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Abstract
Aim: The lipophilicity of amino acids plays a crucial role in delineating their physicochemical properties, 
offering insights into solubility, binding affinity, and bioavailability, properties that are a cornerstone for 
the use of peptides as therapeutic agents. In this study, we employ the integral equation formalism 
polarizable continuum model/Miertus-Scrocco-Tomasi (IEFPCM/MST) implicit solvation model to compute 
the n-octanol/water partition coefficient, serving as a lipophilic descriptor for non-standard amino acids. 
This approach allows us to expand upon our prior scale developed for canonical amino acids.
Methods: Using the IEFPCM/MST implicit solvation model, we extended our previous work on the 
hydrophobicity scale of amino acids. To this end, we employed two structural models, Model 1 and 2, 
differentiated solely by their C-terminal capping groups using an N- or O-methyl substituent, respectively.
Results: Our findings revealed substantial similarities between the models, validating the lipophilicity 
values for the non-standard side chains. Differences were observed in fewer cases, indicating an effect of 
the capping group on the side chain hydrophobicity. This effect is expected as one model contains a 
hydrogen bond donor (Model 1) while the other one uses a hydrogen bond acceptor (Model 2).
Conclusions: Overall, both models exhibit good correlations with the experimental values, with Model 1 
showing lower statistical errors. In addition, our predictions were able to correctly predict the 
experimental hydrophobicity change due to the number of acetylated lysines in peptide pairs determined 
by HPLC, suggesting that our scale can be employed for proteomics studies that include post-translational 
modifications beyond acetylation.
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Introduction
Amino acids are organic molecules that constitute the basic building blocks of proteins. From a functional 
point of view, mainly directed by their sequence and 3D arrangement, they play a fundamental role in a 
multitude of biological processes and functions in living organisms, such as enzymatic catalysis, cell 
signaling, structural support, or immune response, among others [1].

Non-standard amino acids, also known as non-canonical or non-proteinogenic amino acids, deviate 
from the conventional ones typically present in proteins and synthesized by ribosomes in living organisms. 
Unlike the standard set of 20 amino acids which are enciphered by the genetic code and commonly 
incorporated into protein synthesis during translation [2], non-standard amino acids encompass a wide 
range of structurally diverse molecules, that may occur naturally or be synthesized artificially. Some non-
standard amino acids occur naturally in certain organisms, although they are not part of the standard 
genetic code. For instance, selenocysteine and pyrrolysine, are examples of non-standard amino acids that 
are incorporated into proteins in certain bacteria and archaea, respectively [3].

Shifting the focus to the physicochemical aspect of amino acids and/or proteins, is important consider 
their lipophilicity, a fundamental feature with a clear impact on biology, pharmacology, medicinal 
chemistry, and drug discovery [4, 5]. In the context of proteins is important for understanding processes 
such as protein folding, where hydrophobic amino acids tend to cluster in the protein interior away from 
the aqueous environment. It also influences ligand binding, affecting the binding affinity and specificity of 
proteins and contributing to the formation of receptor-ligand interactions and also in protein-protein 
interactions, promoting the formation of protein complexes, among others. In addition, recent studies have 
created energy functions based on lipophilicity for membrane-protein studies of receptors, channels, and 
transporters [6]. Given these reasons, it is crucial to have tools that permit the quantification of the degree 
of hydrophobicity of proteins.

For proteins, lipophilicity is primarily influenced by the specific features of the amino acid side chains. 
Consequently, one of the main strategies, involves quantifying the individual hydrophobicity of each amino 
acid, leading to the development of lipophilicity scales. These scales consider various properties such as 
partitioning of small molecules in a bulk solvent, employing knowledge-based techniques based on 
structural data and/or using experimental information coming from biological assays [7–9].
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By employing these scales, it is possible to generate lipophilicity profiles of peptides and/or proteins 
based on the individual hydrophobicity values of residues, assuming an additivity principle. However, 
depending on the employed scale, variations can occur not only in the absolute magnitude of residues but 
also in their relative values. These variations pose difficulties in correlating different scales, as well as 
reflect discrepancies between materials, methods, and experimental conditions that permit the definition of 
each scale.

In this line, in our previous study [10], we developed an extensive lipophilicity scale of the 20 standard 
amino acids based on theoretical computations that took into account the local context of each amino acid 
in the proteins deposited in the Dunbrak’s rotamer library [11]. Thus, this scale incorporated the structural 
features of the conformational landscape of amino acids, as well as the impact of pH, providing a reliable 
depiction of the pH-adapted lipophilicity profile in peptides and proteins.

However, when we move to non-standard amino acids, derivatives that differ in structure or 
composition from the 20 standard ones usually found in proteins, set a challenge to have new adaptations 
of the classical lipophilicity scales to be reliably standardized to be applied to those biomolecules with non-
canonical modifications.

Recent efforts have focused on the impact of the presence of non-canonical amino acids on peptide and 
protein structure and function. In fact, this new class of amino acids has found an excellent opportunity for 
use in the design of peptidomimetics. This is mainly because they have been identified naturally and have 
been found to improve both the stability of the structures and their bioactivity [12], which clearly points 
out that all this knowledge promises to deliver new biologically active molecules and therefore that non-
standard amino acids (NSAAs) are and will be fundamental in drug discovery. Concerning structure, it has 
been shown that the presence of such residues decreases the accuracy of structure prediction tools, so it 
has been recommended to simulate first using the proteinogenic amino acids and then perform the 
modification to carry out molecular dynamic studies [13]. Regarding function, non-canonical amino acids 
have emerged in the field of synthetic biology, focusing mainly on the research of biomaterials looking for 
adhesion capabilities, also in the design of antimicrobial peptides improving their protease resistance, 
solubility, and half-life [14]. Such efforts have led to novel structure/activity studies on modified peptides 
that present chemoinformatics tools to efficiently characterize the chemical space of these new peptides 
and thereby better understand their activities, e.g., their antimicrobial activity against multidrug-resistant 
bacteria [15].

In the context of the lipophilicity for non-canonical amino acids, prominent examples highlighting the 
significance and relevance of this topic include recent studies by Kubyshkin (2021) [16] and Oeller et al. 
(2023) [17]. The computational work of Oeller et al. introduced the Cambridge solvation post-translational 
modifications (CamSol-PTM) tool, which offers a rapid and accurate methodology for predicting the 
solubility of peptides containing non-standard amino acids. Regarding to the experimental work of 
Kubyshkin, aimed to develop an experimental lipophilicity scale incorporating both coded and non-coded 
amino acids, using the n-octanol/water partition coefficient. This work, based on N-acetyl and O-methyl 
amino acid analogs, determined the logP for these synthetic compounds using the nuclear magnetic 
resonance (NMR) technique, which provides a valuable opportunity to validate computational tools for 
lipophilicity determination. However, it has time constraints in case of generating new chemical 
modifications due to the experimental protocol to be implemented. Thus, a computational strategy with 
adequate accuracy to reproduce these experimental values can alleviate the laborious and time-consuming 
process of the experimental techniques and can offer the advantage of being able to apply a rapid and 
straightforward strategy to calculate the lipophilicity upon any modification to create a new non-standard 
amino acid.

Therefore, the present work aims to expand our previous work on pH-dependent lipophilicity scale of 
amino acids [10], specifically the scale that reproduces the behavior of residues in solvent-like 
environments (SolvL scale), by extending it to a set of non-standard amino acids presented and 
experimentally measured by Kubyshkin in 2021 [16]. The objective is to test, validate, and update our 
lipophilicity scale to properly account for this descriptor on non-coded amino acids.
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Materials and methods
Dataset

In the present article, we selected different non-canonical amino acids (see Tables S1–6) that had been 
previously investigated and published in an experimental study [16]. The work presented by Kubyshkin 
[16] focused on examining the experimental lipophilicity of non-standard amino acid derivatives 
originating from methionine, phenylalanine, tyrosine, tryptophan, lysine, and proline using the n-
octanol/water system. In our study, non-taking into account the standard versions of amino acids, a total of 
57 non-canonical amino acids have been investigated. This includes 7 modifications of methionine, 4 of 
lysine, 9 of phenylalanine, 4 of tyrosine, 25 of proline, and 8 of tryptophan.

For each molecule, we considered two variants regarding the N- and C-terminal capping groups. These 
end fragments are responsible for mimicking the peptide bond which confers rigidity to these regions, as 
well as, aiming to mimic the physicochemical behavior of the amino acid when present inside a protein, 
rather than in an individual state. Our study included in parallel both variants for all amino acids, in order 
to preserve the original capping groups from our previous study [10], but also to compare with those used 
by Kubyshkin [16] in his experimental study (see Figure 1).

Figure 1. Chemical scaffolds of the capping group models used for the amino acids studied in this article: N-methyl (in blue), O-
methyl (in green), and Acetyl group (in red). In the case of proline, scaffolds were slightly diverse, due to the natural features of 
this amino acid (see Figure S1)

Figure 1 shows the first variant, known as “Model 1”, which involves the introduction of an N-methyl 
(NME) group at the N-terminal end and an acetyl (ACE) group at the C-terminal end of the derivatives. 
“Model 2” uses the capping groups of the experimental data published in Kubyshkin’s [16] article, which 
presents slight modifications. While the C-terminal group remains the same, the N-terminal end features an 
O-methyl (OME) group instead of the NME group.

This a priori small change presumes to have a reasonable impact on the hydrophobicity of the studied 
compounds. Since the NH to O modification supposes the loss of a hydrogen bond donor interaction and 
translates into an increase of lipophilicity, like the experimental values of N-methylacetamide (logP = –1.05) 
and methyl acetate (logP = 0.18) reported by Hansch et al. in 1995 support [18].

Using the DataWarrior software [19], within the framework of Model 1 diverse simple descriptors 
were calculated to better capture the chemical diversity of the studied sets. Thanks to that it could be 
highlighted that, the molecular weights of the explored molecules lie in the range of 168 to 339 g/mol (see 
Figure S2). The total number of rotatable bonds varies from one to nine (see Figure S3). Additionally, the 
count of hydrogen bond acceptors spans from four to seven (see Figure S4), while hydrogen bond donors 
range from one to four (see Figure S5). In the context of Model 2, which involves substituting the NH group 
with an oxygen atom in one of the capping groups, there is an approximate one-unit increase in molecular 
weight. Simultaneously, there is a decrease of one unit in the count of hydrogen bond donor, while the 
number of acceptors remains unchanged. For more detailed information check Tables S7–12 in the 
Supplementary material.

Concerning their lipophilicity, if we consider the difference of each non-standard amino acid compared 
to the original, based on experimental values reported by Kubyshkin [16] for methionine derivatives, four 
of them are slightly more lipophilic, and three are more hydrophilic, with variations ranging from plus 0.80 
units (most lipophilic) to minus 1.92 (most hydrophilic). In the case of lysine, all derivatives are more 
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hydrophilic than the canonical, with the most marked difference being 2.43 units. Moving to tyrosine, 
among the four cases, except for a single case (Dopa) that is slightly more hydrophilic, all others are more 
lipophilic, despite moving in a narrow range from 0.50 (most hydrophilic) to 0.69 (most lipophilic).

For phenylalanine, five derivatives are more lipophilic, three are more hydrophilic, and one has the 
same experimental logP value. The variation range spans 2.29 units, from the most hydrophilic to the most 
lipophilic. A similar situation is observed for tryptophan derivatives, where out of the eight cases, only two 
derivatives with polar groups (5-amino and 5-hydroxy) are more hydrophilic than the standard residue 
(1.46 units less than the most hydrophilic and 1.17 units more than the most lipophilic, resulting in a range 
of 2.63 units). Among the 25 proline cases, except for six instances, all are more lipophilic, with the most 
lipophilic being 1.59 units greater than standard proline and the most hydrophilic being 0.93 units less 
lipophilic.

We decided not to include some tyrosine derivatives containing iodine atoms in our study. This 
decision was based on the limitations of the DFT-based integral equation formalism polarizable continuum 
model/Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation method used for estimating solvation 
energies, as it lacks parameterization for iodine atoms. However, this method does include 
parameterization for other halogen atoms like fluorine, chlorine, and bromine, which present minimal 
differences experimentally when compared to iodine derivatives. Hence, we included molecules containing 
these three halogen atoms in our study. A similar criterion was taken in the exclusion of selenomethionine 
from the analysis since the selenium atom is also not included in the IEFPCM/MST current parametrization 
[20].

Conformational studies and logP estimations

All molecules were designed using Avogadro software (version 1.1.1) [21]. Then, we employed OpenBabel 
2.4.0 genetic algorithm to stochastically conduct a preliminary generation of the preferred conformations of 
the amino acids based on energy score [22]. Due to the structural complexity of some molecules (with 
several rotatable bonds ranging from 1 to 9), we limited the generation of conformers to a maximum of 100 
structures, to make a balance between a complete conformational landscape of them, but at the same time 
deal with an acceptable number of conformers.

Then, generated geometries of the conformers in both water and n-octanol were optimized using the 
B3LYP/6-31G(d) level of theory [23–25]. The influence of solvent on the geometric parameters was 
considered by employing the IEFPCM/MST model [26–28], integrated into a local version of Gaussian16 
[29]. The minimum energy state of optimized geometries in each solvent was confirmed by inspecting the 
vibrational frequencies, excluding those conformations presenting negative ones. Afterward, thermal 
corrections were introduced to estimate the relative free energy of the conformers in water and n-octanol. 
Also, single-point energy calculations were carried out in the gas phase to evaluate the solvation free 
energy of each conformation. Those redundant conformers that after visual inspection converged in the 
same geometry were eliminated to avoid weight imbalance between both solvents. Obtaining a final 
conformational distribution in both solvents (like the one highlighted in Figure S6). Finally, the logP value 
was estimated by considering the Boltzmann-weighted distribution of the conformational families obtained 
in water and n-octanol.

Capping group reference value based on glycine residue

To ensure that the logP values obtained from our computations were exclusively influenced by the inherent 
characteristics of their side chains rather than the capping groups, a reference framework was 
implemented. This involved considering the computationally predicted logP value for glycine, a molecule 
lacking a heavy atom side chain, but still marked by the influence of capping groups. In the context of the 
derivatives estimated in Model 1 (incorporating the ACE and NME capping groups), an adjustment was 
introduced by adding +0.17 logP units to the calculated value. This value originated from the disparity 
observed between the glycine amino acid value as reported by Zamora et al. [10] in their 2019 publication 
and the experimental value documented by Fauchère and Pliska [30] on their published scale. Conversely, 
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within the framework of Model 2 (incorporating the ACE and OME capping groups), a correction was made 
by subtracting –0.78 logP units. This value reflected the difference existing between the logP value 
computed using the IEFPCM/MST approach and the experimental value detailed in Kubyshkin’s article [16]. 
Additionally, the structural models used in our previous work [10] did not contain the terminal methylated 
amide present in Model 1 of this work. However, the effect of methylation is well-known, leading to an 
increase of logP values by approximately 0.60 units (see Table S13) where we report the computed values 
for the 20 canonical amino acids using the capping group of the methylated amide). Furthermore, previous 
research conducted by our group has already explored models featuring methyl groups for hydration 
computations [31]. Consequently, for the present work, we decided to add a methyl group to better mimic 
the protein environment and facilitate comparison with the ester model (Model 2) used by Kubyshkin [16].

Results
This work focuses on the reproduction of the experimental values obtained for Kubyshkin [16] using our 
continuous solvation model. The discussion will be done by amino acid type as follows.

Methionine derivates

The canonical residue methionine is an essential amino acid for its antioxidant effect by reacting with 
oxidizing species [32], therefore, the tuning of its properties, e.g., lipophilicity, may be relevant to enhance 
its bioactivity. To this end, Figure 2 shows a consistent behavior between Models 1 and 2. Notably, most 
lipophilic moieties exhibit a congruent (response about the standard methionine residue values). In Model 
1, the logP value is near zero, while in Model 2 there is a slightly augmented lipophilicity (0.27). More 
detailed values can be observed in Table S14.

Figure 2. Partition coefficients for methionine (Met) derivatives using Models 1 (left) and Models 2 (right). Standard Met residue 
value is present in the central line of each representation. Nonstandard residue values more lipophilic and more hydrophilic than 
the original one, are represented in yellow and blue bars, respectively. Experimental values are represented in orange bars. 
Detailed experimental data can be found in Table S14

Nonstandard residues ethionine (Eth), norvaline (Nva), norleucine (Nle), and trifluoronorleucine 
(Tfnle) exhibited a more lipophilic profile than methionine, with logP values moving between 0.20 and 1.82, 
considering both models. This behavior is logical, attributable to the aliphatic nature of these derivatives 
(Nle, Nva, and Eth), or the addition of halogen moieties, exemplified by Tfnle.
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In the case of hydrophilic derivatives, methionine sulfoxide (MetO) and azidohomoalanine (Aha) a 
consistent pattern is observed. The introduction of functional groups such as azide or sulfoxide provoked a 
discernible alteration in the lipophilic profile of methionine, culminating in marked negative values, moving 
between –0.90 and –1.20, considering both models. This is to be expected due to the high polarity of the 
oxygen and nitrogen atoms that confer hydrogen bond acceptor properties.

One of the most evident divergences between both approximations arises in the case of methoxinine 
(Mox), characterized by the replacement of the sulfur atom with an oxygen moiety relative to the standard 
methionine structure. Model 1 gives a sub-zero value of –0.65, whereas Model 2 manifests a migration 
towards an apolar value of 0.46. This small incongruity may be ascribed, at least in part, to the presence of 
an O-methyl capping group in Model 2, different from the NME capping group featured in Model 1. The 
computational method IEFPCM/MST elucidates a propensity to increase lipophilicity concerning Model 1, 
accentuated by the alteration of a nitrogen-hydrogen moiety to oxygen, resulting in the loss of a donor 
hydrogen bond interaction, a structural modification that IEFPCM/MST tends to penalize towards a more 
lipophilic value.

Although the influence of capping groups is notably adjusted by the previously commented corrections 
in the methodological section, certain Model 2 values are corrected starting from an overestimated 
lipophilic value, and therefore exhibiting an inclination towards greater lipophilicity. This tendency is also 
observed in Eth and Tfnle cases, that present a difference of 1–1.2 logP units between Models 1 and 2.

According to correspondence with experimental data (Table S14), in Model 1, apart from Aha (+1.09 
logP units), which contains a chemical group that tends to present difficulties in their estimation, all 
methionine cases maintain differences lower than 1 logP unit. Instead, in Model 2, two cases are above 1 
unit of difference, more specifically Tfnle (1.10 units) and Mox (1.11 units), probably ascribed to the 
presence of groups that exaggerate their lipophilic profile.

Aromatic derivates

In our study, we analyzed modifications of the main aromatic residues, tyrosine, phenylalanine, and 
tryptophan. These residues have several functions that maintain the structure and function of proteins. 
Interactions with cations are essential for maintaining bioactive protein conformations [33]. Thus, any 
structural modification of these residues will have an impact on both their lipophilicity and aromaticity and 
thus on the structure/activity relationships.

Tyrosine derivates

Turning our attention to tyrosine derivatives (depicted in Figure 3), a similar pattern to methionine is 
observed, the logP value tends to augment lipophilicity in Model 2 (0.52), while registering a slightly 
hydrophilic quotient of –0.02 in Model 1. More detailed values can be consulted in Table S15.

Delving into the assessment of the most lipophilic derivatives, a discernible hierarchy emerges, with 3-
fluorotyrosine (3-F-Tyr), 3-nitrotyrosine (3-NO2-Tyr), and 2,3,5,6-tetrafluorotyrosine (2,3,5,6-tetraFTyr) 
exhibiting proportional lipophilic tendency. Within Model 1, their logP values span from 0.36 to 1.66, while 
Model 2 assigns values between 0.59 and 2.10—a correlation that is consistently maintained across both 
models, with the latter consistently indicating a slightly higher lipophilicity.

Conversely, a notable disagreement emerges in the characterization of the Dopa derivative. While 
Model 1 classifies it as a hydrophilic residue compared to the standard tyrosine (–0.78), Model 2 designates 
an equivalent lipophilicity to the reference amino acid (0.52). Once again, Model 2 tends to give more 
lipophilic values in certain cases with respect to Model 1. A trend was observed to a greater or lesser extent 
in the other tyrosine derivatives. From a chemical point of view, the main difference between tyrosine and 
Dopa is that the latter has an additional hydroxyl group, a hydrophilic group. Therefore, it is expected that 
Dopa should have a logP value more similar to that of Model 1 (–0.78), which is more hydrophilic and closer 
to the experimental value reported by Kubyshkin (–0.21).
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Figure 3. Partition coefficients for tyrosine (Tyr) derivatives using Models 1 (left) and Models 2 (right). Standard Tyr residue 
value is present in the central line of each representation. Nonstandard residue values more lipophilic and more hydrophilic than 
the original one, are represented in yellow and blue bars, respectively. Experimental values are represented in orange bars. 
Detailed experimental data can be found in Table S15

In this case, all Model 1 estimations clearly maintain under a 1 logP unit difference with respect to the 
experimental value. The only case with greater deviation is 2,3,5,6-tetraFTyr, present in Model 2, which 
shows an overestimation of 1.12 units in logP, probably due to the simultaneous presence of 4 fluorine 
atoms in their structure.

Phenylalanine derivates

In a similar line with observations in other derivatives, the logP value associated with standard 
phenylalanine (see Figure 4) reveals a discernible contrast between Model 2 (1.60) and Model 1 (0.61), 
reflecting a notable increment of one unit in lipophilic propensity within the former. Detailed values can be 
checked in Table S16.

The most lipophilic non-standard residues coincide between both models, encompassing 4-
fluorophenylalanine (4-F-Phe), 4-chlorophenylalanine (4-Cl-Phe), 4-trifluoromethylphenylalanine (4-CF3-
Phe), and 4-bromophenylalanine (4-Br-Phe). In Model 1, this subset gives logP values ranging from 1.52 to 
2.92, while Model 2 attributes values span from 1.79 to 3.92. Despite not being an identical range, a certain 
proportionality is maintained between the 4 residues (4-F-Phe < 4-Cl-Phe < 4-CF3-Phe < 4-Br-Phe). All of 
them have in common that they are residues with halogen groups where those more lipophilic halogen 
residues (Br) correspond to those that are less lipophilic (F).

Clear disparities appear in two cases. The characterization of methyltyrosine within Model 1 denotes 
an apolar amino acid, diverging from Model 2’s classification as slightly polar relative to the reference 
phenylalanine value. Although the absolute values in both models (1.42 vs. 1.48) closely approximate the 
experimental value of 0.92—which unmistakably denotes an apolar nature—the discrepant classifications 
stem from Model 2’s overestimation of the lipophilic propensity of standard phenylalanine (valued at 1.60), 
influencing the classification. Also, a slight discrepancy between models of the amino acid 4-
(Acetylamino)phenylalanine is observed, being more hydrophilic in Model 1 than in Model 2 with a 
difference of 1.53 units between them.

Delving into experimental values consonance, just some specific cases present deviations greater than 
1 unit of logP: 4-azidophenylalanine (2.13 units in Model 1 and 1.32 in Model 2), 4-bromophenylalanine 
(2.00 units Model 2) and 4-acetamidophenylalanine (1.16 units in Model 2). All cases are in line with other 
situations observed.
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Figure 4. Partition coefficient for phenylalanine (Phe) derivatives using Models 1 (left) and Models 2 (right). Standard Phe 
residue value is present in the central line of each representation. Nonstandard residue values more lipophilic and more 
hydrophilic than the original one, are represented in yellow and blue bars, respectively. Experimental values are represented in 
orange bars. Detailed experimental data can be found in Table S16

Tryptophan derivates

In this specific scenario, differences between Model 1 and Model 2 about the logP value assessment for 
standard tryptophan exhibit a nearly negligible difference. As evidenced in Figure 5, Model 1 assigns a value 
of 1.37, while its Model 2 counterpart presents a value of 1.71, illustrating a marginal deviation of merely 
0.34 units. It is worth noting that, both of these values closely approximate the experimental measurement 
(1.20), differing between 0.17 to 0.51 logP units, denoting a modest shift towards heightened lipophilicity. 
More exact values are available in Table S17.

Figure 5. Partition coefficient for tryptophan (Trp) derivatives using Models 1 (left) and Models 2 (right). Standard Trp residue 
value is present in the central line of each representation. Nonstandard residue values more lipophilic and more hydrophilic than 
the original one, are represented in yellow and blue, respectively. Experimental values are represented in orange bars. Detailed 
experimental data can be found in Table S17
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A clear trend emerges, demonstrating the congruence in residue classification across both models. On 
one hand, residues exhibiting enhanced polarity relative to standard phenylalanine are characterized by the 
introduction of aliphatic or halogen substituents. Examples encompass 5-methyltryptophan (5-CH3-Trp), 5-
fluorotryptophan (5-F-Trp), 5-chlorotryptophan (5-Cl-Trp), 1-methyltryptophan (1-CH3-Trp), 6-
bromotryptophan (6-Br-Trp), and 5-bromotryptophan (5-Br-Trp), characterized by absolute values 
ranging from 1.37 to 4.07 in Model 1, and 1.79 to 4.66 in Model 2. On the other hand, polar residues are 
exemplified by 5-aminotryptophan (5-NH2-Trp) and 5-hydroxytryptophan (5-OH-Trp), exhibiting values of 
–0.24 and 0.42 in Model 1, and 0.01 and 0.28 in Model 2, respectively. While the trend holds true for 
hydrophilic residues, certain alterations in the order become evident in the case of hydrophobic derivatives, 
particularly noticeable in the order of bromine and methyl derivatives.

In this case, divergent values compared to experimental ones are, in both models, the two compounds 
with bromine atoms: 5-Br-Trp and 6-Br-Trp, being always too lipophilic. For 5-bromotryptophan, the 
difference is between 1.56 and 1.73 logP units, and for 6-bromotryptohan is between 1.34 and 2.29. The 
rest of cases maintain values lower than 1 logP unit.

Lysine derivates

This amino acid represents the most frequently post-translationally modified so it is no coincidence its 
impact on protein regulation and function [34]. The reference logP value for standard lysine is taken from 
Zamora et al. [10], which gives an approximate logP of –0.40 for the amide model (the derived experimental 
logP from the Fauchère’s experimental [30] logD7.4 = –3.07 and using a pKa = 10.0 yields an experimental 
logP of –0.47) and 0.17 for the N-acetyl-L-amino-acid-N-methyl amide (Model 1) residue (see Table S13). 
Based on that, as can be seen in Figure 6, most lipophilic nonstandard residue is S-allylcysteine (Sac), which 
have almost identical values in one each model, around ~1.30, respectively. Absolute values can be checked 
in Table S18.

Figure 6. Partition coefficients for lysine (Lys) derivatives using Models 1 (left) and Models 2 (right). Standard Lys residue value 
is present in the central line of each representation. Nonstandard residue values more lipophilic and more hydrophilic than the 
original one, are represented in yellow and blue, respectively. Experimental values are represented in orange bars. Detailed 
experimental data can be found in Table S18. For more detailed information from the Lys logP reference value (for Models 1 
and 2), check Supplementary material

However, discrepancies manifest in the two other cases. Concerning N-propargyloxycarbonyl-lysine 
[(Pro)Lys], Model 1 considers it slightly polar (–0.45), whereas Model 2 positions it distinctly as more 
apolar (0.57), but in both cases more apolar compared to coded lysine (1.11). Let us mention that, these 
differences, although not negligible, are within the range found even in experimental measurements.

http://
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Figure 7. Partition coefficient for proline (Pro) derivatives using Models 1 (up) and 2 (down). Standard Pro residue value is 
present in the central line of each representation. Nonstandard residue values more lipophilic and more hydrophilic than the 
original one, are represented in yellow and blue, respectively. Detailed experimental values can be found in Table S19. For 
more detailed information from the Pro logP reference value (for Models 1 and 2), check Supplementary material

According to N-acetyl-lysine [(Ac)Lys], Model 1 denotes an extremely hydrophilic characterization of 
–1.64, while Model 2 persists in –0.39. Chemically insight underscores the incorporation of an ACE group, 
analogous to (Boc)Lys and [(Pro)Lys], that should provoke a slight increase in the lipophilicity. 
Consequently, Model 1 tends to excessively accentuate the hydrophilic trait of this residue, while Model 2’s 
depiction is more aligned with a hydrophobic profile. However, the tendency is to be more hydrophilic than 
the standard version of the amino acid.

In this case, the comparison with experimental data shows that all cases in both Models almost have a 
perfect fitting, presenting a difference of lower than 1 unit. In Model 1, the most deviated case has a 0.75 
units divergence while in Model 2 is 0.68 units.

Proline derivates

In the context of proline residues, their examination was previously undertaken by Matamoros et al. in 
2022 [35], employing the SMD solvation approach [36], In the current study, we subject these residues to 
analysis via our IEFPCM/MST methodology. As illustrated in Figure 7 and detailed in Table S19, the 

http://
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outcomes affirm the comparable efficacy of our approach, thus rendering it well-suited and eminently 
applicable for extending our scale of lipophilicity.

Regarding proline, in general, all cases maintain a difference with respect to the experimental value, 
lower than 2 units of logP in both models. Only dehydroproline (Dhp) in Model 1, presents a deviation of 
2.26 logP units, presenting an excessive hydrophilic profile due to the capacity of performing hydrogen 
bond interaction of the NH group.

General correlation between experimental and computational data

Regarding the correlation between experimental and computational estimations, Figures 8 and 9 reveal a 
noteworthy similarity between the two models. Both exhibit a correlation coefficient (R2) that is 
moderately acceptable—0.73 for Model 1 and 0.71 for Model 2. Also, the root mean square error (RMSE) 
for Model 1 is 0.7, while Model 2 stands at 0.9. Furthermore, additional statistical parameters such as MSE 
and mean unsigned error (MUE) also indicate a consistent pattern across both models. Despite the subtle 
differences, Model 1 demonstrates a stronger correlation and exhibits lower error when compared to the 
experimental values. This observation aligns coherently with our previously published findings that utilized 
similar capping groups as those in Model 1.

Figure 8. Correlation between calculated logP (corrected by eliminating the influence of capping groups of Model 1) (axis X) and 
experimental logP values reported by Kubyshkin (axis Y). Groups of residues are represented in different patterns of colors: 
methionine (yellow), tyrosine (green), phenylalanine (orange), tryptophan (grey), lysine (blue), and proline (red)

Figure 9. Correlation between calculated logP (corrected by eliminating the influence of capping groups of Model 2) (axis X) and 
experimental logP values reported by Kubyshkin (axis Y). Groups of residues are represented in different patterns of colors: 
methionine (yellow), tyrosine (green), phenylalanine (orange), tryptophan (grey), lysine (blue), and proline (red)

Delving into specifics, it becomes evident that indistinctly of the model considered, all methionine and 
tyrosine residues (yellow and green colored dots in Figures 8 and 9, respectively) consistently exhibit 
present values with a discrepancy not higher than 1.2 logP units. Similarly, in the case of lysine is even 
better, remaining below than 1 logP unit in all cases (blue colored dots in Figures 8 and 9). This can be 
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translated into the fact that there is hardly any difference between the experimental values and those 
reproduced computationally. It’s worth noting that a deviation near 1 logP unit can often be attributed to 
inherent errors within the method itself.

As regards the other derivatives, in general trend is maintained, however, certain cases with notably 
substantial discrepancies have come to light. In the case of the phenylalanine derivatives (orange-colored 
dots in Figures 8 and 9), the Aha derivative (4-N3-Phe) in Model 1, presents a deviation of 2.13 units from 
the experimental value, though this deviation is somewhat mitigated in Model 2 (1.32 units). An underlying 
explanation could be associated with the azide group present within the side chain. Despite the group’s net 
charge being neutral, there exists a subtle polarization distributed across its nitrogen atoms. This charge 
distribution potentially contributes to deviations and fluctuations in accurately estimating the compound’s 
lipophilicity [37–42]. The difference of 0.81 units in the assessment of the identical residue across Model 1 
and Model 2 might arise from the distinct origins of their unadjusted initial values. In Model 1, the original 
value comes from a measurement involving the NME capping group, introducing a hydrogen bond 
interaction that doesn’t occur with the OME capping in Model 2. Consequently, this residue could 
potentially be overestimated as hydrophilic, driven by the presence of the NME capping group. This last 
aspect is also observed in the most deviated case from the proline dataset (red dots in Figures 8 and 9), Dhp 
in the case of Model 1 deviates 2.26 units more hydrophilic than the experimental one.

Another pattern observed in deviated cases is the presence of bromine atoms, more specifically, in the 
case of phenylalanine and tryptophan residues (orange and grey colored dots in figures 8 and 9, 
respectively), 4-Br-Phe, 5-Br-Trp and 6-Br-Trp present a more marked difference. While the rest of the 
residues present a deviation around 1 logP unit, these cases move around 1.34 and 2.29, between both 
models. The bromine atom is a relatively heavy atom compared to other lighter halogens like fluor and 
chlorine (deviations around 0–0.8 logP units) and it has unique electronic properties due to its larger size 
and higher atomic number. These factors can influence the interactions of bromine with its surrounding 
environment, including solvent molecules and other atoms in a molecule.

Another potential source of mismatch between experimental and computational results can be 
attributed to the fact that IEFPCM/MST method is an implicit solvation model, that treats the solvent as a 
continuous dielectric medium, simplifying the simulation and reducing the computational cost. This 
approach permits to be more efficient but sometimes can oversimplify the solvent behavior and fail to 
capture specific solvent-solute interactions accurately. Contrary to that explicit solvation models represent 
individual solvent molecules, which can sometimes permit a detailed description of these interactions. For 
instance, the polarized structure-specific backbone charge (PSBC) explicit model has been successful in 
predicting both the experimental folding of helical peptides [41] and β-sheet structures [42] thanks to 
considering the polarizability of backbone hydrogen bonds by implementing the partial charges of 
backbone hydrogen-bond donor and acceptor atoms during peptide folding simulations. However, despite 
their differences some bibliography holds that for predicting solvation energies and partition coefficients, 
both methods can perform quite reasonable results [43, 44].

Application of non-standard amino acids in proteomics

Acetylation is a relevant post-translational modification that is mainly carried out in both the ε-amine on 
the side chain of lysine and in the α-amine of the N-terminus in peptides and proteins [45]. In health and 
pathological states, the reversible acetylation of lysine residues plays a crucial role in regulating cellular 
and developmental processes. These facts make the correct identification of acetylated peptides and 
proteins a constantly developing field in modern proteomics [46]. In this context, experimental studies have 
analyzed the impact of peptide acetylation on chromatographic retention time in reversed phase-high 
performance liquid chromatography (RP HPLC) in order to create predictive models that suggest an 
efficient way for the separation of these peptides that will allow their identification [46].

Table 1 reports the experimental hydrophobicity index (ΔHI) obtained by Mizero and collaborators 
[47], calculated as the difference between the hydrophobicity index for modified (acetylated) and non-
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modified peptide pairs expressed in % acetonitrile (% ACN). As can be seen, it is evident that the greater 
the change in the degree of acetylation in the lysines of the peptide pairs, the greater the amount of organic 
solvent (% ACN) will be necessary.

Table 1. Variation of the experimental hydrophobicity index (HI) using as separation mode acetonitrile (% ACN) in RP HPLC 0.1 
% of formic acid for modified (acetylated) and non-modified peptide pairs

Acetylated lysine residues in peptide 
(number of peptide pairs)

Experimental hydrophobicity index (ΔHI) in RP 
HPLC 0.1% formic acid (% ACN)

Δ(Ac)Lys ΔΔHI/Δ(Ac)Lys

                        0 (10,632)                                 5.02         -           -
                        1 (13,791)                                 9.14         1         4.12
                        2 (2,390)                                 11.20         2         6.18
                        3 (316)                                 12.54         3         7.52

Figure 10 depicts the derivative of the change in the hydrophobic index with respect to the change in 
(Ac)Lys residues in the modified/non-modified pairs [ΔΔHI/Δ(Ac)Lys] from which the slope permit to 
obtain the increase in hydrophobicity due to the acetylation of a lysine residue (~1.70 units).

Figure 10. Representation of the variation of the experimental hydrophobic index (% ACN) by the change in the number of 
acetylated lysines in peptide pairs as a function of the change of acetylated lysines in peptide pairs

In order to further evaluate the reliability of the predictions of the calculations performed in this work, 
Table 2 reports the increase of hydrophobicity under the acetylation of lysine residues (ΔlogPAc) using our 
computations but also those obtained of ChemAxon [48] and milogP [49]. Let us mention that HPLC 
separation systems are carried out under acidic conditions (pH around 2). Therefore, our reported value of 
–3.07 refers mainly to the partitioning of the ionic species (logD2) and not to the neutral species (logP). For 
acetylated lysine, the reported value corresponds to the logP. Thus, since our prediction (~1.43 logP units) 
is close to that obtained experimentally (see Figure 10), it can be used to efficiently predict experimental 
HPLC conditions to separate acetylated peptides and thus, be used for proteomic studies.

Table 2. Partition coefficients (logP) values for lysine (Lys) and acetyllysine [(Ac)Lys] using the capping groups of the Model 1 
and change in lipophilicity due to acetylation (ΔlogPAc) of lysine residues

                                     Lipophilicity                
                Amino acid code

                Lys (logD2)             (Ac)Lys (logP)

                  
                  ΔlogPAc

                    This work                     –3.07                   –1.64                     1.43
                   ChemAxon                     –4.51                   –1.66                     2.85
                       milogP                     –3.73                   –1.25                     2.48
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Discussion
The lipophilicity of amino acids is one of the main physicochemical properties of these biomolecules as it 
gives an estimate of solubility, binding propensity, and bioavailability. In this work we show how several 
structural modifications in residues such as methionine, aromatic, lysine, and proline can tune the 
hydrophobic properties of these residues, opening a window of possibilities to be used as a guide for the 
design of peptides and proteins with tailor-made characteristics. The structural models used, based on 
differences in capping groups showed mostly important similarities, validating the lipophilicity values 
obtained for the non-standard side chains.

Delving into the specifics of the deviations in both number and magnitude, the results presented herein 
demonstrate considerable promise. Evaluating the proposed models and considering that deviations of up 
to 2 logP units fall within the expected variation for the estimated parameter [50], we can observe that out 
of the 126 estimated cases (considering Models 1 and 2) only 3 surpass the threshold of two units. This 
translates to a deviation rate of less than 2.5% across the dataset. Notably, amino acids such as methionine, 
tyrosine, and lysine exhibit no instances surpassing this limit. Even employing a stricter criterion for all the 
sets (deviation exceeding 1 logP unit), still 80% of the cases remain within an acceptable range of accuracy. 
As previously pointed out in this study, the calculated values and associated errors demonstrate promise, 
aligning well with those reported in previous research on widely studied canonical amino acids with 
established functional groups [10]. Once again, the IEFPCM/MST model has demonstrated good accuracy 
with minimal uncertainties, a performance consistently reflected in the SAMPL blind challenges [51, 52]

Differences were found in fewer cases, which can be expected as one model uses a hydrogen bond 
donor (Model 1) while the other uses a hydrogen bond acceptor (Model 2), this lies in the effect of the 
polarizability on the atoms in the backbone which includes the capping groups [41, 42]. In general, both 
models correlate well with the experimental values, obtaining lower statistical errors in the case of Model 1.

In addition, our predictions were able to efficiently predict the experimental hydrophobicity change 
due to the number of acetylated lysines in peptide pairs determined by HPLC, opening up the possibility 
that our scale can be employed for proteomics studies that include post-translational modifications beyond 
acetylation.

Overall, this work represents the first computational work to systematically reproduce the lipophilicity 
values of non-canonical amino acids, paving the way for these can be easily implemented in computational 
tools related to the calculation of peptide solubility, aggregation, scoring functions of molecular docking 
programs and also to efficiently predict the presence of post-translational modifications in the area of 
proteomics.
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