemokine C-X-C motif chemokine ligand 8 (CXCL8, IL-
8), a strong chemoattractant involved in dragging the neutrophils, was also reported to be present in higher 
concentrations in asthma patients’ sputum [64]. Asthma severity was associated with an increase in the 
production of IL-8 and IL-17. The studies have shown that the IL-17A mRNA expression produced from Th7 
was elevated in the sputum of asthma patients [64]. IL-17, the pro-inflammatory cytokine, guides the 
neutrophil-predominant phenotype which leads to steroid-refractory asthma [65]. The preclinical model 
studies show that the adoptive transfer of Th17 cells demonstrates severe airway neutrophilia and airway 
hyper-responsiveness compared to Th2 cells and is much more resistant to corticosteroid therapy [66]. In 
response to infections, tissue, or organ damage, the innate immune system activates neutrophils which 
migrate to the site of injury, where they aggregate to form neutrophil extracellular traps (NETs). According 
to Brinkmann et al. [67], the concept of unique neutrophil cell death, or “NETosis”, first emerged in 2004. 
According to reports, NET formation and autophagy are elevated in the peripheral blood cells, broncho 
alveolar lavage (BAL) fluids, and sputum granulocytes of allergic asthma patients [66–68]. NETosis has 
been shown to promote airway blockage, harm the alveolar-capillary network, and disturb the host cellular 
matrix, all of which contribute to lung disease [64]. Recently, it has been suggested that the development of 
NETs in asthma results in steroid resistance situations via an IL-17 [69]. The neutrophilic cytoplasts cause 
the Th17 cell-mediated inflammation in the mouse model, as shown by Krishnamoorthy et al. [69]. Patients 
with severe asthma demonstrated elevated neutrophilic cytoplast and NET levels, which were positively 
correlated with the lungs’ IL-17 levels. Therefore, it is crucial to determine whether neutrophilic cytoplasts 
and NETs are responsible for the steroid-refractory asthma phenotype [70]. Leukotriene-B4 (LTB4) and 
respiratory infections induce airway neutrophilia. LTB4, a pro-inflammatory lipid mediator, is produced 
through the metabolism of arachidonic acid which has an anti-apoptotic effect on the neutrophils [71]. GCs 
increase the longevity of the neutrophils as well as the LTB4, reports have shown that increased LTB4 
levels in nasal, serum, and BAL fluid samples when medicated with corticosteroids in asthma patients [71, 
72]. Respiratory infections like Chlamydia pneumoniae have a serious impact on asthma having frequent 
exacerbations along with neutrophilia which makes the patient steroid-resistant [73]. Clinical studies have 
shown a common association between the presence of Haemophilus influenzae and the development of IL-
17-driven neutrophilia in the airways of asthma patients [74]. Infections induced by viruses increase the 
severity of the disease which leads to an elevation in the infiltration of mixed immune cells and a significant 
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reduction in the FEV1, which leads to the patient being incompetent to respond to the corticosteroids 
(Figure 1) [75, 76]. Group 2 innate lymphoid cells (ILC-2), the bronchial epithelial cells release alarmins like 
IL-33, IL-25, and thymic stromal lymphopoietin (TSLP) upon stimulated by allergens, bacteria, viruses, or 
fungi that induces the activation of ILC-2 which triggers the type 2 immune response progressively and also 
release excessive quantities of cytokines including IL-5 and IL-13 that, respectively, cause severe 
eosinophilic inflammation and airway hyper-reactivity [77–80]. The preclinical studies reported from the 
steroid resistance murine model of asthma established the connection between the TSLP-signal transducer 
and activator of transcription 5 (STAT5) axis [81]. They have determined that IL-7 may be a moderator of 
corticosteroid sensitivity because it activates the STAT5 pathway, which increases the production of the 
anti-apoptotic proteins B-cell lymphoma-2 (Bcl-2) and Bcl-extra-large (Bcl-xL) and protects cells from 
apoptosis. Because IL-7 promotes the STAT5 pathway, which raises the synthesis of the anti-apoptotic 
proteins Bcl-2 and Bcl-xL and shields cells from apoptosis, they have concluded that IL-7 may be a 
moderator of corticosteroid sensitivity. The TSLP, a cytokine released from the epithelial cells, which is 
regulated by the ligand IL-7Rα induces the steroid resistance condition in ILC-2.

Conclusion
SRA shows a complex and heterogeneous phenotype, the exact mechanism of resistance to steroids is not 
elucidated completely. Infection-induced exacerbation, bacterial and viral respiratory infections, a high-fat 
diet, and obesity have been associated with steroid resistance in asthma. Understanding molecular and 
cellular mechanism pathophysiology of the disease phenotype enables to discover the new therapeutic 
approaches and the development of effective treatments [82–84].
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