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Abstract
The presence of high-quality water is essential not only for human survival but also for the well-being of 
plants and animals. This research aimed to examine studies investigating the occurrence of antibiotics, 
endocrine disruptors, and other pharmaceutical products in water, sediments, and organisms within 
aquatic ecosystems. These substances have been linked to numerous adverse health effects on both humans 
and aquatic life, including reproductive issues and neurotoxic effects. The pervasive utilization of 
antibiotics in medical and agricultural domains has precipitated their ascension as formidable 
environmental contaminants. Effluents discharged from pharmaceutical industries constitute significant 
contributors to aquatic ecosystems’ contamination with antibiotics. These pharmacological agents 
permeate diverse environmental niches, spanning groundwater, surface water, soils, and wastewater 
treatment facilities, exhibiting concentrations ranging from nanograms to grams per liter. Concurrently, the 
indiscriminate and excessive application of antibiotics worldwide has engendered escalating 
apprehensions pertaining to antimicrobial resistance—a formidable global health exigency. This review 
also delves into the impact of pharmaceutical pollutants on aquatic environments, particularly as 
endocrine-disrupting compounds. Analysis of surface water in River Taff and River Ely reveals a consistent 
discharge of approximately 6 kilograms of pharmaceuticals per day. The study examines particular 
pharmaceuticals, such as diethylstilbestrol (DES), chlorotriazines, chloroquine, and antineoplastic drugs, 
elucidating their varied effects on reproductive cycles. Pharmaceutical pollutants in aquatic ecosystems, 
originating from sources like wastewater, agriculture, and improper disposal, persist and adversely affect 
organisms through bioaccumulation and biomagnification. These contaminants pose significant ecological 
and health risks, necessitating effective mitigation strategies.
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Introduction
Pharmaceutical and Personal Care Products (PPCPs) are integral to the quotidian fabric of human existence. 
They represent a diverse spectrum of consumption patterns, encompassing a wide array of substances. 
These substances span the spectrum from medicinal compounds, such as antimicrobials, anti-
inflammatories, and lipid-regulating agents, utilized by both human and veterinary medicine, to personal 
hygiene items including fragrances, disinfectants, and adjunctive agents [1]. PPCPs play a pivotal role in 
enhancing the quality of life. Following metabolism, the resultant metabolites and conjugates of 
pharmaceuticals predominantly undergo excretion via urine and feces. Subsequently, they are channeled 
into civil sewage treatment systems, where they may become integrated into sewage sludge or gradually 
dispersed into surface water bodies over time [2]. Humans and other organisms are unintentionally 
exposed to trace residues of these PPCPs from the environment by ingesting drinking water and consuming 
plant or animal tissue that has been similarly exposed. These exposures may be sustained indefinitely 
throughout life, resulting in the accumulation of these metabolites in body tissues many orders of 
magnitude below those recommended for therapy [3].

Antibiotic pollution stands out as a critical issue among the many PPCPs due to its significant 
contribution to the horizontal transfer of antibiotic resistance genes (ARGs) between both harmful and 
harmless bacterial strains. This process is particularly concerning because people can unknowingly ingest 
these resistance genes through various channels, including recreational activities in environments 
contaminated by such pollutants [4]. Sources of antibiotic contamination encompass effluents from 
wastewater treatment plants (WWTPs), effluents discharged by hospitals and pharmaceutical processing 
plants, and leaks emanating from waste storage containers [5]. The elevated levels of antibiotics found in 
marine environments, especially during colder seasons, pose considerable threats to both ecosystems and 
human well-being. Specific antibiotics like ciprofloxacin (CIP), ofloxacin (OFL), erythromycin (ERY), and 
sulfadiazine have been identified as particularly hazardous to aquatic life. This pollution originates from 
various sources such as untreated human and animal wastewater and direct discharge from aquaculture 
products, underscoring the pressing need for comprehensive strategies to address environmental 
contamination [6]. The presence of antibiotics in the environment at low concentrations can infiltrate 
human systems, accumulating therein and giving rise to a spectrum of health repercussions spanning from 
reproductive disorders to muscular debility [7, 8].

A myriad of drugs, spanning from recreational substances to pharmaceutical medications, although 
intended to alleviate ailments, harbor the potential to induce a spectrum of detrimental effects on the 
nervous system. Thus, a comprehensive understanding of the neurotoxic propensities inherent within 
drugs is imperative for facets such as drug development, clinical management, and public health initiatives. 
In the forthcoming review, our objective is to delineate the intricate challenges posed by pharmaceutical 
pollution, encompassing issues such as antibiotic resistance, endocrine disruption, and the neural 
ramifications thereof.

Antibiotic resistance
The etymology of the term “antibiotic” traces its roots to its literal interpretation as “against life”. 
Antibiotics represent a category of compounds, whether they occur naturally, are semi-synthetic, or are 
synthesized chemically, characterized by their antimicrobial attributes. Ubiquitously employed in the 
prevention and management of infectious diseases across animal and human populations, antibiotics serve 
as indispensable tools in the battle against microbial infections [9]. The period between 1945 and 1955 
witnessed a pivotal epoch in the annals of medicine with the advent of antibiotics. Penicillin, hailing from a 
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fungal source, alongside other antibiotics such as streptomycin, chloramphenicol, and tetracycline, 
synthesized by soil bacteria, spearheaded the dawn of the antibiotic era. These compounds, crafted by 
microbial entities, operate as diminutive molecules that inhibit the proliferation of fellow microorganisms 
[10]. The advent of antibiotics has heralded a monumental revolution in the realm of medicine, heralding 
the salvation of innumerable lives and etching a momentous milestone in human chronicles. A list of 
commonly used antibiotics is represented in Table 1. Regrettably, the extensive integration of these 
extraordinary medications has precipitated the rapid ascent of resistant strains. Within the medical 
fraternity, experts voice apprehensions regarding the looming specter of regressing to the pre-antibiotic 
epoch. A recent repository has unearthed an excess of 20,000 potential resistance genes (R genes), 
spanning nearly 400 discrete categories, predominantly extrapolated from extant bacterial genome 
sequences [11]. The pervasive specter of antibiotic contamination within environmental domains, 
encompassing aquatic ecosystems and public health spheres, in tandem with the burgeoning menace of 
antibiotic resistance among human populations, evokes profound alarm. Investigations emanating from 
Croatia [12], South India [13], and across Europe [14] underscore the disconcerting prevalence of 
antibiotics within wastewater effluents originating from pharmaceutical manufacturing facilities. This 
phenomenon engenders fluctuations across seasons, incurs ecological hazards, and fosters the proliferation 
of antibiotic-resistant bacteria (ARB) strains. The exigencies engendered by deficient wastewater 
management underscore the imperative for bolstered environmental stewardship. A holistic global outlook 
elucidates the ubiquity, trajectories, and repercussions of antibiotics, delineating their omnipresence within 
water reservoirs and the attendant hazards posed to both human health and ecological equilibrium [15]. 
The interplay among antibiotic utilization, environmental dynamics, and the onset of antibiotic resistance 
underscores the imperative for heightened research endeavors, strategic regulatory interventions, and 
sustained evaluations of chronic toxicity to confront this burgeoning health crisis.

Development of gene resistance

The 2014 Review on Antimicrobial Resistance (AMR) highlights that antibiotic resistance is accountable for 
a significant portion of yearly deaths. Acknowledging the anticipated surge in antibiotic resistance, the 
World Health Organization (WHO) designated it as a major global health concern in 2014, emphasizing its 
profound repercussions for public health. Confronting the emergence and dissemination of mobile 
resistance elements poses a formidable challenge due to the incomplete understanding of how the 
environment facilitates the development of resistance and the specific conditions under which this occurs. 
The limited comprehension in this domain hampers efforts to effectively manage and mitigate the evolution 
and spread of resistance elements [26]. The discovery of antibiotics, notably penicillin, was a major medical 
breakthrough in the early 20th century. However, bacterial resistance has emerged due to genetic variation 
caused by mutations in DNA coding regions. Antibiotic use in humans and agriculture has increased the 
frequency of ARGs through natural selection and horizontal gene transfer (HGT). Hospitals’ antibiotic 
rotation strategies, aimed at mitigating resistance, inadvertently select for resistance to other antibiotics. 
Genetic variation in bacterial colonies in the human colon contributes to an “insurance effect” against 
environmental changes. Conjugation, a common form of HGT, occurs in the colon, potentially transferring 
ARGs between species [27].

The duration of a therapeutic antibiotic regimen varies depending on the particular infection in the 
host, spanning from a concise 7-day course to an extended duration lasting up to a year. The efficacy of the 
treatment regimen is intricately linked to the robustness of the immune system. Immunocompetent 
individuals have the capacity to generate diverse toxins and acquire resistance genes during the course of 
treatment. This phenomenon arises due to the fact that antibiotics, while adept at eradicating opportunistic 
pathogens, may encounter formidable obstacles when confronting resilient pathogens such as 
Staphylococcus aureus [28]. Microbial genomics has unveiled widespread ARGs in bacterial genomes, 
forming the “antibiotic resistome”. These genes are found in diverse ecological niches, suggesting 
coevolution with antibiotics. Metagenomic analysis of ancient DNA indicates that antibiotic resistance 
predates therapeutic antibiotic use [29].
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Table 1. List of commonly used antibiotics

Class Antibiotics Main use Ref.

Chlortetracycline Veterinary
Doxycycline Human, veterinary
Oxytetracycline Human, veterinary, plants

Tetracyclines

Tetracycline Human, veterinary

[16, 17]

Sulfadiazine Veterinary
Sulfamethazine Human, veterinary
Sulfamethizole Human
Sulfamethoxazole Human

Sulfonamides

Sulfathiazole Veterinary

[16]

Azithromycin Human
Erythromycin Human, veterinary

Macrolides

Roxithromycin Human

[18]

Ciprofloxacin Human
Enrofloxacin Veterinary

Fluoroquinolones

Ofloxacin Human

[19]

Amoxicillin Veterinary
Ampicillin Veterinary
Cephalexin Human
Cefazolin Human

β-Lactams

Penicillin Veterinary

[20]

Amikacin Human
Gentamicin Human, veterinary
Neomycin Veterinary
Streptomycin Human, veterinary

Aminoglycosides

Tobramycin Human, veterinary

[21–23]

Vancomycin Human
Teicoplanin Human
Dalbavancin Human
Oritavancin Human
Telavancin Human

Glycopeptides

Ramoplanin Human

[24]

Linezolid Human
Tedizolid Human

Oxazolidinones

Radezolid Human

[25]

Evolution of antibiotic resistance genes
Microorganisms utilize antibiotics as a means of self-defense, eliminating neighboring competitors and 
asserting dominance across varied environments. ARB and ARGs exist naturally, potentially originating tens 
of millions or even billions of years in the past. Evidence of ARGs linked to β-lactams, tetracyclines, and 
vancomycin has been unearthed in sediment cores dating back 30,000 years [30]. Over the course of 
evolution, most ARGs likely originated gradually from genes with different functions. Recent evolutionary 
events contributing to their prevalence in pathogens primarily result from transfer events from ancestral 
species where the overall functionality of these genes was shaped. The process leading to acquired 
resistance in pathogens typically involves several steps. Initially, an ARG gains the ability to move within 
the genome, often achieved through associations with insertion sequences or the formation of gene 
cassettes incorporated into integrons. Subsequently, the gene relocates to an element capable of 
autonomous movement between cells, such as a plasmid or integrative conjugative element. Certain 
environments may be more conducive to the genetic elements involved in the mobilization and transfer of 
ARGs, potentially due to the presence of fecal bacteria known to carry such elements or conditions favoring 
frequent gene exchanges [31].
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The escalation of AMR presents a critical global health emergency, spurred by the widespread 
consumption of antibiotics surpassing 73 billion standard units as of 2010. ARGs, with origins predating 
human antibiotic usage, have now proliferated extensively, propelled by environmental exposure to 
antibiotics. Metagenomic investigations spanning ecosystems such as soil, wastewater, and the microbiota 
of human and animal guts unveil diverse resistomes, demonstrating clustering patterns based on ecological 
contexts. Non-pathogenic bacteria like Kluyvera sp. and environmental sources emerge as pivotal reservoirs 
for resistance genes, with clinically relevant variants frequently originating from these non-pathogenic 
sources. HGT mechanisms, notably conjugation and transformation, assume pivotal roles in disseminating 
resistance, exemplified by the rapid global dissemination of genes such as blaCTX-M extended-spectrum β-
lactamases (ESBL). As environmental antibiotic levels surge, disrupting microbial equilibrium, a looming 
threat to public health becomes imminent. A profound comprehension of resistomes and the dynamics of 
gene transfer is indispensable for formulating efficacious strategies to combat antibiotic resistance [32]. 
The bacterial resistome, consisting of both inherent and acquired elements, governs resistance 
mechanisms. Inherent resistance arises from genetic mutations independent of prior antibiotic exposure, 
while acquired resistance is acquired through HGT, referred to as the bacterial mobilome. Transfer 
mechanisms include transduction, transformation, and conjugation.

The emergence of multidrug resistance (MDR) in waterborne strains of Aeromonas spp., facilitated by 
conjugation, poses significant public health concerns due to the potential for challenging infections. The 
resilient nature of these strains complicates efforts to eradicate them, underscoring the critical implications 
of HGT in Aeromonas spp. for public health [33].

Impact of AMR on human health
The rising threat of AMR jeopardizes global public health, causing 700,000 annual deaths from MDR 
bacterial infections. Projections suggest a staggering 10 million deaths by 2050, with associated costs 
reaching 3.8% of the GDP, pushing millions into extreme poverty. Implementing basic measures like 
handwashing and responsible antibiotic use could prevent three-quarters of these deaths at minimal cost. 
Addressing AMR is crucial to safeguard healthcare systems and global development goals [34]. Between 
October 2008 and June 2013, research was conducted focusing on infections resistant to multiple 
antibiotics in hospitalized cirrhotic patients. These infections were classified as MDR, extensively drug-
resistant (XDR), or pandrug-resistant (PDR). Approved by the local ethical committee, the study examined 
infection characteristics, risk factors, and outcomes. It evaluated the efficacy of recommended antibiotics 
and categorized infections as hospital-acquired, healthcare-associated, or community-acquired, considering 
pathogens resistant to three or more antimicrobial classes (MDR, XDR, PDR). The results offer valuable 
insights into understanding bacterial resistance in advanced cirrhotic patients and its implications for 
treatment [35].

Excessive use of antibiotics in young children can harm their gut bacteria, which are important for 
breaking down complex carbohydrates, preventing harmful bacteria from taking over, and helping the 
immune system develop. When the good bacteria are reduced, usually because of antibiotics, it can mess up 
these important functions. This shows why it’s crucial to keep a healthy and diverse mix of gut bacteria in 
babies [36].

The widespread and often indiscriminate use of antibiotics to treat urinary tract infections (UTIs) has 
led to a worrying surge in bacterial resistance, particularly among Enterobacteriaceae, which include 
common UTI-causing bacteria like Escherichia coli and Klebsiella pneumoniae. The growing prevalence of 
MDR Enterobacteriaceae limits the effectiveness of available treatments, highlighting the importance of 
exploring older options such as fosfomycin, which has demonstrated effectiveness against MDR bacteria. 
With the limited development of new antibiotics, it is imperative to reconsider and explore alternative 
treatment strategies to address the escalating antibiotic resistance in UTIs [37]. Research conducted at 
Muhimbili National Hospital in Tanzania during April–May 2018 investigated the bacterial origins and 
factors predicting mortality in bloodstream infections (BSI) among hospitalized patients. Through blood 
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culture and antimicrobial susceptibility testing, the study uncovered a growing prevalence of hospital-
acquired BSI instigated by MDR pathogens, notably ESBL [38]. A retrospective case-control study 
conducted in the medical intensive care unit (MICU) at Winthrop University Hospital analyzed 313 patients, 
among whom 41.7% were found to be at significant risk of MDR organisms (MDRO). Factors linked with 
MDRO prevalence primarily involved infections occurring in the urinary tract and lungs [39]. The 
increasing danger of AMR, especially concerning decompensated cirrhosis, highlights the urgent necessity 
for innovative approaches. The global surge in resistant bacterial varieties, worsened by excessive 
antibiotic consumption, necessitates a multifaceted approach within hepatology. Essential aspects include 
new empirical antibiotic methods, cautious use of prophylaxis, investigation into non-antibiotic options, 
and the implementation of stewardship initiatives. Moreover, early adoption of de-escalation strategies 
through prompt diagnostics, stringent infection control measures, and the exploration of surveillance 
programs are vital measures to tackle the heightened vulnerability to resistant infections in advanced 
cirrhosis and alleviate related adverse health outcomes [40].

Effect of antibiotics on water bodies
On a global scale, the yearly usage of antibiotics exceeds 100,000 tons, prompting increasing concerns 
regarding the fate of these substances. Antibiotics are ubiquitous in the environment, with significant levels 
detected in freshwater reservoirs [41]. Antibiotics have been widely utilized and proven effective in human 
and veterinary medicine. Their beneficial impacts have been recognized across diverse fields including 
agriculture, aquaculture, beekeeping, and livestock farming, where they are utilized as growth promoters. 
Numerous antibiotics have been detected in various environmental sources worldwide, including water 
bodies, industrial waste, sewage, manure, soil, plants, and living organisms [42]. The existence of antibiotic 
contamination in aquatic environments has been noted to reduce the overall variety of microorganisms, 
including those essential for carbon processing and primary productivity [7].

Antibiotics present in wastewater undergo treatment in treatment facilities; however, complete 
removal of these compounds is not achievable using conventional systems [15]. Although WWTPs strive to 
reduce pollutant levels in both urban and rural wastewater, they are ineffective in significantly decreasing 
the concentrations of antibiotics and ARGs [43]. Antibiotics, particularly those used in human and 
veterinary medicine, as well as those employed in agricultural practices and discharged through 
wastewater, permeate the environment. These pseudo-permanent pollutants, namely antibiotics, provoke 
apprehension due to the emergence of ARB, thereby posing a significant hazard to human health [44]. 
Figure 1 shows how antibiotics as contaminants enter the ecosystem and finally affect human life 
negatively. Solid phase extraction (SPE) and rapid resolution liquid chromatography/tandem mass 
spectrometry (RRLC-MS/MS) are analytical techniques utilized to identify the presence of antibiotics in 
various samples, such as surface water, effluents, and sludge. Through the application of these methods, 
approximately 11 classifications of antibiotics have been identified [45].

High levels of antibiotic consumption in Europe, notably in Poland, not only exacerbate environmental 
concerns but also pose substantial risks to public health. The challenges encountered by wastewater 
treatment facilities and the resulting soil contamination highlight the pressing necessity for comprehensive 
measures to tackle antibiotic-related issues and ensure the protection of both the environment and human 
health [46]. Administering sub-therapeutic doses of antibiotics to farm animals and fish as a means of 
promoting growth presents environmental and health hazards. This practice introduces antibiotics that are 
not easily broken down into the environment through multiple pathways, such as the application of manure 
to land and airborne dispersion. Animal waste contributes to the presence of active antibiotic metabolites 
in the environment, leading to concerns regarding antibiotic residues in food, the proliferation of ARB, and 
contamination of aquatic ecosystems. Addressing these challenges requires responsible antibiotic 
management in agriculture to minimize adverse effects on both the environment and human health [47]. A 
study examining two pharmaceutical WWTPs (PWWTPs) tasked with managing fluoroquinolone 
production wastewater revealed impressive removal efficiencies exceeding 95%. However, residual 
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Figure 1. Representing the flow of antibiotics as pollutants in the ecosystem

antibiotics persisted, reaching levels of up to 88 μg/L. Similarly, Chinese PWWTPs demonstrated high 
removal rates (> 90%) for vancomycin, trimethoprim (TMP), and tetracycline; nonetheless, the final 
effluents retained hundreds of micrograms per liter (μg/L) of these antibiotics [48]. Transporting 
wastewater through sewer systems fosters the formation of biofilms on the inner surfaces of pipes, 
providing a habitat for microorganisms derived from wastewater. These biofilms, exposed to antibiotic 
residues and ARB, serve as hotspots for the dissemination and accumulation of ARGs. In a study, 
researchers analyzed antibiotic concentrations, integron (intI), resistance genes (qnrS, sul1, sul2, blaTEM, 
blaKPC, ermB, tetM, and tetW), and potential bacterial pathogens in wastewater and biofilm samples 
collected from the inlet and outlet sections of a pressurized sewer pipe. The most prevalent ARGs, sul1 and 
sul2, were found at a ratio of approximately one resistance gene for every ten copies of the 16S rRNA gene. 
Significant disparities in intI and resistance genes associated with fluoroquinolones (qnrS), sulfonamides 
(sul1 and sul2), and β-lactams (blaTEM) were observed solely between biofilm samples collected at the inlet 
and outlet sections [49]. WWTPs receive inputs from diverse sources, exposing them to antibiotics, metals, 
and chemicals, which collectively foster an environment conducive to HGT. Despite mitigation efforts, 
research indicates that WWTPs are unable to entirely eradicate antibiotics, ARB, and ARGs. As a result, the 
release of WWTP effluent into environments such as surface water, groundwater, marine ecosystems, and 
soil introduces ARB and ARGs, potentially amplifying antibiotic resistance among indigenous 
environmental microorganisms [50]. Hospital wastewater from major urban areas in Vietnam, China, 
Malaysia, and other regions contains significant concentrations of various antibiotics such as CIP, 
norfloxacin (NOR), OFL, ERY, TMP/sulfamethoxazole (SMX), with levels varying from nanograms per liter 
(ng/L) to μg/L. These concentrations are generally comparable to those found in India and some European 
countries, although a few extreme values have been reported in pharmaceutical effluents in Vietnam. The 
presence of these contaminants is attributed to the high production rates and environmental persistence of 
these drugs. Such widespread contamination raises concerns about the potential for environmental and 
human health impacts due to the dissemination of antibiotic residues and the development of antibiotic 
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resistance [51]. In 2018, a study analyzed 17 different antibiotics in the aquaculture environments around 
the Yellow Sea, examining levels in both the wet and dry seasons. The concentration of these antibiotics in 
the water and sediments was found to be relatively low compared to global averages, with 11 antibiotics 
detected in mariculture pond surface waters at concentrations up to 995.02 ng/L. Notably, oxytetracycline 
(OTC) and enrofloxacin (ENR) reached high concentrations in the sediments, peaking at 1,478.29 ng/g and 
895.32 ng/g, respectively. The study highlighted that the culture mode significantly influenced antibiotic 
levels, with greenhouse ponds showing higher concentrations during the wet season, in contrast to outdoor 
ponds. Particularly, turbots in greenhouse ponds exhibited the highest antibiotic accumulation, suggesting 
an impact of cultural practices on antibiotic presence in the aquaculture environment [52, 53]. The 
presence of various antibiotics in treated wastewater from scientific and military stations highlights that 
conventional WWTPs do not entirely remove these pharmaceuticals, leading to their release into adjacent 
seawater. Antibiotics were detected at low ng/L levels in seawater samples near wastewater outfalls [53].

Role of pharmaceuticals in endocrine disruption
The necessity of high-quality water for the survival of humans, as well as flora and fauna, cannot be 
overstated. The aquatic ecosystem faces significant challenges due to industrialization and urbanization. 
Anthropogenic pollutants infiltrate aquatic environments through diverse channels, including industrial 
and household effluents, pharmaceutical residues, and biowastes. These substances exhibit 
bioaccumulation in aquatic systems. Investigations into the surface water of River Taff and River Ely reveal 
that pharmaceutical products are discharged at an average daily load of approximately 6 kg, highlighting 
the extent of contamination [54].

The endocrine system regulates numerous physiological functions within our bodies, which can be 
disrupted by a class of chemicals known as endocrine-disrupting compounds (EDCs). These compounds 
which can be either natural or human-made, are predominantly of anthropogenic origin. EDCs have the 
capability to mimic, amplify, or hinder the actions of endocrine products. Additionally, they may also 
contribute to tumor formation. A significant subset of EDCs interferes with sexual hormonal activities, 
leading to abnormalities in reproductive processes, embryonic development, sexual differentiation, and 
metabolic maturation [55, 56]. FSTRA studies reported that EDCs impair reproduction and drastically 
decrease sperm quality and count, they also have estrogenic effects in males [57].

Gill et al.’s [58] research provides comprehensive insights into the endocrine-disrupting characteristics 
of diethylstilbestrol (DES), a compound initially utilized to prevent miscarriages. Their findings illuminate 
the adverse reproductive impacts observed in male offspring as a result of its use [58].

Effect of endocrine disruptors on female reproduction
A female reproductive cycle may be divided into fetal, prepubertal, cycling adult, pregnant, lactating, and 
reproductive senescent stages. Evaluation of each stage has to be done for the studies regarding the 
endocrine toxicity of chemicals. The estrogenic chemical decreases gonadotropin output, resulting in 
atrophic adult female ovaries. According to the studies, exposure to chlorotriazine caused some rat strains 
to remain in an estrous state for an extended period [59]. Chlorotriazines appear to have an estrogen 
receptor-independent mode of action [60], and the changes in estrous cycle regulation are likely to be 
caused by a disturbance in the hypothalamic-pituitary regulation of ovarian function [61].

Chloroquine, classified as a quinolone derivative, possesses properties such as antipyretic, antiseptic, 
and antibacterial effects. Originally employed as an antimalarial medication since the 1930s, it has now 
found applications in cancer therapy. Additionally, studies have shown a significant increase in insulin 
levels among individuals with type II diabetes when administered chloroquine [62–64]. Chloroquine, which 
has a calcium calmodulin-mediated response, disrupts estrous cyclicity as follicular steroidogenesis and 
pituitary hormone secretion also depend on the same response [65].
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Antineoplastic drug cyclophosphamide has a negative effect on the secretion of progesterone by human 
granulosa cells. Reproductive toxicity can be screened by measuring the human cumulus granulosa cells 
[66]. Progesterone secretion by human granulosa-luteal cells is also inhibited by vinblastine [67]. According 
to Hansmann [68] and Jarrell et al. [69], methotrexate and cyclophosphamide target oocyte. The potential 
targets in oocytes are the zona pellucida, oolemma, cortical granules, yolk, chromosomes, and spindle [68, 
69].

Effect of endocrine disruptors on male reproduction
Disruption of the male endocrine system can manifest at various stages and encompass a range of actions, 
spanning from the hypothalamus and pituitary gland to the testes. Chemicals that exhibit estrogenic, 
antiandrogenic, and Ah receptor-binding activity are the main culprits, as they can directly impact 
testosterone production or influence the regulation of gonadotropin production.

Hydroxyflutamide is used as an antiandrogen to block androgen-stimulated prostate tumor growth. It 
binds to the androgen receptor without activating it and also competes with actual androgens. The 
individuals will be genetically male and show alterations like individuals with androgen insensitivity 
syndrome [70]. Butylated hydroxyanisole, a frequently used antioxidant in the food and pharmaceutical 
industry, has estrogenic potential. The studies conducted by Paul et al. [57] showed a decline in sperm 
quality as the dosage increased in fishes, they also observed morphological changes in the testes of treated 
fishes.

Several pharmaceuticals, including nimodipine, sulindac, tranilast, flutamide, leflunomide, omeprazole, 
etc., are characterized as Ah receptor agonists in various cell lines and animal models [71]. A wide variety of 
PPCPs control endocrine activity which includes sex hormones, glucocorticoids, 17β-estradiol, etc. 
Currently, they are not recognized as endocrine disruptors in the environment. Substances like 
nonestrogenic steroids, high-volume drugs, and personal care products and additives in drugs have to be 
evaluated for their endocrine-disrupting properties in the environment [72].

Pharmaceutical pollution on the aquatic system
Pharmaceutical drugs play crucial roles in human, animal, agriculture, and aquaculture sectors, serving 
purposes like disease treatment and prevention. Their consumption has been steadily rising each year. 
However, the interaction of active compounds with other biological compounds can lead to unforeseen 
environmental consequences [73]. Therapeutic compounds find their way into the aquatic system through 
various sources, contaminating surface water with pharmaceutical substances and their metabolites. To 
preserve a healthy ecosystem and biodiversity of aquatic organisms, it’s crucial to maintain the quality of 
surface water. Analytical techniques play a vital role in identifying and assessing emerging pollution, 
enabling us to take proactive measures to mitigate its impact [74, 75]. The presence of antibiotics in 
wastewater can lead to the evolution of ARB. This phenomenon poses significant risks to human health and 
the ecosystem. Antibiotic and ARGs can have far-reaching consequences, potentially compromising the 
effectiveness of medical treatments and disrupting the balance of microbial communities in the 
environment [76]. Improper disposal of pharmaceutical compounds, coupled with inadequate wastewater 
treatment methods, can result in the accumulation of these compounds in the environment. This 
accumulation can adversely affect non-targeted organisms and induce stress on the ecosystem [77]. 
Developing acceptable management practices is essential for controlling emerging pollutants effectively 
[78]. As per the records, more than 10 million women in the US are taking medicine for birth control [73]. 
17-α-Ethinylestradiol, a type of estrogen commonly found in contraceptive pills, has been observed to 
induce feminization in male fish at concentrations as low as 5–6 ng/L. This phenomenon highlights the 
potential impact of steroid hormones on aquatic organisms and ecosystems. Additionally, the presence of 
steroid hormones can lead to reduced fertility in aquatic organisms, further emphasizing the importance of 
managing and mitigating their release into the environment [73, 79].



Explor Drug Sci. 2024;2:484–507 | https://doi.org/10.37349/eds.2024.00058 Page 493

Source of pharmaceutical chemicals
Drugs like paracetamol undergo metabolism in the gut after administration, with some becoming inactive 
before release into the environment. However, certain drugs can exit the body in their active form through 
excretion, potentially altering the nature of surface water bodies when they enter aquatic systems. This 
highlights the need for understanding the fate of pharmaceuticals in the environment and implementing 
measures to minimize their impact on water quality and ecosystems [75]. Figure 2 depicts the intricate 
pathways of pharmaceutical products entering into the aquatic ecosystem. Toxic pharmaceutical 
compounds from hospitals are often directly discharged into the main sewer systems. This practice can lead 
to the introduction of hazardous substances into WWTPs, where conventional treatment methods may not 
effectively remove all pharmaceutical residues. As a result, these compounds can persist in the environment 
and potentially impact water quality and ecosystem health [79]. Most water resources, including rivers, 
sewage, groundwater, streams, seawater, and drinking water, have been reported to contain 
pharmaceutical pollutants within a range from ng/L to μg/L [80]. Drugs such as antibiotics, analgesics, 
blood lipid-lowering agents, antiepileptics, and β-blockers are consistently being detected in aquatic bodies 
across many countries [65, 68]. Landfill leakage is a significant contributor to aquatic pollution. When it 
rains, water percolates through landfills, picking up various chemicals and contaminants along the way. 
These leachates containing pollutants like heavy metals, organic compounds, and other harmful substances, 
can infiltrate groundwater, rivers, and streams, directly impacting the aquatic ecosystem [66]. In the United 
States, clofibric acid, a major metabolite of lipid regulator, was reported in sewage treatment plants (STPs). 
STPs can also act as significant sources of pollution in aquatic systems due to the incomplete removal of 
pharmaceutical compounds and other pollutants during the treatment process [69]. Agricultural runoff can 
indeed contribute to the presence of pharmaceuticals in water bodies. Antibiotics and hormones are used in 
livestock farming and agriculture, they can be washed off the fields or carried away by rainwater, 
eventually making their way into rivers, lakes, and other water sources through runoff. Once in the water, 
these pharmaceuticals can pose risks to aquatic organisms and even to human health if the contaminated 
water is used for drinking or irrigation of crops consumed by humans [66]. The presence of 
pharmaceuticals in water bodies can indeed alter the natural behavior and composition of microbial 
communities, which can have significant effects on aquatic biodiversity and ecosystem functioning [61].

Impact of pharmaceutical contaminants
Pharmaceutical contaminants enter aquatic systems through various sources, including untreated water 
used for drinking, irrigation, and household activities. This leads to the accumulation of antimicrobial-
resistant bacteria. Pharmaceuticals are primarily developed for the benefit of humans and animals, but 
when they enter the aquatic system, organisms with similar biological characteristics can also be affected 
by the same pharmaco-dynamic effects [71]. In aquatic ecosystems, important processes like 
denitrification, nitrogen fixation, and organic breakdown are typically governed by specific groups of 
bacteria. The presence of antibiotics can disrupt all these processes. Antibiotics may inhibit or alter the 
activity of these bacterial groups, leading to disturbances in nitrogen cycling, organic matter 
decomposition, and other essential ecological processes. As a result, the overall functioning and stability of 
the aquatic ecosystem can be compromised, with potential implications for water quality, nutrient 
dynamics, and the health of aquatic organisms [72]. Sewage effluent containing pharmaceutical residues is 
discharged into streams or other water bodies, and humans and animals can come into direct contact with 
these drugs, leading to potential negative impacts on their health [73].

According to the reports, ketoprofen, fenoprofen, naproxen, mefenamic acid, diclofenac, and ibuprofen 
are among the anti-inflammatory drugs found in the aquatic environment [82]. Physiological factors such as 
pH can influence the activation and effectiveness of drugs. Ibuprofen, also known as 2-(4-isobutyl phenyl) 
propionic acid, is commonly used for its analgesic, anti-inflammatory, and antipyretic properties. 
Interestingly, at a pH below 7, ibuprofen can also act as an antimicrobial agent against Staphylococcus 
aureus. This means that in acidic environments, such as those found in certain parts of the body or in 
laboratory settings, ibuprofen can inhibit the growth of this gram-positive bacterium [83]. Ketoprofen is 
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Figure 2. Source of pharmaceuticals in the aquatic system [81]

also an anti-inflammatory that has higher toxicity to Scenedesmus obliquus [77]. In zebrafish, hatching was 
delayed due to the presence of nonsteroidal anti-inflammatory drugs. Zebrafish, when exposed to 
diclofenac, can also infect the gill formation. Human drugs have also been reported to cause damage to the 
brain, liver, and ovaries of Danio rerio [84].

Antidepressant drugs such as fluoxetine, paroxetine, citalopram, sertraline, venlafaxine, and duloxetine 
contain psychoactive substances which are used for the treatment of physiological disorders, mental illness, 
obsessive-compulsive disorder, panic disorder, attention-deficit disorder, and eating disorders. The 
mechanism of action of these antidepressants involves modulating the levels of neurotransmitters in the 
brain, particularly serotonin, dopamine (DA), and norepinephrine [85]. Aquatic organisms possess similar 
neurotransmitter receptors to humans, which means that the improper use of drugs like antidepressants 
can also impact these species [65]. Fluoxetine, a drug used to treat depression, can interact with the 5-
hydroxytryptamine (5-HT) receptor and trigger neuromuscular activity in the nematode Caenorhabditis 
elegans. According to reports, this antidepressant has also caused neuroendocrine disruption in 
crustaceans and molluscs [78].

Another significant source of contamination is antibiotics, and their use has progressively increased in 
recent years. Quinolones, tetracyclines, macrolides, sulfonamides, and β-lactams are among the types of 
antibiotics commonly found in the environment. The most frequently prescribed antibiotics in human 
medicine include fluoroquinolones, macrolides, and aminoglycosides, whereas in veterinary medicine, 
penicillins, tetracyclines, and macrolides are the most commonly used [77]. Antibiotics have been 
extensively utilized worldwide by humans, animals, and in agriculture. In Germany, ARGs have been 
detected in drinking water biofilm. When antibiotics and resistant bacteria enter the ecosystem, they can 
transform harmless pathogens into life-threatening antibiotic-resistant strains. Additionally, they can elicit 
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allergic responses. Some reports suggest that these drugs can impede the growth of soil bacteria, thereby 
inhibiting natural microbial decomposition. Moreover, pharmaceutical chemicals can alter the habitat of 
invertebrates, leading to reduced feeding, disruption of water balance, decreased growth rates, delayed 
molting, inhibition of pupation, prevention of adult emergence, and disruption of mating [79].

Neurotoxicity of pharmaceutical drugs in humans
The neurotoxicity of pharmaceutical drugs in humans is an inevitable area of investigation within both 
pharmacological and neurological studies. Drugs, whether prescribed for therapeutic purposes or abused 
recreationally, possess the capacity to induce profound effects on the central nervous system (CNS), 
thereby causing structural and functional alterations in neurons and associated cellular elements. An in-
depth comprehension of the diverse complications and underlying mechanisms of neurotoxicity of these 
commonly used drugs is essential for the development of safer medications and the formulation of novel 
strategies aimed at mitigating neurological impairments. This segment of the review paper endeavors to 
explore the diverse array of drugs implicated in inducing neurological complications encompassing both 
pharmaceutical and therapeutic agents, while underscoring the paramount importance of ongoing research 
in revealing their impact on nervous system health and cognitive brain functions.

Cognitive side effects of antiepileptic drugs

Antiepileptic drugs (AEDs) engender cognitive and behavioral deficits by modulating activities of CNS. 
AEDs function either by suppressing neuronal excitability or by augmenting inhibitory neurotransmission. 
Polypharmacy, elevated blood levels of AED, patient age, type or frequency of seizures are various factors 
that contribute to an increased risk of cognitive deficits. The most common cognitive side effects observed 
in AED therapy include sedation, somnolence, distractibility, insomnia, mood variation, and dizziness [86]. 
Notably, adults may manifest depressant cognitive side effects, while children may exhibit aggression and 
hyperactivity. When compared with adult counterparts, children are highly vulnerable to cognitive 
complications of antiepileptic medications due to the impact of these drugs on neurodevelopment [87]. 
Similarly, a previous cohort study proved a higher prevalence of adverse drug events among older 
outpatients [88] attributable to age related decline in homeostatic mechanisms in the body, especially 
within the CNS, liver, and kidneys. Previous researchers proved that neuronal death, replacement with 
proliferating glial cells, and reduction in dendritic synapses are some of the CNS changes associated with 
aging. Age-related organ decline shifted elderly individuals to heightened sensitivity to the side effects of 
benzodiazepines (BDZs), stemming from the accumulation of BDZs and related active metabolites [89].

Side effects of anti-HIV drugs on the central nervous system

Efavirenz, a non-nucleoside reverse transcriptase inhibitor which is used as a medication in the treatment 
of AIDS patients is reported to be associated with various CNS side effects. These manifestations include 
dizziness, disrupted sleep, impaired concentration, drowsiness, abnormal dreaming, unhappiness, 
depression, aggression, increased anxiety, and paranoid and manic reactions [90–93].

Central nervous system toxicity after liver transplantation

Cyclosporine therapy for immunosuppression in patients undergoing liver transplantation can precipitate 
severe CNS side effects like confusion, cortical blindness, quadriplegia, seizures, coma, and white-matter 
discharges, which often manifests in patients with decreased serum cholesterol levels after transplantation. 
A study observed various CNS toxicity symptoms in a subset of liver transplant recipients (13 among 48 
patients) following cyclosporine administration. But all these symptoms have been reversed by dosage 
reduction of cyclosporine [94].

Side effects of benzodiazepines on central nervous system

BDZs are a class of medications that slow down the activity of the brain and nervous system by acting as a 
positive allosteric modulator of gamma amino butyric acid (GABA)-A receptor. As GABA gives a soothing 
effect on the brain, BDZs are commonly prescribed for the management of anxiety, insomnia, epilepsy, 
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seizures, and related mental health conditions. When BDZs are administered orally, it is well absorbed by 
the gastrointestinal tract while in the case of intravenous administration, it fastly diffused to the brain and 
CNS. Alprazolam, clonazepam, lorazepam, midazolam, and diazepam are few BDZ medications [89].

Noteworthy side effects associated with BDZs include dose dependent manifestations such as 
drowsiness, lethargy and fatigue, impaired motor coordination, dizziness, vertigo, mood variations, 
dysarthria, blurred vision, anterograde amnesia, sedation, lack of concentration, eccentric behavior, ataxia, 
etc. Due to slow elimination from the body (because of their lipophilic properties) and significant 
accumulation in fatty tissues, the overmedication of BDZs causes disability in thinking, slurred speech, 
confusion, etc. Prolonged usage of BDZs further causes the development of tolerance, dependence, and 
withdrawal symptoms upon abrupt cessation [89, 95]. Broadly, cognitive impairment is the major BDZ 
mediated CNS toxicity which significantly increases the risk of falls, fractures as well as the incidence of 
motor vehicle accidents [96]. Patients may experience anterograde amnesia, hindering their ability to 
recognize loved ones and recall significant portions of their lives. Additionally, delirium (serious alteration 
in mental function) and disinhibition (inability to withhold an inappropriate or unwanted behavior) are the 
other two concerning effects of the toxic accumulation of BDZs and their metabolic byproducts [89]. Elderly 
patients in the intensive care unit (ICU) are especially susceptible to BDZs induced delirium, which 
increases the rate of morbidity and mortality [97, 98].

Neurotoxicity of methamphetamine

Methamphetamine (METH) is a strong stimulant of CNS which is mainly used as a recreational drug and 
rarely used as a second line treatment for obesity and attention deficit hyperactivity disorder. High dose of 
METH usage leads to various neuropsychiatric problems like agitation, anxiety, paranoia, psychosis, 
cerebral stroke, seizures, schizophrenia, and attention and memory deficits [99–103]. Some of the serious 
METH induced neurotoxic consequences are neuronal apoptosis, impaired dopaminergic and serotonergic 
functions, astrocytosis, and microgliosis [104–109]. Some previous studies reported an increased risk of 
Parkinson’s disease among METH users [109–112]. METH-associated brain damage involves the 
destruction of DA and serotonin transporters (DAT and 5-HTT) that leads to decreased levels of DA [113–
115]. The METH users showed a significant reduction in grey matter volume in cortical and hippocampal 
regions of the brain [116, 117]. The METH neurotoxicity is mediated by the generation of reactive oxygen 
species such as hydrogen peroxide, superoxide radicals, and hydroxyl radicals [118–120]. The microglial 
and astrocyte activation in METH exposures leads to increased secretion of pro-inflammatory cytokines in 
the brain [121–125]. Mitochondrial dysfunction and activation of endoplasmic reticulum stress are the 
other two key factors causing METH induced neurotoxicity [101, 126–128]. METH alters the expression of 
transcription factors like c-fos, fosB, Fra-2, Egr-1, Egr-2, Egr-3, etc. [129–132].

Neurotoxicity of MDA & MDMA

Amphetamine derivatives like 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxy-
methamphetamine (MDMA) are mainly used for recreational purposes and mood alterations in humans. 
Among these two drugs, MDMA is more toxic to serotonin axons in the brain of primates. Individuals ex-
posed to MDMA demonstrate reduced levels of cerebrospinal fluid, 5-hydroxyindoleacetic acid (CSF 5-
HIAA, a major metabolite of 5-HT) [133, 134].

Anesthetic neurotoxicity

Several animal and observational human studies proved the occurrence of neurotoxic changes in the 
developing brain resulting from exposure to general anesthetics leading to inauspicious 
neurodevelopmental outcomes later in life. Anesthetics like propofol, etomidate, sevoflurane, desflurane, 
and isoflurane accelerate inhibitory GABA receptor activity, and sedatives like ketamine block excitatory 
glutamate receptors and thus induce various neurotoxic effects in laboratory animals [135]. Commonly 
used anesthetics like injectable propofol and inhalable isoflurane induce apoptosis in the neonatal brains of 
primates [136, 137]. In primates, prolonged exposure to ketamine (24 h) during brain development leads to 
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permanent deficits in memory and attention [137]. The age of exposure and dosage of anesthetic are the 
two major key factors influencing the extent of damage. Studies on nonhuman primates proved that these 
drugs induce various histological changes like widespread apoptosis, cell death, reduced synapse numbers, 
morphological alterations in neurons and hindered neuron formation in the hippocampus, and impaired 
learning and academic performance [135, 138]. Experiencing multiple instances of anesthesia and surgery 
can exacerbate learning deficits [139].

Neurotoxicity of spinal drugs

Limited studies are available to record the neurotoxicity of various drugs employed for spinal anesthesia. 
Laboratory studies suggest that local anesthetics exhibit neurotoxicity at high concentrations, while 
lidocaine and tetracaine possess neurotoxic potential at clinically relevant concentrations [140]. Clinically 
accepted concentrations of some local anesthetics cause nerve cell injury. Direct application of 2.5–5% 
lidocaine resulted in a threefold increase in intracellular calcium and 20% cell death in the neuronal cell 
line during one hour of exposure [141]. Previous clinical and laboratory evidence reported that spinal 
analgesics like morphine, sufentanil, clonidine, neostigmine, and a majority of antioxidants, preservatives, 
and excipients used in commercial formulations appear to have minimal neurotoxicity [142].

Rabbit studies reported that there are no neurologic complications seen with clinically used 
concentrations of tetracaine, lidocaine, bupivacaine, or chlorprocaine while higher concentrations of 
tetracaine and lidocaine caused histopathologic and neurological impairments [140]. Four cases of short-
lived neurological symptoms following spinal anesthesia with 5% hyperbaric lidocaine were documented 
by Schneider et al. [143]. About 4–33% incidence of transient neurological symptoms (TNS) following 
spinal anesthesia with lidocaine are documented, depending on the type of surgical procedure [144, 145]. 
Although laboratory models showed neurotoxicity with all local anesthetics, extensive surveys of spinal 
anesthesia complications indicate their relative safety in humans [142].

Some epidemiologic studies have proved the occurrence of numerous neurological complications 
associated with spinal anesthesia. However, the incidence of these complications among patients remains 
relatively low when compared with the overall patient population. Radiculopathy, cauda equina syndrome, 
persistent and transient paresthesia, paraplegia, paresis, exacerbation of disc disease, meningitis, foot drop, 
neurologic exacerbation, and TNS are various neural problems associated with spinal anesthetic drugs 
[144–150]. Further investigation through human studies is necessary to gain a better understanding of the 
precise issues associated with the neurotoxicity of spinal drugs, as this domain remains insufficiently 
explored.

Conclusions
In conclusion, antibiotic resistance stands as a global health and environmental crisis rooted in genetic 
variation, HGT, and extensive antibiotic use. Urgent strategies and responsible antibiotic practices are 
essential to address the escalating impact on human health and the environment. Coordinated global efforts 
are imperative to combat this crisis and secure a sustainable future. The study’s focus on pharmaceutical 
contamination in aquatic ecosystems reveals alarming endocrine-disrupting effects, impacting both female 
and male reproductive cycles. Disturbances in estrous states and disruptions in ovarian function raise 
concerns about broader ecosystem health implications. The multifaceted nature of pharmaceutical-induced 
endocrine disruption, affecting testosterone production and sperm quality in males, emphasizes the need 
for immediate measures to mitigate potential risks. The diverse sources of pharmaceutical contaminants, 
from improper disposal to hospital discharge and agricultural runoff, necessitate comprehensive 
evaluations and urgent actions to mitigate adverse effects on both environmental and human health. 
Neurotoxicity of drugs underscores the interplay between pharmacology and neurology. Increased 
vigilance, comprehensive risk assessment, and innovative therapeutic strategies are essential to mitigate 
these harmful effects and safeguard neurological health. Through advanced research in pharmaceutical and 
scientific fields, we can develop safer medications and improve public health.
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To effectively tackle the pressing issue of antibiotic resistance and pharmaceutical contamination, a 
comprehensive and multi-faceted approach is essential. Strengthening regulatory frameworks is crucial, 
with governments needing to enforce stricter controls over the production, distribution, and disposal of 
pharmaceuticals. Public and healthcare professional education campaigns can promote responsible 
antibiotic use and adherence to prescribed treatments. Enhancing surveillance and monitoring of 
pharmaceutical contaminants in ecosystems, alongside investing in research and development for new 
antibiotics and alternative therapies, is vital. International collaboration is also necessary to harmonize 
regulatory standards and share research outcomes. Improvements in waste management practices, 
including better infrastructure for pharmaceutical disposal and treatment, can significantly mitigate 
environmental contamination. Developing non-antibiotic therapies can reduce reliance on antibiotics, thus 
decreasing the potential for resistance. Finally, fostering public-private partnerships can pool resources 
and expertise, offering a robust response to these environmental and public health challenges. These 
strategies collectively can help manage antibiotic use and mitigate their adverse effects on health and the 
environment.
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