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Abstract
A very new and highly specialized category of radiotracers that is still growing is radiolabeled peptides. 
Radiolabeled peptides, or radiopeptides, are powerful elements for diagnostic imaging and radionuclide 
therapy. These laboratory-manufactured peptides have gained attention due to their unique properties. The 
tiny structure of these peptides compared to proteins and antibodies makes them favorable regarding their 
availability through simple synthesis from amino acids, easy uptake by receptors on cancer cells, and high 
specificity and affinity for high-quality and accurate radio imaging. This study highlighted the potential of 
technetium-99m-labeled peptides in advancing diagnostic capabilities in directed research in Latin 
America.
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Introduction
In the early 2010s, Bolzati et al. [1, 2] reviewed the development of technetium-99m (99mTc)-labeled 
radiopharmaceuticals, especially radiopeptides, in terms of their usage in radiotherapy and tumor imaging. 
The metastable nuclear isomer of Tc, 99mTc, has a half-life (T½) of 6 h and emits gamma rays with 140 keV 
photon energy. The energy of 99mTc rays is sufficient to penetrate the biological tissues, however, the 
extremely short T½ of 99mTc makes it impossible to store or transport it. Meanwhile, producing this 
radionuclide through bombardment of 100Mo in cyclotrons is not preferred [3], because it yields the 
undesired 99gTc. Indeed, the development of 99mTc generators has been crucial for widespread clinical use, 
which uses the parent 99Mo nuclide (T½ of 66 h) obtained from highly enriched uranium [4, 5]. 
Correspondingly, the nuclear features of 99mTc make it perfect for use in diagnostic nuclear medicine [6]. 
Due to its artificial and metallic nature, a pharmacophore should be attached to chelating groups to 
construct 99mTc-labeled radiopharmaceuticals. The pharmacophore group plays a critical role in targeting 
specific tissues during imaging. Furthermore, the selected chelating group must be highly reactive toward 
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Graphical abstract. Technetium-99m-labeled peptides used in radio imaging

99mTc to construct an extremely stable complex [7]. In the published minireview in 2019, Miranda et al. [8] 
explored the radiochemical quality control of 99mTc-radiopharmaceuticals. They focused on optimizing 
chromatographic systems for assessing the radiochemical purity (RCP) of 99mTc-eluate and 
radiopharmaceuticals. Recently, Duatti [6] listed the development of 99mTc-based radio imaging using single 
photon emission tomography (SPECT). The focus of this literature study is on the synthesis, complexation, 
purification, and application of various 99mTc-radiopharmaceuticals [6].

In the emerging arena of nuclear imaging, diagnosis, and therapy, peptides are now essential motifs for 
in vivo targeting, radio imaging, monitoring, and visualization of infected tissues for the diagnosis and 
treatment of diseases [9–12]. Furthermore, radiolabeled peptides can identify the overexpressed peptide-
binding receptors in many malignant cells and tumors [13, 14]. Besides, there are several benefits to 
employing peptides as bioactive molecules in radiolabeled detectors, including low adverse effects due to 
the low toxicity of peptides in comparison with the other pharmacophore compounds, great affinity for the 
target receptors, and the ability to incorporate hydrophilic functional groups into their structure to 
increase excretion and decrease lipophilicity [15–17]. Decreasing lipophilicity in a radiopharmaceutical 
leads to rapid renal excretion rather than intestinal clearance. Moreover, high tumor-to-background ratios 
are obtained by radiolabeled peptides, which is a crucial factor in radio imaging to achieve effective cancer-
targeting and high-quality images [18, 19]. In 2020, Mohtavinejad et al. [20] discussed essential aspects of 
various radiolabeled peptides, including neurotensin (NT), somatostatin (SST), arginylglycylaspartic acid 
(RGD), exendin, vasoactive intestinal peptide, gastrin, and bombesin (BBN), in tumor imaging and pre-
clinical and clinical phases of therapy. Another study collected recently published radiolabeled peptides, 
which were tested on imaging animals’ organs [21].

Continuing our research on the synthesis of peptides, investigating their bioactivities, and their 
applicability in radio imaging [22–29], in this review we wanted to summarize the conducted studies in 
Latin American synthesis of special bioactive peptides, their complexation with 99mTc via special linkers and 
co-ligands, and their applicability in radio imaging and diagnosis of several diseases. This article covered 
various peptides, including BBN and its analogs, RGD peptides, NT, LyeTx I, and peptidoglycan aptamer.

99mTc-labeled peptides and their applications in radio imaging
The method of labeling peptides with 99mTc
99mTc is accessible in the 7+ oxidation state by reducing 99mTcO4

– to a lower oxidation state using the 
stannous chloride. Ascorbic acid, as an antioxidant, is usually added to the solution of 99mTc complex to keep 
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it stable. The pH at which the complex is stable is 7.0 because it must be used in biological tissues. Then, Tc 
can tightly bind to a single specific atom or a small part of the chelating group. For instance, 2-
hydrazinonicotinic acid (2-HYNIC), a bifunctional chelator suitable for Tc, easily attaches to bioactive 
molecules through an amidification reaction [30]. Since the coordination of HYNIC is possible from the 
nitrogen atom of its hydrazine moiety, it cannot saturate the coordination capacity of 99mTc, thus, the use of 
co-ligands is essential to complete the coordination sphere. Tricine, ethylenediaminediacetic acid (EDDA), 
nicotinic acid, pyridine dicarboxylic acid (PDA), glucamine, mannitol, and glucoheptonic acid are commonly 
used co-ligands to construct 99mTc-HYNIC complexes [31]. Figure 1 illustrates the process of binding HYNIC 
to a bioactive molecule and subsequently forming complexes with 99mTc using co-ligands. Studies showed 
that tricine and EDDA give the most stable radiochemical complex even up to one day post-incubation [32]. 
Therefore, HYNIC has been recently considered to bind to antibodies, fatty acids, proteins, and peptides via 
the formation of amide bonds, followed by coordinating with 99mTc to be used for radio imaging, diagnosing, 
and monitoring various targets and diseases, including activated T lymphocytes, pancreatic neuroendocrine 
neoplasms, cancer, and carcinoma cells [33–40].

Figure 1. Synthesis of 99mTc-HYNIC complexes. The mentioned bioactive molecule can be any biologically active compound 
that has an amino group. 99mTc: technetium-99m; EDDA: ethylenediaminediacetic acid; HYNIC: hydrazinonicotinic acid; MAG3: 
mercaptoacetyltriglycine
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99mTc-labeled BBN in detection of tumor cells

BBN is a 14-amino-acid peptide (pGlu-Gly-Arg-Leu-Gly-Thr-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) that 
binds to G protein-coupled receptors (GPRs). The latter is overexpressed in different kinds of human cancer 
cells, especially breast, lung, and prostate cancers (PCs) [41]. Faintuch et al. [42] prepared a series of 99mTc-
HYNIC-linker-BBN to compare their biodistribution and scintigraphy imaging in mice bearing PC-3 tumor 
cells. They found that 99mTc-HYNIC-βAla-BBN is rapidly produced during the radiolabeling step with no 
need for purification, bears high radiochemical efficiency with more with internalization (12% within 
30 min) and tumor uptake [32, 42–44]. Inspired by the mentioned research, de Barros et al. [45] prepared a 
pH-sensitive liposome encapsulating 99mTc-HYNIC-βAla-BBN(7–14) and used it to detect human breast 
cancer. The prepared nano-liposome with an approximately 165 nm diameter displayed a strong signal in 
the tumor tissue, showing a good tumor-to-muscle of 9.31% injected dose (ID)/g. It was also enclosed that 
99mTc-HYNIC-βAla-BBN(7–14) can recognize Capan-1 pancreatic adenocarcinoma at its early stage with an 
uptake of 0.47% ID/g [46], and LNCaP prostate tumor [47]. Another research revealed the applicability of 
99mTc-HYNIC-BBN or imaging women’s breasts with malignant tumors [48]. Later, Faintuch et al. [49] could 
design a 99mTc-mercaptoacetyltriglycine (MAG3) complex coupled to BBN via a 6-aminohexanoic acid (6-
Ahx) linker (99mTc-MAG3-Ahx-BBN). The RCP of this complex was approximately 96% at neutral pH, 
exhibiting high internalization (75% within 30 min) and great affinity for BBN receptors [49]. Following 
their research, Faintuch et al. [50] compared the ability of 99mTc-MAG3-Ahx-BBN and 99mTc-MAG3-Ahx-
DUP1 to diagnose prostate carcinoma. DUP1 is a synthetic peptide (Phe-Arg-Pro-Asn-Arg-Ala-Gln-Asp-Tyr-
Asn-Thr-Asn) with high affinity for DU-145 prostate and PC-3 cells [51]. The mentioned study 
demonstrated that the DUP1 tracer was more hydrophilic than the BBN one, with greater kidney uptake. 
However, due to its higher specificity to receptors of gastrin-releasing peptide, the BBN tracer displayed 
superior internalization (78%), while tumor uptake for both tracers was comparable [50]. Many other BBN-
based 99mTc-radiotracers have been developed through similar protocols to improve stability and high 
uptake in target tissues [52–59]. Moreover, the focus of some research is on the preparation of 
multifunctional systems containing BBN-based 99mTc-radiotracers conjugated to the surface modified 
nanoparticles (NPs) with target-specific molecular recognition [60–64].

Pretargeting involves the use of high affinity and specificity biomarkers to obtain a high contrast of 
target to the background, improving the tumor-to-nontumor ratio [65–67]. Morpholino oligomers (MORFs) 
contain DNA bases in their scaffold attached to morpholine rings through phosphonodiamidite groups. 
These synthetic oligomers are widely employed for nuclear-pre-targeted imaging [68–72]. Since binding 
MORF to a carrier through a covalent bond is difficult, the utilization of streptavidin (SA) as a linker makes 
it easy to attach a biotinylated carrier to biotinylated MORF via simple mixing. Consequently, Faintuch et al. 
[73] prepared 99mTc-MAG3-cMORF as well as Biotin-βAla-BBN and Biotin-MORF and mixed them in the 
presence of SA to have a 99mTc-labeled nano-peptide to image lymph nodes bearing tumor cells.

99mTc-labeled analogs of SST

SST is a kind of cyclic peptide hormone, containing 14 or 28 amino acids, which plays its role in different 
ways, including interaction with G protein-coupled SST receptors to control cell proliferation, regulation of 
cellular functions, and inhibiting the release of other hormones, such as insulin and glucagon secretion [74–
76]. The peptidases distributed in plasma and tissues rapidly degrade the natural SST, therefore, its highly 
short life (1–3 min) makes it useless in clinical cases [77]. Consequently, many analogs of SST have been 
developed regarding the clinical approaches. Lanreotide or somatuline is an SST-analogue octapeptide, 
containing 8 amino acids (D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) cyclized through a disulfide bond 
between two cysteine moieties. Lanreotide can manage the symptoms resulting from neuroendocrine-
active tumors [78]. In the early 2000s, its 99mTc complex was considered to be used in radio imaging of 
neuroendocrine tumors. Consequently, 99mTc-lanreotide was prepared in a tartrate-phthalate buffer 
solution, containing maltose, glycine, and SnCl2 solution, followed by the addition of 99mTc. This complex 
was stable for 6 h, mainly distributed in the gastrointestinal tract, showing its applicability in 
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radiodiagnosis [79]. However, the study of this complex was of interest only in those years and forgotten 
later.

Octreotide (OCT) and octreotate (TATE) are more attractive than lanreotide in radio imaging studies 
for the detection of unrespectable neuroendocrine tumors. To aim for this, Melo et al. [80] developed the 
synthesis of 99mTc-HYNIC-Tyr3-OCT and 99mTc-HYNIC-Tyr3-TATE (Figure 2) and investigated their 
biodistribution. They found fast blood clearance and high biodistribution of OCT and TATE in the pancreas, 
intestine, stomach, lung, and blood. The great uptake of these radio-drugs in the kidney and pancreas is due 
to the high density of SST receptors. Moreover, low uptake was observed in bones, liver, spleen, heart, 
brain, and thyroid [80, 81]. In another research, OCT was loaded on Au NPs coated with Lys3-BBN or 
mannose (Figure 3). The prepared radio-agents were useful to detect sentinel lymph nodes [82, 83]. The 
time-consuming preparation of such loaded radio drugs is one of the drawbacks of this method, which 
limits its clinical application.

Figure 2. The structure of TATE and OCT. 99mTc: technetium-99m; HYNIC: hydrazinonicotinic acid; OCT: octreotide; TATE: 
octreotate

Figure 3. The loaded OCT on Au nanoparticles coated with Lys3-bombesin or mannose. OCT: octreotide

99mTc-labeled exendin-4 fragment

Exendin-4 is an analog of glucagon-like peptide 1 (GLP-1), which can attach to GLP-1 receptors, expressed 
in patients who suffer from insulinomas, a kind of small pancreatic endocrine tumor [84–86]. Currently, 
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exendin-4 is consumed for the treatment of type 2 diabetes [87, 88]. Because radiolabeled exendin(9–39) has 
the potential to detect GLP-1 receptors and also OCT can identify SST receptors, a combination of HYNIC-
exendin(9–39) and OCT (Figure 4) can detect malignant insulinomas pancreatic tumors, which express high 
and low densities of GLP-1 and SST receptors, respectively. Biodistribution studies of 99mTc-HYNIC-
exendin(9–39)-OCT showed suitable uptake in target tumor cells (2.71% ID/g), blood (1.5% ID/g), and 
kidney (95.0% ID/g) and it was rapidly eliminated from renal after 2 h [89–92].

Figure 4. The structure of 99mTc-HYNIC-exendin(9–39)-OCT. 99mTc: technetium-99m; HYNIC: hydrazinonicotinic acid; OCT: 
octreotide

99mTc-labeled RGD or RGD analogues

RGD is a tripeptide comprising Arg-Gly-Asp residue, which is responsible for cell adhesion to the 
extracellular matrix [93]. RGD peptides have the potential to be used in tissue engineering, therapy, and 
imaging [94, 95]. It has been validated that some kinds of cyclic peptides containing RGD residue can bind 
integrin αvβ3, which is linked to the progress of various diseases [96]. It must be noted that a cyclic RGD-
pentapeptide, comprising of Arg-Gly-Asp-Tyr-Lys [c(RGDyK)], is a derivative of RGD with a high affinity for 
αvβ3 integrin, which is expressed on the cell membrane of many cancerous cells [97, 98]. Decristoforo et al. 
[99] synthesized c(RGDyK) to make 99mTc-HYNIC-c(RGDyK), as depicted in Figure 5. High uptake of the 
prepared radiotracer was observed in αvβ3-integrin-receptor-positive M21 melanoma cells up to 2.73% 
ID/g, while tumor-to-organ ratios were equivalent to that observed for [18F]Galacto-RGD.

99mTc-MAG3 is frequently employed for renal and kidney function imaging [100, 101]. The carboxyl 
group of MAG3 can bind to a linker molecule, carrying a biomolecule. As shown in Figure 6, 99mTc-MAG3 is 
attached to c(RGDyK) via a polyethyleneglycol linker, forming 99mTc-MAG3-PEG8-c(RGDyK). It was revealed 
that 99mTc-MAG3-PEG8-c(RGDyK) traces malignant melanoma cells, SK-MEL-28, after 30 min of incubation 
with an internalization of 96.13%. Due to its specificity for human SK-MEL-28 cells, this radiotracer is 
efficient for the early diagnosis of melanoma [102, 103]. Moreover, this tracer was employed for imaging 
diverse tumor models, including blood, lungs, kidneys, spleen, stomach, pancreas, liver, intestine, muscle, 
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Figure 5. The structures of RGD tripeptide and 99mTc-HYNIC-RGDyK. 99mTc: technetium-99m; HYNIC: hydrazinonicotinic 
acid; RGD: arginylglycylaspartic acid

and bone carcinoma. The results revealed its high biodistribution in lung cancer cells, presenting the 
applicability of 99mTc-MAG3-PEG8-c(RGDyK) tracer to detect lung tumors in addition to melanoma cells 
[104]. It must be noted that polyethyleneglycol protects peptides from enzymatic degradation and thus 
decreases proteolysis, also increases overall hydrophilicity of the compound, leading to the increased 
peptide T½ and stability [105]. Schiper et al. [106] prepared HYNIC-E-[c(RGDfK)]2 (Figure 7) and made its 
complex with 99mTc to test its biodistribution on Swiss mice infected with osteonecrosis. This radiotracer 
showed the highest bone uptake after 15 days and could detect bone infarction efficiently [106]. In another 
research, c(RGDfK) was grafted on the surface of gold NPs modified with 99mTc-HYNIC-GGC, where GGC is 
Gly-Gly-Cys residue. This NP showed high specificity for detection of αvβ3-integrin-receptor-positive M21 
melanoma cells [107].

Figure 6. The structures of 99mTc-MAG3 and 99mTc-MAG3-PEG8-c(RGDyK). 99mTc: technetium-99m; MAG3: mercaptoacetyl-
triglycine

Based on the previously published method [108, 109], Caporale et al. [110] synthesized a small cyclic 
pentapeptide of c(RGDfV), containing cyclized Arg-Gly-Asp-D-Phe-Val, which is an analogue of c(RGDyK). 
Then, two complexes of 99mTc-c(RGDfV) were prepared using nitrido nitrogen atoms (Figure 8). These 
complexes were stable after incubation for 4 h at 37°C in biological serum [110].
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Figure 7. The structures of HYNIC-E-[c(RGDfK)]2. HYNIC: hydrazinonicotinic acid

Figure 8. Two complexes of 99mTc-c(RGDfV)2. 99mTc: technetium-99m

GX1 (Cys-Gly-Asn-Ser-Asn-Pro-Lys-Ser-Cys) is one of the high-affinity peptides with angiogenesis that 
can inhibit it. Accordingly, GX1 has been widely used for targeting and imaging cancer cells because of its 
binding specificity to integrin α3β1 receptors [111–113]. Correspondingly, binding the RGD peptide to GX1 
may improve tumor cell affinity in radio imaging. In this regard, cyclized GX1 was introduced in two 
complexes with 99mTc, i.e. 99mTc-HYNIC-PEG4-c(GX1) and 99mTc-HYNIC-E-[c(RGDyK)-c(GX1)] (Figure 9). 
Both prepared tracers showed considerable stability after 4 h remaining in human serum under 
physiological conditions. They had great hydrophilic features with great renal excretion, however, the 
clearance of 99mTc-HYNIC-PEG4-c(GX1) from the blood was faster. After 5 min of incubation (0.41%), about 
51% of the latter was internalized, while 99mTc-HYNIC-E-[c(RGDyK)-c(GX1)] showed the highest binding 
value after 2 h of incubation (0.35%). Comparable biodistribution was observed for both tracers in most 
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organs [114, 115]. Later, their ability in radio imaging was established, revealing better visualization, 
favoring tumor uptake (2.96% at 1 h), and highest binding (1.14%) at 2 h for 99mTc-HYNIC-E-[c(RGDyK)-
c(GX1)] in glioma U87MG cells [116]. Moreover, magnetic resonance imaging (MRI) confirmed the specific 
binding of these tracers to human U87 glioblastoma in the brain [117]. Another research signified that a 
remarkable uptake can be obtained by injecting 99mTc-HYNIC-PEG4-c(GX1) into mice bearing B16F10 and 
SK-MEL-28 melanoma cells (1.41% and 2.42%, respectively) at 1 h [115].

Figure 9. Two complexes of 99mTc-HYNIC-PEG4-c(GX1) and 99mTc-HYNIC-E-[c(RGDyK)-c(GX1)]. 99mTc: technetium-99m; 
GX1: Cys-Gly-Asn-Ser-Asn-Pro-Lys-Ser-Cys; HYNIC: hydrazinonicotinic acid
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In another study, a hexapeptide of Gly-Arg-Gly-Asp-His-Val (GRGDHV) was synthesized as an RGD 
analog, and labeled with a tricarbonyl complex of 99mTc, as illustrated in Figure 10. However, the sites of 
complexation of peptide with 99mTc have not been determined. This complex was stable for 24 h in human 
serum under biological conditions. Moreover, after 1 h of incubation, 99mTc(CO)3-GRGDHV showed distinct 
binding in C6 tumorigenic cells with bound and internalized fractions of 22% and 34%, respectively. The 
accumulation of this radiopeptide was observed in the brains of glioblastoma allograft tumor-bearing rats 
and normal rats, showing biodistribution up to 1.57 and 0.6, respectively, at 4 h. The results showed 
promising application of this radiolabeled peptide in the clinical diagnosis of glioblastoma [118].

Figure 10. The structure of 99mTc(CO)3-GRGDHV. 99mTc: technetium-99m; GRGDHV: Gly-Arg-Gly-Asp-His-Val

99mTc-labeled NT

NT is a neuropeptide, containing 13 amino acids of pyroGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-
Leu, playing its role in the central nervous system through interaction with dopamine receptors, smoothing 
muscle contraction, and regulation of luteinizing hormone and prolactin release [119–121]. Regarding the 
published results for the application of NT analogues in tumor imaging [122], Teodoro et al. [123] 
investigated the bioactivities of NT(8–13) analogue (Arg-NMe-Arg-Pro-Tyr-Ile-Leu) using its complex 99mTc-
HYNIC-βAla-NT(8–13). Considerably high uptake of this tracer was observed for the lung, blood, and kidneys, 
while it was rapidly eliminated from the blood. Moreover, low uptake of this tracer was detected in the liver 
and intestine, showing its potential to be used in tumor imaging due to its high uptake and fast clearance 
from the blood [123].

99mTc-labeled antibacterial peptides

The cationic peptide LyeTx I is a natural 25 amino acid peptide, isolated from Lycosa erythrognatha venom, 
exhibiting antimicrobial activities [124–126]. Fuscaldi et al. [127] designed two chelating agents for 99mTc 
using C- and N-terminus of LyeTx I and HYNIC to give LyeTx I-K-HYNIC and HYNIC-LyeTx I, respectively. 
Then, the bioactivities of these agents were determined against Staphylococcus aureus and Escherichia coli, 
and it was discovered that the latter couldn’t inhibit the growth of bacterium, while the former LyeTx I-K-
HYNIC showed antibacterial properties with minimum inhibitory concentration (MIC) values of 
5.05 μmol/L and 10.01 μmol/L against the mentioned species, respectively. Accordingly, 99mTc-LyeTx I-K-
HYNIC complex was prepared with high purity to study infected tissues [127, 128]. In that study, 
researchers evaluated the biodistribution of two peptidoglycan aptamers, Antibac1 and Antibac2, which 
were labeled with 99mTc. These aptamers were specifically designed for bacterial infection diagnosis. The 
results exhibited that these tracers can easily recognize a bacterial infection focus [129].

Recently, ubiquitin (UBI) peptide is a cationic, synthetic antimicrobial peptide fragment. It has been 
considered a versatile antibacterial agent to be labeled with 99mTc [130–132], which is useful for 
distinguishing bacterial infections. The use of radiolabeled peptides for infection imaging in humans has 
been an area of active research. Here are some key findings from clinical studies involving 99mTc-UBI(29–41) 
as an infection-imaging agent [133]. In 2005, a 29–41 fragment of UBI with the sequence of Thr-Gly-Arg-
Ala-Lys-Arg-Arg-Met-Gln-Tyr-Asn-Arg-Arg was labeled with 99mTc through coordination using its Lys and 
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Arg7 amino acids. The obtained 99mTc-UBI(29–41) was injected into patients with osteomyelitis, diabetes, and 
fever of unknown origin. Imaging showed infected tissues, which were comparable with the results 
obtained by biopsy [134–136]. In another research, it was determined that the imaging results of infected 
tissues obtained by 99mTc-UBI(29–41) were in agreement with those recorded by 67Ga-citrate. Moreover, after 
24 h, nearly 85% of 99mTc-UBI(29–41) is eliminated by renal clearance [137]. Vallejo et al. [138] used this 
radiotracer to detect mediastinitis after cardiac surgery. Furthermore, 99mTc-UBI(29–41) was applicable to 
diagnose musculoskeletal [139] and postsurgical spinal infections [140].

Discussion
Table 1 shows a summary of the peptide-99mTc complexes discussed in this review article. This table depicts 
their target cells, uptake amounts by the target, biodistribution of the complex in different organs, current 
applications, and advantages and usage of the prepared complexes.

Table 1. The summary of peptide-99mTc complexes in radio imaging

Entry Peptide-
99mTc 
complexes

Target cells or 
receptors

Uptake by 
target (% 
ID/g)

Biodistribution Current 
applications

Advantages Reference

1 99mTc-
HYNIC-βAla-
BBN(7–14)

BBN-positive tumor 
cells, Capan-1 
pancreatic 
adenocarcinoma

0.47–9.31 Tumors, spleen, 
the liver, and 
muscles

Imaging of breast 
tumors

Rapid clearance 
by renal 
excretion, higher 
uptake by tumors

[45, 46]

2 99mTc-MAG3-
Ahx-DUP1

DU-145 prostate 
and PC-3 cells

1.23 Tumors, 
pancreas, 
spleen, lung, 
liver, and kidney

Diagnosis of 
prostate carcinoma

Rapid clearance [50]

3 99mTc-MAG3-
cMORF

PC-3 cells 2.58 Tumors, kidney, 
intestines, and 
liver

Imaging of lymph 
nodes bearing 
tumor cells

High tumor 
uptake

[73]

4 99mTc-
lanreotide

Neuroendocrine-
active tumors

Not 
determined

Intestine, kidney, 
lung, and liver

Imaging of 
neuroendocrine 
tumors

- [79]

5 99mTc-
HYNIC-Tyr3-
OCT

Somatostatin 
receptors

1.65–19.12 Pancreas, 
intestine, 
stomach, lung, 
and blood

Imaging of sentinel 
lymph nodes

High 
somatostatin 
receptor uptake

[80, 81]

6 99mTc-
HYNIC-Tyr3-
octreotate

Somatostatin 
receptors

1.0–26.0 Pancreas, 
intestine, 
stomach, lung, 
and blood

Imaging of sentinel 
lymph nodes

High 
somatostatin 
receptor uptake

[80, 81]

7 99mTc-
HYNIC-
exendin(9–39)-
OCT

GLP-1 receptors 2.71 Tumors, blood, 
and kidney

Detection of 
malignant 
insulinomas 
pancreatic tumors

Rapid clearance [89–92]

8 99mTc-
HYNIC-
c(RGDyK)

αvβ3-integrin-
receptor-positive 
M21 melanoma 
cells

2.73 Tumors, 
intestine, and 
kidney

Imaging of integrin 
αvβ3 in coronary 
arterial and 
peripheral vascular 
angiogenesis

Low blood 
retention, low 
liver, and muscle 
uptakes

[99]

9 MAG3-
PEG8-
c(RGDyK)

SK-MEL-28 cells 7.85 Tumors, 
intestine, liver, 
and kidney

Early diagnosis of 
malignant 
melanoma

Stable 
internalization
until 120 min

[102, 103]

10 99mTc-
HYNIC-E-
[c(RGDfK)]2

Severely 
devascularized 
bone

4.2 Bone Imaging of 
osteonecrosis

Remarkable renal 
excretion

[105]

11 99mTc-
HYNIC-
GGC-Au 
NPs

αvβ3-integrin-
receptor-positive 
M21 melanoma 
cells

8.18 Tumors, 
pancreas, liver, 
and kidney

Imaging of tumor 
αvβ3 expression

High spatial 
resolution

[106]



Table 1. The summary of peptide-99mTc complexes in radio imaging (continued)

Explor Drug Sci. 2024;2:814–35 | https://doi.org/10.37349/eds.2024.00075 Page 825

Entry Peptide-
99mTc 
complexes

Target cells or 
receptors

Uptake by 
target (% 
ID/g)

Biodistribution Current 
applications

Advantages Reference

12 99mTc-
HYNIC-
PEG4-
c(GX1)

Glioma U87MG 
cells

1.52 Tumors, blood, 
liver, kidney, and 
intestines

Targeting 
angiogenesis in 
glioma tumors

- [113–115]

13 99mTc-
HYNIC-E-
[c(RGDyK)-
c(GX1)]

Glioma U87MG 
cells

2.96 Tumors, blood, 
liver, kidney, and 
intestines

Targeting 
angiogenesis in 
glioma tumors

Great renal 
excretion

[113–115]

14 99mTc(CO)3-
GRGDHV

C6 tumorigenic 
cells

1.57 Brain, heart, 
spleen, lung, 
liver, and kidney

Imaging of tumor 
αvβ3 expression

Hydrophilic 
character

[117, 118]

15 99mTc-
HYNIC-βAla-
NT(8–13)

Tumor cells > 18.1 Tumors, lung, 
blood, and 
kidneys

Tumor imaging Low uptake in 
liver and 
intestine, high 
uptake, and fast 
clearance from 
the blood

[122, 123]

16 99mTc-LyeTx 
I-K-HYNIC

Bacterial infection - Not determined Infection imaging - [128]

17 99mTc-
UBI(29–41)

Infected tissues - Not determined Diagnosis of 
musculoskeletal 
and postsurgical 
spinal infections

- [136–139]

-: no data. 99mTc: technetium-99m; Ahx: aminohexanoic acid; BBN: bombesin; GLP-1: glucagon-like peptide 1; GRGDHV: Gly-
Arg-Gly-Asp-His-Val; GX1: Cys-Gly-Asn-Ser-Asn-Pro-Lys-Ser-Cys; HYNIC: hydrazinonicotinic acid; ID: injected dose; MAG3: 
mercaptoacetyltriglycine; MORF: morpholino oligomer; NPs: nanoparticles; NT: neurotensin; OCT: octreotide; PC-3: prostate 
cancer-3

Conclusions
Radio imaging is an essential technique to monitor and diagnose a wide variety of diseases, including 
cancer, Alzheimer’s, and infections. The emission of gamma rays with a T½ of 6 h and 140 keV photon 
energy makes 99mTc a valuable metastable nuclear isomer to be used in SPECT. To this aim, 99mTc is tightly 
binding to a chelating group, such as HYNIC, and co-ligands. The use of 99mTc-labeled peptides for tumor 
imaging has gained significant attention in clinical research. These radiolabeled peptides offer advantages 
such as high specificity, favorable pharmacokinetics, and minimal radiation exposure. The chelating group 
is attached to a bioactive molecule, which possesses affinity for a specific receptor. In this review, we 
showed different kinds of bioactive peptides labeled with 99mTc, which are useful in the clinical detection of 
prostate, pancreas, lung, and stomach tumors. The application of 99mTc-labeled antibacterial peptides holds 
promise for detecting infected tissues and tracing bacterial function. In summary, 99mTc-labeled peptides 
hold promise for non-invasive disease imaging, and ongoing research aims to improve their clinical impact.
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