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Abstract
Cyclophane-containing peptides comprise an important group of macrocyclic peptides with unique 
structural properties and pharmaceutical relevance. Darobactin A is a ribosomally synthesized and post-
translationally modified peptide (RiPP) antibiotic, which features an unusual biscyclophane moiety formed 
via the class-defining ether crosslink in addition to a carbon-carbon (C-C) crosslink. Because darobactin-
like peptides (daropeptides) are widespread in nature, further exploration of these emerging RiPP natural 
products featuring ether crosslinked cyclophane could facilitate the discovery and development of new 
bioactive peptides. This perspective provides updated insights into the biosynthesis and classification of 
daropeptides, highlighting the potential to manipulate daropeptide maturases to access novel bioactive 
peptide cyclophanes.
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Introduction
Cyclophane-containing peptide occupies a unique structural niche among macrocyclic peptides of 
pharmaceutical interest [1–4]. Unlike other linkers commonly used for peptide macrocycle construction, 
the intrinsic ring strain imposed by the hydrophobic cyclophane linker restricts the free rotation of the 
aryl-tethered side chains [5]. This property not only creates molecular complexity through planar/axial 
chirality but also induces rigid scaffolds with specific stereo-orientation to meet various functional 
demands in biological systems. Historically, the non-ribosomal peptide (NRP) pathway represents the 
major source of bioactive peptide cyclophanes [3]. One such example is the antimicrobial glycopeptide 
vancomycin discovered in the 1950s, which has been used clinically as an antibiotic of last resort and 
profoundly benefited human health and society [6]. In recent years, ribosomally synthesized and post-
translationally modified peptides (RiPPs) have emerged as a new source of naturally occurring peptide 
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cyclophanes [7–9]. The cyclophane-containing RiPPs have been increasingly discovered in bacteria [10–19], 
fungi [20, 21], and plants [22, 23], and many of these compounds possess novel ring connectivity and 
topology that underpins equally diverse biological activities [24]. Moreover, these RiPP pathways offer a 
diverse set of cyclophane synthases that are dedicated biocatalysts for in trans polypeptide 
macrocyclization and are of important bioengineering application potential [25–28]. As RiPP natural 
products represent a valuable yet still underexplored reservoir of cyclophane biochemistry, further 
investigation of the hidden structure-function relationships and biosynthetic potential of RiPP-derived 
cyclophanes could offer new impetus in the development of bioactive peptides.

Darobactin A serves as a compelling example of how cyclophane formation within ribosomal peptides 
can yield highly valuable pharmaceutical compounds [29]. This compound is a heptapeptide isolated from 
Photorhabdus khanni in 2019, which exhibits potent and broad-spectrum activity against a wide panel of 
Gram-negative pathogens [29]. Darobactin A consists of two fused three-residue cyclophane units, which 
are formed via an ether crosslink adjoining Trp1-C7 and Trp3-Cβ, and a carbon-carbon (C-C) crosslink 
adjoining Trp3-C6 and Lys5-Cβ, respectively (Figure 1A). The unique biscyclophane structure forms a rigid 
β-strand, allowing the compound to selectively bind to and inhibit the lateral gate of BamA mainly through 
backbone interaction [30, 31]. BamA is the central unit of the bacterial β-barrel assembly machinery (BAM) 
complex [32, 33], which is universally present in Gram-negative bacteria and responsible for the folding 
and insertion of outer membrane proteins (OMPs). Recent years have witnessed increasing (peptide) 
antibiotics that target Gram-negative bacteria by functioning as BAM inhibitors with diverse modes of 
action [11, 34–38], darobactin A stands out as it not only demonstrates the lateral gate of BamA as a 
hotspot druggable site to combat Gram-negative infection but delivers a new antibiotic drug lead with novel 
peptidyl biscyclophane scaffold and ring connectivity [39].

Figure 1. Darobactin A and its unique biscyclophane biosynthesis. A. Organization of dar biosynthetic gene cluster (BGC) and 
biosynthesis of darobactin A. The transporter-related gene (e.g., darBCD) are not colored for clarity; B. reaction scheme 
highlighting the substrate-controlled cyclophane formation in daropeptide maturase, as illustrated herein by darobactin 
biosynthesis. Ω: aromatic residue; X: non-aromatic residue; the white circles in the peptide structure: a shorthand of the amino 
acid side chain or extended peptide main skeleton
Note. Adapted with permission from “Substrate-controlled catalysis in the ether cross-link-forming radical SAM enzymes,” by Ma 
S, Xi W, Wang S, Chen H, Guo S, Mo T, et al. J Am Chem Soc. 2023;145:22945–53 (https://doi.org/10.1021/jacs.3c04355). © 
2023 American Chemical Society.

The pharmaceutical significance of darobactin has continued to spur investigations on biosynthetic 
chemistry toward its biogenesis. While a similar C-C crosslink has been found for several cyclophane-
containing RiPPs [9, 40], the ether crosslinked cyclophane in darobactin A was highly unique and had no 
structural counterparts in nature prior to its discovery. Moreover, biosynthesis of both ether crosslink and 
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C-C crosslink in darobactin A is unprecedented in biochemistry, which has manifested nature’s ingenuity in 
achieving molecular diversity of ribosomal peptides through post-translational modifications. Interestingly, 
recent genome mining studies have revealed that darobactin A belongs to a larger class of RiPP natural 
products, now referred to as darobactin-like peptide (daropeptide), which is characterized by the unique 
three-residue cyclophanes with ether cross-linkage [41, 42]. Further exploration of this emerging RiPP 
class and its biosynthetic capacity holds great promise to facilitate the discovery and development of new 
bioactive macrocyclic peptides. This perspective provides a brief and updated insight into the biosynthesis, 
classification, and widespread occurrence of daropeptides. Also highlighted is the potential to leverage 
daropeptide biosynthetic chemistry to access a diverse range of peptide cyclophanes. The readers are 
directed to a recent review that details the chemical synthesis and biosynthesis of darobactin A [43].

Unusual biscyclophane biosynthesis in darobactin A
Similar to other RiPP natural products, darobactin A is biosynthesized from gene-encoded precursor 
peptides, which are matured by post-translational modifications and trimmed by proteolysis (Figure 1A). In 
addition to the precursor peptide DarA, the BGC of darobactin A (dar) also encodes three transporter-
related proteins DarBCD and a radical S-adenosylmethionine (rSAM) enzyme DarE. The functions of these 
proteins involved in darobactin biogenesis have been comprehensively dissected through heterologous 
expression and metabolic engineering efforts in Escherichia coli (E. coli) [29, 41, 44]. While DarBCD are not 
assigned to a biosynthetic role and their exact functions in darobactin biogenesis await further 
investigation, DarE has been verified to be responsible for the formation of the biscyclophane structure in 
DarA [41, 44]. Removal of the leader and follower peptide in the modified DarA to produce mature 
darobactin A is likely catalyzed by unknown proteases encoded outside of the BGC [41, 44].

The unusual biscyclophane modification involves two remarkable biochemical processes in DarE 
catalysis (Figure 1B). First, the ether crosslink in darobactin A is de novo synthesized by taking an 
exogenous source of oxygen, which is unprecedented in rSAM enzymology. Second, DarE also forms a 
chemically distinct C-C crosslink besides the ether crosslink, raising questions regarding the mechanism of 
regio- and chemo-selectivity in DarE catalysis. Decrypting the mechanism for ether crosslink formation and 
the control of chemo-selectivity underlying the multifunctionality of DarE is critical to understanding the 
enzymology of DarE, which paves the way for biosynthetic application of this versatile cyclophane synthase.

The rSAM enzymes constitute the largest enzyme superfamily that catalyze impressively diverse and 
chemically demanding reactions [45–48]. These enzymes utilize a strictly conserved [4Fe-4S] cluster 
ligated by three Cys residues to reductively cleave the cofactor S-adenosylmethionine (SAM). The resulting 
5’-deoxyadenosyl (dAdo) radical then abstracts a hydrogen (H)-atom from the substrate to initiate 
subsequent biotransformations [49, 50]. Because the [4Fe-4S] cluster of rSAM enzymes is prone to 
oxidative deconstruction, this superfamily of enzymes are generally highly sensitive to oxygen (O2) and are 
believed to function only anaerobically in vitro. Surprisingly, in vitro studies of DarE revealed that the ether 
crosslinking activity can only be fully reconstituted in the presence of O2 additionally supplemented in the 
reaction [42, 51]. Furthermore, 18O labeling assays have demonstrated that O2 is the source of oxygen in the 
ether crosslink [42, 51]. These results have demonstrated DarE is an unprecedented rSAM oxygenase that 
can utilize O2 as a co-substrate, which suggests a significant change in the paradigm of the rSAM 
enzymology. Note that heavy-oxygen water (H2

18O) labeling assays in DarE-catalyzed reaction can lead to 
deceptive 18O-incorporation into the ether crosslinked product, which likely results from the non-specific 
solvent exchange with the still unclear mechanism [41, 42].

An intriguing question lies in how a single DarE enzyme achieves the synthesis of two cyclophane 
moieties with distinct chemo- and regio-selectivity (i.e. a western ether crosslink tethering through Trp1-
C7 and an eastern C-C crosslink tethering through Trp3-C6). Recently, bioinformatics and substrate 
mutagenesis analysis on PasB (vide infra), an ortholog of DarE, provided the first insight into the intriguing 
substrate-controlled reactivity of these remarkable enzymes [42]. Phylogenetic analysis revealed that DarE, 
PasB, and other ether crosslink-forming rSAM enzymes have evolved from the same ancestor with 
anaerobic sulfatase maturating enzymes (anSMEs) and three-residue cyclophane-forming enzymes 
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(3-CyFEs) (Figure 2A) [42]. anSMEs e.g., AtsB [52] catalyze the conversion of Cys/Ser to formylglycine 
(FGly) during the maturation of sulfatase, while 3-CyFEs e.g., SjiB [53] acts on the class-defining Ω1-X2-X3 
substrate motif of triceptide precursors to afford three-residue cyclophane. Enzyme promiscuity within this 
unique sequence-function space has been previously observed, where the cyclophane synthase SjiB can also 
act like an anSME to convert the native X3 substrate (i.e. Ser) to produce FGly and aminomalonate, and the 
partition of the two reactions is under substrate-control [53]. In DarE catalysis, the C-C crosslink is notably 
installed in a Ω1-X2-X3 substrate motif (i.e. Trp3-Ser4-Lys5 motif in darobactin A) that is identical to the 
natural substrate of 3-CyFEs [10, 15, 53, 54], suggesting the different catalytic outcomes of DarE are 
similarly governed by the substrate sequence.

These bioinformatic analyses have suggested an intriguing substrate-controlled catalysis in DarE and 
PasB, during which these enzymes catalyze ether crosslink formation upon the Ω1-X2-Ω3 substrate motif 
and C-C crosslink formation upon an Ω1-X2-X3 substrate motif (Figure 1B) [42]. Such a proposal is 
supported by a mutagenesis effort, in which a DarA Ω3-to-X3 mutant (i.e. DarA-W1K) was converted to a 
product featuring an eastern C-C crosslink (instead of the original ether crosslink) by DarE [42]. 
Furthermore, comprehensive substrate-activity investigations on PasB have also demonstrated Ω1-X2-Ω3 
and Ω1-X2-X3 substrate motifs direct the formation of ether crosslink and C-C crosslink, respectively, 
suggesting substrate-controlled catalysis is likely ubiquitous in other rSAM enzymes within this unique 
sequence-function space. This unusual catalytic property likely results from the distinct stability of the 
Ω3/X3-Cβ radical intermediates generated from rSAM chemistry. Moreover, these discoveries have 
suggested that the distinct use of Trp-C7 or C6 for the formation of different crosslinks in darobactin A is 
likely a compromise resulting from the preorganization of a reaction intermediate in the same enzyme 
active site, in which 14-membered cyclophane was uniformly formed regardless of the chemical nature of 
crosslink [42].

Recently, parallel research has comprehensively dissected the substrate-activity relationship in DarE 
catalysis by using a panel of DarA variants resulting from saturating mutagenesis, which has also pointed to 
the conclusion that DarE-catalyzed reaction is indeed under substrate-control [55]. Quantum mechanical 
calculation of the plausible DarA biosynthetic intermediates has demonstrated the distinct stability of the 
Ω3/X3-Cβ radical intermediates controls the ether/C-C crosslink formation, respectively [55]. Molecular 
docking studies demonstrate the different preferences of Trp-indole regio-selectivity during ether/C-C 
crosslink installation [55].

The O2-dependent ether crosslink and the substrate-controlled cyclophane chemotypes have enabled a 
mechanistic hypothesis for the unusual biscyclophane formation in darobactin A detailed in references [42, 
51, 55]. The dAdo radical generated at the rSAM (4Fe-4S) cluster of DarE abstracts the pro-R Hβ of Trp3 to 
afford a Trp3-Cβ radical. Likely stabilized by radical delocalization in the aromatic moiety, the Trp3-Cβ 
radical undergoes an intermolecular reaction with O2, and the resulting intermediate attacks on Trp1 to 
furnish the western ether crosslink. The second dAdo radical generated at the rSAM (4Fe-4S) cluster of 
DarE then abstracts the pro-R Hβ of Lys5 to afford a Lys5-Cβ radical. In contrast to the Trp3-Cβ radical that 
is stable enough for coupling with O2, this radical directly adds to the Trp1 to afford the eastern C-C 
crosslink. Although further studies await to examine in detail the many aspects of the proposed mechanism, 
the snapshots of its unusual enzymology gained thus far have clearly demonstrated how DarE creates 
chemically and biosynthetically unprecedented peptide cyclophanes.

Biosynthetic diversity of daropeptide family
Concomitant to the discovery of darobactin A, a series of darobactin A analogs (e.g., darobactin B-F) 
containing substitutions on non-crosslinked residues have been revealed in various γ-proteobacteria, 
including strains of the genera Photorhabdus, Yersinia, and Vibrio (Figure 2B) [29]. Due to their high 
structural similarities in the characteristic biscyclophane scaffold, these analogs in general exhibit 
antibacterial activities and modes of action in a way similar to darobactin A [29, 56, 57]. Notably, 
darobactin B, an analog with a heptapeptide sequence WNWTKRF, displays even more potent activity than 
darobactin A against several clinically important strains, including Acinetobacter baumannii isolates [57]. 
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Figure 2. Biosynthetic diversity of daropeptide family. A. Phylogenetic analysis and subfamily classification of daropeptide 
maturases. The daropeptide maturases are likely evolved from the same ancestor with 3-CyFE (e.g., SjiB) and anSME (e.g., 
AtsB). The characterized enzymes that have also been discussed in this perspective are highlighted in white (for 3-CyFE and 
anSME) and in yellow (for daropeptide maturase) while their uncharacterized homologs are in grey. Key bootstrap values are 
indicated; B. the known and predicted ring topologies of cyclophane systems in different daropeptide clades. The logo of 
darobactin clade encompasses the core peptide sequences of darobactin A–F and dehydrobromodarobactin. The logo of the 
photorhaptin clade includes photorhaptin A. The logo of orphan daropeptide type 1 include RscB product. The ring topology of 
orphan daropeptide type 2 is predicted from the bioinformatic analysis in reference [42]; C. BGCs and structures of the newly 
characterized daropeptides. The transporter-related genes are colored in white. Genes encoding new tailoring enzymes (i.e. 
DarF, DarG, and PasC) with still uncharacterized functions are colored collectively in grey
Note. Adapted with permission from “Substrate-controlled catalysis in the ether cross-link-forming radical SAM enzymes,” by Ma 
S, Xi W, Wang S, Chen H, Guo S, Mo T, et al. J Am Chem Soc. 2023;145:22945–53 (https://doi.org/10.1021/jacs.3c04355). © 
2023 American Chemical Society.

These facts have demonstrated the non-crosslinked residues within the biscyclophane scaffold have a 
significant impact on biological activity [57]. Precursor engineering efforts for non-natural darobactin 
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production allow the systematic assessment of the contribution of different non-crosslinked residues to 
antibacterial activity and results in non-natural darobactins with more potent activities [58–60], notably 
including darobactin 22 [59], which has a heptapeptide sequence WNWTKRW and possesses 128-fold 
increased activity as compared to darobactin A.

More recently, novel darobactin A derivatives harboring Trp1-bromination or Lys5-dehydration, or 
both, namely bromodarobactin A, dehydrodarobactin A, and bromodehydrodarobactin A, have been 
identified from marine Pseudoalteromonas luteoviolacea (Figure 2C) [61]. Likely owing to their additional 
modifications, these derivatives exhibit solubility and plasma protein binding ability different from 
darobactin A and are found more active than darobactin A. The BGCs of these variants contain additional 
biosynthetic proteins DarFGH, among which DarH was verified to act as a flavin-dependent halogenase 
(PF13738) with a novel structural fold for Trp1-C5 bromination [61]. DarF belongs to mod_HExxH family 
(TIGR04267) that is suggestive of peptidase activity while DarG has been annotated as a transporter-
related (TIGR02204) protein [42, 61]. However, the exact functions of the two proteins remain unknown 
and require further studies. It also remains to be investigated how the Lys5 in these variants is desaturated.

Besides the darobactin A and its variants, the BGCs of other ether crosslinked three-residue 
cyclophane-containing RiPP (daropeptide) are also rich in nature (Figure 2B) [41, 42]. One prevalent 
daropeptide subfamily, dubbed as photorhaptin owing to their exclusive occurrence in strains of the genus 
Photorhabdus, are derived from precursor peptides with single three-residue substrate motif Ω1-X2-Ω3. 
Functional characterization of one such BGC (pas) from Photorhabdus asymbiotica revealed that the rSAM 
enzyme PasB installs a single ether crosslink in the precursor peptide PasA in an atroposelective manner 
[42]. Moreover, the unknown E. coli proteases can also process the modified PasA in vivo to release 
photorhaptin A, the ether crosslink-containing pentapeptide (Figure 2C). Because photorhaptin BGCs 
invariantly encode a general control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) family 
acyltransferase [62], e.g., PasC [42], with as-yet unknown function, photorhaptin A may be further modified 
by PasC and the structure and bioactivity of the mature product awaits further investigation.

In addition to photorhaptin, orphan daropeptides with precursor peptides harboring two Ω1-X2-Ω3 
substrate motifs have been found across diverse symbiotic or terrestrial bacteria, including Rhizobium, 
Sodalis, Devosia, Myxococcus and Martelella et al (Figure 2B) [42]. A preliminary study on an orphan 
daropeptide BGC (rsc) with discrete substrate motifs (i.e. orphan daropeptide type 1) (Figure 2B) from 
Rhizobium sullae revealed that the rSAM enzyme RscB installs two ether crosslinks upon precursor peptide 
RscA, which likely proceeds in a two-step distributive manner and in a direction from C-terminal to N-
terminal (Figure 2C) [42]. Because detailed structure elucidation of the RscB product was impeded by the 
extremely low yield of conversion, further investigation is needed for the characterization of the mature 
product derived from rsc and evaluation of its biological function.

In addition, orphan daropeptides with fused Ω1-X2-Ω3 substrate motifs (i.e. orphan daropeptide type 
2) (Figure 2B) have been predicted from the compiled dataset from the genome mining study [42]. Based 
on the established substrate-activity relationship of daropeptide maturase (Figure 1B), these novel 
daropeptides are expected to harbor biscyclophane scaffold that resembles darobactin but is solely 
furnished by two ether crosslinks instead of C-C crosslink. Despite such a natural product remains currently 
being uncharacterized, a recent study has demonstrated the production of a darobactin variant that 
features diether crosslink-forged biscyclophane through DarA mutagenesis [55]. These results have 
suggested the broad diversity of ring topology enabled by daropeptide maturares [55].

The discovery of hidden daropeptide maturases from different clades (Figure 2A) also provides a 
fascinating opportunity to investigate their mechanism of catalysis through comparative analysis. 
Mechanistic studies on the new daropeptide maturase PasB revealed that it also introduces ether crosslink 
from O2, suggesting the ability of O2 utilization for ether crosslink construction is universal in all 
daropeptide maturases [42]. Meanwhile, the fact that photorhaptin and the RscB product do not contain C-C 
crosslink as found in darobactin but are solely modified with one or two ether crosslinks, led to the finding 
of the substrate-controlled catalysis in these rSAM enzymes [42], as has also been discussed in the previous 
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section. The substrate scope of DarE and PasB is broad, which can catalyze ether crosslinks in diverse Ω1-
X2-Ω3-type substrate motifs, and C-C crosslinks in diverse Ω1-X2-X3-type substrate motifs [42, 55]. These 
results suggest the intrinsically high substrate tolerance of these enzymes, setting the stage for synthesizing 
macrocyclic peptides bearing diverse cyclophanes [42, 55]. Furthermore, inspired by the close phylogenic 
relationship between daropeptide maturase and anSMEs (Figure 2A), PasB has been verified to act on a Ω1-
X2-S3 substrate motif to produce a Ser-derived FGly residue [42], an aldehyde-containing amino acid 
amenable to bioorthogonal chemistry-enabled late-stage diversification [63, 64]. Similar Ser oxidation 
activity was also observed for DarE [55]. These results showcase the remarkably diverse post-translational 
modification enabled by daropeptide maturaes, which can be harnessed for future chemical biology and 
biotechnology applications in terms of polypeptide structural diversification.

Concluding remarks and outlook
Because of their unique structural features and biochemical properties, cyclophane-containing peptides 
have been historically a focal point for synthetic chemists and pharmacologists [3, 9, 65]. Various synthetic 
methodologies have been developed for or applied to peptide cyclophane synthesis, with the palladium-
catalyzed directing group-assisted intramolecular Csp3-H arylation reactions being a general strategy [66, 
67], and Larock heteroannulation most frequently applied in the case of Trp-centered peptide cyclophane 
[68], including the total synthesis of darobactin [69, 70]. Nevertheless, the strained nature of peptide 
cyclophanes has imposed synthetic challenges in terms of chemo-/stereo-/regio-selectivities within the 
complex polypeptide scaffolds, rendering the canonical C-H functionalization route for cyclophane 
construction chemically challenging. The discovery of cyclophane-containing peptide natural products not 
only provides novel bioactive compounds with intricate cyclophane structures but also unveils new 
biocatalysts well-suited for peptide cyclophane construction, providing an alternative way to access these 
synthetically challenging peptide macrocycles [3].

With the advance of genome sequencing techniques and the advent of new genome mining tools, RiPPs 
constitute a rapidly emerging superfamily of peptide natural products that have drawn particular attention 
in recent decades, particularly in the context of in silico BGC discovery and post-translational enzymology 
studies [71–73]. Perhaps the most distinguished feature in RiPP biosynthesis as compared to NRPs lies in 
their genetically encoded peptide substrates and impressively diverse peptide modifications installed by 
various trans-acting and catalytically promiscuous biosynthetic enzymes. These merits permit a high level 
of biosynthetic flexibility and adaptability that make RiPP biosynthetic systems an ideal chemoenzymatic 
platform for devising structurally complex polypeptides [74]. When combined with genetic code expansion 
techniques or high-throughput screening (HTS) methods, such as saturating mutagenesis and various 
genetically encoded library (GEL) techniques, RiPP biosynthetic chemistries hold great promise in peptide 
bioengineering and the discovery of bioactive macrocyclic peptides [25, 26, 75–77].

In recent years, two dominant biosynthetic origins of bioactive cyclophane-containing RiPPs have 
emerged, which are distinguished by their chemotypes and biosynthetic origins [9, 78, 79]. One is the Csp2-
Csp2 (i.e. biaryl) crosslinked cyclophane [78], which is typically introduced by cytochrome P450 enzymes, 
while the other is the Csp2-Csp3 (i.e. monoaryl) crosslinked cyclophanes [9, 79], typically introduced by the 
rSAM enzymes. In addition, crosslinks involving endogenous heteroatom, e.g., Csp2-N or Csp3-N crosslink 
[11, 18, 19, 80], have also been found, demonstrating the immense biosynthetic potential of the RiPP 
cyclophane synthases. As a recent addition to the already impressive collection of cyclophanes, 
daropeptides, characterized by their unique ether (i.e. Csp2-O-Csp3) crosslinks, have undoubtedly marked a 
brand-new chemical space in peptide cyclophane. The discovery of daropeptides has also expanded the 
scope of rSAM enzymology by demonstrating the ability to utilize exogenous O2 [51]. Furthermore, the 
substrate-controlled catalysis in the daropeptide maturase demonstrates the great opportunity to 
manipulate cyclophane chemotypes through RiPP precursor engineering [53].

Due to its catalytic robustness in mediating C-H bond activation reactions, the P450 enzymes are 
among the most studied and promising biocatalysts that have been commonly used for various 
biotechnological applications, including enzyme engineering and biocatalytic synthesis. In contrast, the 
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rSAM enzymes are comparatively intractable owing to their O2-sensitivity, often low catalytic turnover 
number, and difficulties in rSAM enzyme engineering. However, in light of the vast diversity of reactions 
catalyzed by rSAM enzymes that have passed through the natural selection barriers [47], as illustrated 
herein by the discovery of rSAM oxygenases in daropeptide maturation, one may expect the 
biotechnological applications of rSAM enzymology in RiPP engineering to happen soon.

Despite these progresses, the unusual catalytic pathway of these rSAM oxygenases may hinder their 
broader biocatalytic applications in peptide engineering, unless a more deepened and comprehensive 
understanding is achieved. These include but are not limited to 1) the detailed mechanisms by which the O2 
is specifically incorporated into the Ω1-X2-Ω3 (not Ω1-X2-X3) substrate for ether crosslink construction, 2) 
the detailed mechanisms by which the enzymes integrate O2 into the catalytic cycle, 3) tolerance and the 
ways for maintenance of O2 concentration in the biocatalytic synthesis of these enzymes, 4) the precise 
mode of recognition through which these enzymes recruit and interact with the polypeptide substrate, 
including identifying the minimal elements (e.g., minimal substrate sequence and length) required for 
cyclophane installation, and 5) the essential factors that may result in the ability of daropeptide maturaes to 
form multiple cyclophane rings, and the ways to devise polycyclophane units with desired ring topology. 
Given the pioneering efforts in engineering daropeptide derivatives for enhanced bioactivity [57–60], the 
established total synthesis methodology [68, 69], and the availability of high-throughput BAM assay [81], it 
can be expected that further manipulation of daropeptide maturases via substrate-controlled catalysis and 
protein engineering may facilitate the establishment of new platforms to generate chemically and 
topologically diverse peptide cyclophanes with novel bioactivities (e.g., more potent BAM inhibitor), 
utilizing chemoenzymatic synthesis and HTS techniques.
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