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Abstract
Aim: Solubility prediction is an essential factor in rational drug design and many models have been developed 
with machine learning (ML) methods to enhance the predictive ability. However, most of the ML models are 
hard to interpret which limits the insights they can give in the lead optimization process. Here, an approach 
to construct and interpret solubility models with a combination of physicochemical properties and ML 
algorithms is presented.
Methods: The models were trained, optimized, and tested in a dataset containing 12,983 compounds from 
two public datasets and further evaluated in two external test sets. More importantly, the SHapley Additive 
exPlanations (SHAP) and heat map coloring approaches were used to explain the predictive models and 
assess their suitability to guide compound optimization.
Results: Among the different ML methods, random forest (RF) models obtain the best performance in the 
different test sets. From the interpretability perspective, fragment-based coloring offers a more robust 
interpretation than atom-based coloring and that normalizing the values further improves it.
Conclusions: Overall, for certain applications simple ML algorithms such as RF work well and can outperform 
more complex methods and that combining them with fragment-coloring can offer guidance for chemists to 
modify the structure with a desired property. This interpretation strategy is publicly available at https://
github.com/Pharmacelera/predictive-model-coloring and could be further applied in other property 
predictions to improve the interpretability of ML models.
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Introduction
Aqueous solubility is a key molecular property for the discovery and optimization of new drugs. In the early 
stage of drug discovery, low molecular solubility is a relevant attrition factor in screening assays. Moreover, 
solubility has an important impact on Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) 
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properties of drugs, like oral absorption and bioavailability [1]. With the advent of novel machine learning 
(ML) algorithms and libraries, the performance of such predictors has increased significantly but remains an 
open field of research [2].

However, there are several open questions in the generation of ML models that go beyond the predictive 
performance of the models themselves. One of them is model interpretability, which could provide helpful 
information to researchers in the lead optimization process. Many times, ML models operate as a black box, 
which, combined with the employment of many descriptors (> 100), makes them difficult to interpret [2–
4]. While many efforts have been made to improve the accuracy of ML models, model interpretation is still 
under investigation. In the field of model interpretation, there are many model-dependent or -independent 
strategies, such as feature-based, atom-based, fragment-based, compound-based, or graph-based approaches 
[5]. These approaches give aid to the researchers in understanding how a change in the descriptors or the 
chemical structure could affect the prediction. Since solubility changes can be understood in most cases by 
the addition/deletion of polar or non-polar atoms, solubility models are a good benchmark set to validate 
interpretation methods.

Another important aspect when building ML models is the selection of the most appropriate descriptors 
and algorithms, since not always the most complex and novel methods are the most adequate for all 
application scenarios. Any increase in complexity should be justified by a significant increase in performance 
to compensate for the penalty in terms of usability and interpretability it will introduce.

In this work, we will focus on the assessment of which are the best descriptors and ML algorithms to 
generate an accurate aqueous solubility predictor and what are the best methods for interpreting it. The 
performance of different ML models will be compared to existing models on different test sets. And then three 
interpretation approaches (feature-based, atom-based, and fragment-based) will be employed to interpret 
the solubility model.

Materials and methods
Dataset preparation
To compile a diverse and large dataset to build our model, two datasets with experimental aqueous solubility 
values (LogS) were used. The first one AqSolDB [6], consisting of 9,982 compounds, was generated by merging 
nine different aqueous solubility datasets. The second dataset was collected by Cui et al. [7], which includes 
9,943 compounds from ChemIDplus database and PubMed search. These two datasets were then merged as 
the source of the training set, validation set, and test set used in this study. In addition, two external test sets 
were used to further evaluate the model performance [7–10], including the Drug-Like Solubility-100 (DLS-
100) dataset from Mitchell et al. [10] (external test set A) and the test set collected by Cui et al. [7] (external 
test set B), and are composed of 100 and 62 compounds respectively.

The merged dataset was prepared using the following methodology. First, molecules containing common 
elements (H, C, N, O, F, P, S, Cl, Br, and I) were kept while duplicates and large compounds (molecular weight ≥ 
1,000) were removed. Then, molecules with a standard deviation of LogS greater or equal to 0.5 in AqSolDB 
were removed. Finally, compounds with high similarity with samples in the two external test sets were also 
filtered for the sake of validating the model in a more objective way. Herein, highly similar compounds were 
defined as those having a Tanimoto similarity based on extended connectivity fingerprints (ECFP) 4 larger 
than 0.90. A total of 12,983 molecules were retained and then randomly split into the training set, validation 
set, and test set with a proportion of 60%, 20%, and 20%, respectively. Overall, a total of five datasets 
were employed in this study, namely the training set with 7,789 compounds, the validation set with 2,579 
compounds, test set with 2,579 compounds, external test set A with 100 compounds, and external test set B 
with 62 compounds.

Descriptors
After curating the dataset, a set of physicochemical descriptors, computed with the PyDPI software [11], was 
used to featurize each compound. PyDPI can represent molecules by means of different types of molecular 
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descriptors, including constitutional descriptors, topological descriptors, connectivity indices, Burden 
descriptors, Basak’s information indices, electro-topological state indices, autocorrelation descriptors, 
charge descriptors, molecular properties, kappa shape indices, and molecular operating environment-type 
descriptors.

Originally, a total of 614 descriptors were computed for each compound. Descriptors that had zero 
variance among the training set were firstly removed in this study. For further selection, a Pearson correlation 
pairwise analysis was performed for the descriptors and only kept one descriptor randomly if two descriptors 
were highly correlated (Pearson correlation coefficient ≥ 0.90). Overall, a total of 256 descriptors were kept 
for the next model construction and then they were scaled to range from 0 to 1 (Table S1). To visualize 
whether these descriptors could capture and magnify distinct aspects of chemical structures, principal 
component analysis (PCA) [12], which could convert high-dimensional datasets into low-dimensional space, 
was performed among the training set, validation set, and test set. The feature space was visually determined 
by plotting the first three principal components (PC).

Model construction
In this study, three ML techniques were employed to build and select a good predictive model, including the 
random forest (RF), deep neural network (DNN), and massage passing neural network (MPNN). In addition, 
four other solubility models were used as references for performance evaluation.

RF
RF [13–15] is a supervised learning algorithm that assembles many decision trees as an ensemble. The 
general idea of RF is to train multiple decision trees on different subsets, sampling from the original training 
set and then merging the prediction results of each sub-model by taking average or voting. This popular 
ensemble approach takes advantage of combining different learning models on random sampling and random 
selection of feature sets to get a more accurate and robust performance, as well as overcomes the common 
overfitting problem. In our study, the hyperparameters of RF were optimized based on the root mean squared 
error (RMSE) in the validation set. If RMSE values were the same, then the coefficient of determination (R2) 
metric was used. Finally, the number of trees in the forest (“n_estimators”) was 600, the number of features 
to consider when looking for the best split (“max_features”) was 0.2 and the out-of-bag strategy was applied 
(“oob_score = true”). This model was built with the scikit-learn Python library (version1.0.2) [16].

DNN
DNN [17, 18] is a feed-forward neural network that consists of one input layer, multiple hidden layers, and 
one output layer. Normally, the descriptors are taken into the input layer, then non-linear transformations are 
proceeded among the hidden layers, and finally, a prediction is produced with the output layer. Weights and 
biases in each layer are trained using the back-propagation technique. The architecture of the DNN model 
used in our study is shown in Figure 1. A total of five hidden layers were enabled in the DNN model, each 
of which consisted of 1,024, 1,024, 512, 512, and 256 nodes respectively. The rectified linear unit (ReLU) 
function was chosen as the activation function. An Adam weight optimization solver was used, and the 
learning rate was initialized to 0.001 and decayed with a factor of 0.8 every 5 epochs [19]. The batch gradient 
descent strategy was employed to train the DNN model with a maximum epoch of 300. Model optimization 
was performed with an early stopping strategy based on the best results in the validation set to avoid 
overfitting. The patience, the number of epochs to wait before an early stop if no progress on the validation 
set, was set to 15. Three dropout layers were used to further avoid overfitting of the DNN model. The model 
was built with the PyTorch framework (version 1.10.2) [20, 21].

MPNN
The concept of an MPNN model [22, 23] is taking a molecule as a graph where an atom is a node, and a bond 
is an edge. An MPNN model usually contains three phases, an initial phase, a message-passing phase, and 
a readout phase. The nodes (atoms) and edges (bonds) are firstly initialized with atom features xv or bond 
features evw which are listed in Figure 1 and Table S2. In the message passing phase, it consists of T steps,
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Figure 1. The architecture of the (A) 5-layer DNN and (B) MPNN models

which are set to 3 in this work. On each step t for each node v, its hidden state hv
t  is updated to hv

t + 1 by 
passing the message mv

t + 1 of its neighbors (bonded atoms) and edges with a message function Mt and update 
function Ut.
                                                                mv

t + 1 = Mt(hv
t, hw

t , evw)weN(v)
/

                                                                        
hv

t + 1 = Ut(hv
t, mv

t + 1)
Where N(v) is the set of neighbor nodes of v. For simplicity, the hv

0 was set to xv in this study. And finally, 
a readout function R is used to make a prediction based on the final states hv

T . In our model, the readout phase 
was implemented by summing up the catenation of the initial and final states of all nodes in a molecule. Then 
the model makes a solubility prediction with a 2-layer neural network by feeding up h as follows:
                                                                        h = cat(hv

0, hv
T)

veN
/

                                                                                          
yU = f(h)

The MPNN model was trained by means of the batch gradient descent method with a batch size of 128 
and optimized with an Adam optimizer. The learning rate was initialized to 0.001 and decayed with a factor 
of 0.9 every 3 epochs. Also, the model was optimized with the early stopping strategy and whose patience 
parameter was set to 7. In this study, the MPNN model was implemented based on the framework of variant 
MPNN-S [24] and PyTorch [21].

Baseline models
To compare our model performance, four models were used as reference models, including two ML models 
built by ourselves and two other publicly available models.

The first reference model was constructed with graph convolutional (GraphConv) method [25]. Similar 
to the MPNN model, the GraphConv model also treats the chemical structure as a graph and represents the 
graph with atom-based and bond-based properties. And then convolutional and pooling layers are used to 
update the information of each node by aggregating the information of its connected nodes. In this study, 
we built a GraphConv model by applying the default implementation from the DeepChem library (version 
2.4.0) [26], which contains one GraphConv layer and one dense layer, and this model was used as a reference 
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model for later comparison. The number of training epochs was optimized based on the performance in the 
validation set, which was finally set to 1,500.

In addition, two public models, namely ALOGPS 2.1 [27], and ESOL equation [28], were also included for 
the performance comparison in this study. For the ALOGPS 2.1 it employed molecular weights and electro-
topological state indices as descriptors and neural network techniques for model construction. For the ESOL 
equation, it is a simple linear model. This linear regression model considered four descriptors, including 
LogP, molecular weight, number of rotatable bonds, and proportion of heavy atoms in aromatic systems.

Furthermore, the four descriptors from ESOL equation were combined with the RF algorithm to build 
another reference model by ourselves [RF with ESOL descriptors (RF_ESOL)]. It was also trained in our 
training set and hyperparameters were optimized in the validation set. The hyperparameters “n_estimators” 
and “min_samples_split” of this RF_ESOL model were set to 800 and 4, respectively. Also, the scikit-learn 
Python library (version 0.23.0) was employed to build this regression model.

Evaluation metrics
The predictive performance of our solubility models was assessed by four metrics, including R2, RMSE, %LogS 
± 0.7, and %LogS ± 1.0. See Supplementary materials for the definition of R2 and RMSE. Another two metrics 
%LogS ± 0.7 and %LogS ± 1.0 proposed by Boobier et al. [2] have also been used and are defined below:

The %LogS ± 0.7 is defined as the percentage of compounds where the predicted LogS is in the range of 
experimental LogS ± 0.7. The %LogS ± 1.0 is defined as the percentage of compounds where the predicted 
LogS is in the range of experimental LogS ± 1.0.

The rationale of these two metrics was that an experimental error of ± 0.5–0.7 exists for aqueous LogS 
value in literature [29], resulting from variations in temperature, pH, and solvent purity. It would influence 
the reliability of R2 and RMSE in evaluating model performance as they are dependent on the range of LogS 
in the model. Considering the effect of experimental error, %LogS ± 0.7 could help the users understand the 
maximum accuracy of the model and %LogS ± 1.0 sets a limitation of the usefulness of the model for the 
development process.

As the test sets only contained a limited number of samples and the unavoidable experimental errors 
of LogS, the evaluation results may be biased. Thus, the bootstrapping method [30–32] was chosen for the 
analysis of the confidence interval as it is a convenient and recommended strategy to estimate the properties 
of estimators for any distribution with limited samples. In brief, the bootstrap sampling in our study was 
conducted as follows. Random sampling of 10,000 redundant copies with replacements was conducted on 
the test set. Each copy had the same size as the original test set. For example, the total sample size of the 
test set, and external test sets A and B were 2,597, 100, and 62, respectively. Then, the developed model was 
re-evaluated on each redundant copy of the test set with three performance metrics. As a result, an ensemble of 
10,000 bootstrap samples was obtained for each performance metric, and a certain confidence interval (e.g., 
95%) was derived accordingly. In this study, the percentile bootstrap method was used to compute the 95% 
confidence interval.

Model interpretation methods
In terms of model interpretation, different methods have been evaluated such as the Shapley Additive 
exPlanations (SHAP) and heat map coloring. Herein, the SHAP method [33] is a feature-based interpretation 
method, which originated from a game theory approach [34]. It is a local interpretable approach that can 
explain the feature importance on an individual instance or a group of instances for any ML model. The 
computed SHAP value for a specific feature represents both the magnitude and direction of its contribution 
to the prediction. Feature with a positive sign has a positive contribution while a negative sign indicates a 
negative contribution to the model prediction. The work from Rodrí�guez‑Pérez and Bajorath [35] in 2020 
has shown a promising application of SHAP analysis in ML model interpretation. There are some variants for 
implementing SHAP and TreeSHAP [36] is used to interpretate our RF model in this study as it is a fast and 
tree-based model-specific method for producing feature attributions.
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For the heat map coloring strategy, it is usually applied to color on the atomic or fragmental contribution 
to a molecular property on a two-dimensional (2D) structure, and it provides a direct interpretative 
visualization to the chemist. To compute the atom-level or fragment-level importance in a given prediction, 
those descriptors associated with an atom or fragment are removed and the change produced in a new 
prediction is associated to the removed atom or fragment. Thus, this method is also known as atom removal 
explanation. Similarity maps [37], the universal approach [38], and the atom-coloring scheme [39] are different 
implementations of this strategy. In this study, we followed the atom-coloring scheme framework to compute 
the atom or fragment contribution on a chemical structure. The protocol for atom-coloring and fragment-
coloring used in this study is shown in Figure 2. Specifically, we mask each heavy atom or fragment atoms 
as dummy atom(s) [40] and transform bond between dummy atoms into a zero bond and the bond between 
non-dummy and dummy atoms into a single bond. This is different from other atom removal methods like 
the atom-coloring method where the removed atoms are replaced by a sodium atom. Bonds are also treated 
differently than in the universal approach where they propose to remove bonds between the interpretated 
fragment and the remaining structures. Herein, the idea of this masking strategy is that we want to account 
for the nonadditive effects by making the masked molecule to inherit inherent structural information (such 
as the links between atoms) from the reference (unmasked) molecule as much as possible. The dummy atom 
has “blank properties” (zero molecular weight and formal charge) which would help us minimize the inherent 
impact of the atom replacer on the new replacing molecule. Then we recalculate the descriptors, predict the 
solubility of the masked molecules and calculate the difference of predicted LogS between the masked and 
unmasked molecule, assigning the difference as the contribution of this atom or fragment to the molecule. 
The interpretation image is drawn with the open-source software RDKit [41]. Herein, we provide a script 
for automatically fragmenting a molecule into functional groups, rings, and other fragments and the chemist 
could also manually fragment it to meet their personalized study.

Figure 2. General protocol of heat map coloring. (A) Atom-coloring scheme; (B) fragment-coloring scheme

For a clearer visualization of the interpretation results, single molecule normalization was performed for 
all contribution values of atoms or fragments. Herein, single molecule normalization enables us to see small 
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differences between atoms/fragments of a compound. The normalized contribution of an atom or fragment 
i (D i

' ) was computed as:
                                                               

D i
' =
Dmax - Dmin
D i - Dmin (Imax - Imin) + Imin

Where D i  is the contribution value of atom or fragment i and Dmax and Dmin are the maximum and 
minimum contribution values found in a compound, respectively. Finally, Imax and Imin are the normalization 
range. For a given prediction:

(1) If all the atomic or fragmental contributions ≥ 0, then normalize to [0, 1].
(2) If all the contributions ≤ 0, then normalize to [–1, 0].
(3) Otherwise, the normalization range is set to [–1, 1] (most cases).

Results
Dataset properties
Before building the models, a property analysis was performed on the different datasets to ensure they were 
balanced and with a reasonable degree of variability in the solubility values. The experimental solubility (Sexp) 
distributions of these datasets are shown in Figure 3. A similar and diverse distribution was found among 
the training set, validation set, test set, and external test set A. However, external test set B has a more biased 
property distribution towards less soluble molecules.

Descriptor analysis
A set of physicochemical descriptors were used to represent the molecule and a PCA analysis for these 
descriptors was also performed. The PCA analysis results are shown in Figure 4, where points have been 
colored based on their experimental LogS. In this study, a compound is classified as an insoluble molecule if 
its LogS is less than –2.0, otherwise it is considered soluble. From Figure 4, we can see that the chemical space 
described with the physicochemical descriptors is diverse while the partitioning of soluble and insoluble 
compounds is also visible. Most of the soluble molecules (blue points) are located on the inner side while 
most of the insoluble ones (red points) are on the right and outer side, demonstrating the ability of these 
descriptors to identify soluble and insoluble molecules. The PCA analysis of three datasets also shows that 
they share a similar distribution.

Model performance
Three ML models were developed based on our training set with 7,789 compounds and then were evaluated 
on three test sets using four performance metrics. All performance results are depicted in Figure 5 and 
Tables S3–5. Across the three datasets, the three RF [RF with default descriptors (RF_Property)], DNN 
(DNN_Property), and MPNN models obtained a comparable and better performance than that from the four 
reference models. The RF_Property model showed a consistently excellent performance among the three test 
sets with different metrics. The RMSE of the four reference models in the test set were 1.06, 1.16, 1.22, and 
1.04 respectively while our three developed models (RF_Property, DNN_Property, and MPNN model) in the 
test set were all 0.90, stating that our developed models have a better predictive ability.

The three developed ML models showed less difference in the test set than those in two external test sets. 
As the source of training set, validation set, and test set were randomly split from a curated dataset, they had 
a similar distribution and shared a system error. Thus, the external test sets were very important to assess 
solubility predictive models objectively. In the external test set A/B, the R2 of RF_Property, DNN_Property, 
and MPNN were 0.795/0.490, 0.780/0.507, and 0.744/0.361, and %LogS ± 1.0 of them were 0.850/0.887, 
0.770/0.887, and 0.740/0.850, respectively. This shows that the RF_Property model is better than the 
DNN_Property and MPNN models. It is not surprising as tree-based models perform better on tabular-style 
datasets than standard deep models [36] and a systematic study from Jiang et al. [42] also demonstrated 
that descriptor-based models could achieve better or comparable performance in the predictions of many 
molecular properties. Among the external test set B, which contains 62 compounds under pH 7, the simple
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Figure 3. Distribution of experimental LogS and molecular property

linear model ESOL equation got a comparable performance (RMSE was 0.64) with that from RF_Property 
(RMSE was 0.63) while some other ML models obtained worse results, e.g., the RMSE of MPNN and GraphConv 
were 0.71 and 0.90. For the other two test sets, RF_ESOL performed better than the linear model, but worse 
than the physicochemical descriptors with RF or DNN algorithms. These results show that descriptors and 
non-linear ML techniques are important for the quality of the final model.
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Figure 4. PCA analysis of descriptor space for three datasets. (A) Training set; (B) validation set; (C) test set

Figure 5. Model performance. (A) Coefficient of determination results; (B) RMSE results; (C) %LogS ± 0.7; (D) %LogS ± 1.0
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Outlier analysis
For those compounds with absolute error larger than 1.0 (error bars in Figure 6), some recurrent substructures 
were found (Figure 7) such as nitrogen-containing heterocycles and aromatic systems. In the external test set 
B, the absolute errors of two most soluble molecules were larger than other compounds. From Figure 3, we 
could see that highly soluble compounds (LogS > 0.00) were less distributed in the training set, which may 
result in these two outliers. For the outlier with name of KEMDOW, its Crippen LogP was –1.735 which may 
lead to the experimental error.

Figure 6. Scatter plot of experimental and predicted LogS from RF_Property model (the error bars are computed from the 
difference between predicted and experimental LogS). (A) External test set A; (B) external test set B

Figure 7. Some chemical structures of outliers. The caption under each structure is the molecule name, experimental LogS 
(predicted LogS from RF_Property model)

Solubility model interpretation
After evaluating the performance of different algorithms, the second part of this study evaluates the suitability 
of different interpretation methods for the best-performing algorithm, the RF_Property model.
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Firstly, the TreeSHAP method was used to compute the feature importance based on 1,000 random 
compounds from the training set. The feature importance from TreeSHAP calculation is shown in Figure 8 and 
indicates that Crippen LogP (LogP) and its square (LogP2) are the most relevant descriptors in the solubility 
prediction and have a strong correlated relationship. The higher the LogP or LogP2 descriptor values, the 
lower the solubility value, which is in accordance with our intuition. Also, hydrophilic index (Hy) and some 
burden descriptors (bcute10, bcutm3, and bcutm4), play a role in the predictive model and their interpretation 
results indicate that the reduction of their values could be beneficial to improve the solubility. Interestingly, 
the top six most important features calibrated from Gini importance in the RF model are the same as those 
in the TreeSHAP method. Such descriptors could provide a simple rule of thumb for a chemist to assess the 
solubility of a given compound.

Figure 8. SHAP interpretation result of RF_Property model. The y-axis shows the most important features and in the x-axis we 
can see the computed SHAP values on 1,000 training samples. Positive value means a positive contribution while a negative one 
indicates a negative contribution to the model prediction

Although the feature importance method gives interesting insights on the relevance of specific molecular 
properties for solubility prediction it does not help chemists take direct actions to improve the solubility of 
a given compound as there is no information on which regions of the molecule are improving or reducing 
more the solubility of a given compound. Therefore, we also evaluated the suitability of the atom-coloring 
scheme and fragment-coloring scheme for model interpretation. As shown in Figure 9, for the compounds 
NC61 and NC17 of the external test set B, both strategies were capable of explaining the atomic or fragmental 
contribution to the molecular solubility. The carbonyl group was beneficial for the solubility while the ethylene 
carbons and aromatic rings made negative contributions to it. In the case of compounds C-499 and C1257 of 
the training set, the interpretation result of fragment-coloring scheme was more robust and reasonable than 
that of atom-coloring scheme. Both schemes could show the modification from carbon to hydroxy group was 
helpful for improving molecular solubility. The aromatic rings and carbon atoms would decrease the solubility 
while the hydroxy group and ester functional group were indicated to make positive contributions in both 
compounds from the fragment-coloring results. However, in the atom-coloring results, the contribution of 
aromatic rings and carbons is not consistent as the overall color is heavily influenced by the overall prediction 
value (highly soluble compounds will tend to paint all atoms as having a positive influence and vice versa). 
This phenomenon was similar to the conclusion from Sheridan’s work [39] that atom-level coloration was 
not robust enough and indicates that for this model, fragment-based coloring is more suitable. Therefore, in 
the following part, we will focus on discussing the fragment-coloring interpretation. It is worth noting that 
the heat map coloring and normalization method only consider the difference within the molecule. We should 
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focus on the relative values of the intramolecular contribution, and it was not fair to compare intermolecular 
atomic or fragmental contribution which was dependent on the molecule.

Figure 9. Example of atom- and fragment-coloring scheme. The caption of each structure is the molecule name, experimental 
LogS (predicted LogS from RF_Property model). Spred: predicted solubility

The second example of fragment-coloring scheme includes the six poly-ADP-ribose-polymerase (PARP) 
inhibitors designed by Johannes et al. [43]. In their work, they applied structure- and property-based strategies 
for drug design and observed a series of compounds that showed excellent efficacy to the target. And they 
also measured aqueous solubility under pH 7.4 condition for some of the active compounds, which provides 
good examples for interpretation in our study. The interpretation results for six compounds (all of them are 
excluded in the datasets for model construction of this study) from the fragment-based coloring strategy 
are shown in Figure 10. Their most relevant SHAP descriptors and atom-coloring results are also shown in 
Table S6 and Figure S1 respectively. As we could see, our RF_Property model has a good predictive ability for 
most of compounds and the interpretation results are consistently stable. These six compounds shared the 
same scaffold and the modified substructures ranged from an aromatic ring to an ethyl group. As we can see 
from Figure 10, the shared piperazine and imidazole fragments were proposed to make positive contribution 
to the Spred whereas the fragments themselves were soluble in water. The shared benzene was proposed to 
make most of the negative contribution to the Spred. For the highly insoluble (predicted LogS ≤ 4) compounds 
P10–P12, the modified part, which was benzene, pyridine, and cyclohexene ring, was predicted to hinder or 
hardly affect the molecular solubility. And the other modification in slightly insoluble (–4 < predicted LogS 
≤ –2) compounds P13–P15 made positive or almost zero contribution to solubility improvement. It is also 
interesting to see that replacing a carbon with a nitrogen or oxygen within the ring system was helpful to 
improve the solubility. For example, the contribution of modified benzene ring in P10 was similar to the fixed 
benzene, while the pyridine ring was less negative than the fixed benzene within the P11 compound. Such 
a similar phenomenon was also observed in compounds P12, P13, and P14. In general, the interpretation 
results in Figure 10 were in line with instinctive chemical knowledge, showing a good interpretation power 
of our model and fragment-based coloring method. Non-normalized results can be found in Figure S2 and the 
same color distribution but with different intensities for different molecules depending on the Spred value is 
shown.

Previous examples highlight standard modifications that could be applied by a chemist to improve the 
solubility with the addition of more polar atoms. In our study, four “abnormal” compounds not present in the 
training or validation sets were also used to validate the interpretability of our model. Three of these molecules 
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Figure 10. Fragment-coloration results of six PARP inhibitors. The caption of each structure is the molecule name, experimental 
LogS (predicted LogS from RF_Property model)

Figure 11. Fragment-coloration results of four compounds. The caption of each structure is the molecule name, experimental 
LogS (predicted LogS from RF_Property model)
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are immunomodulatory drugs, namely thalidomide, lenalidomide, and pomalidomide, and the fourth (EM-
12) is a related derivative extracted from [44]. For these four compounds, replacing a methylene with a 
carbonyl group was reported to decrease the molecular solubility, which is against our chemical intuition 
to some extent. The theoretical study stated that the carbonyl group could have an extended π‑conjugation 
with carbonyl groups of the right part through the nitrogen and such an extended π‑electron led to a lower 
solubility. Our interpretation results (Figure 11) showed that the carbonyl groups in thalidomide and 
pomalidomide were proposed to make negative contribution to the Spred while the carbonyl groups in EM-12 
and lenalidomide contributed positively, in line with the prospective that the modification from one carbonyl 
to methylene could make a positive contribution to the Spred by hindering the internal π‑conjugation. On the 
other hand, if we compare thalidomide and pomalidomide, the addition of an amine group was proposed to 
make a negative contribution to the Spred. The intramolecular hydrogen bond formed by the amine and the 
nearest carbonyl oxygen would be unfavorable which was supported by the experimental solubility value. 
This added amine group was shown to make zero contribution in the lenalidomide, and its experimental and 
Spred were almost the same as that of EM-12.

Discussion
In this study, several ML models for predicting aqueous solubility of small molecules have been proposed 
and evaluated. From all the evaluated algorithms and descriptors, the RF_Property model, combining 
physicochemical descriptors and RF technique, has obtained the best performance among three different 
test sets assessed by different metrics.

From the interpretation perspective, we have shown that feature importance extraction provides valuable 
information on the most relevant descriptors and showed that LogP and Hy descriptors play an important 
role in solubility prediction.

Feature importance, however, does not directly help the ligand optimization process which can benefit 
more from the extraction of heat map coloring. In this area, we have shown that fragment-based coloring 
offers a more robust interpretation than atom-based coloring and that normalizing the values further 
improves it. Such visualization can offer guidance for chemists to modify the structure with a desired 
property. This strategy has been evaluated in the domain of solubility prediction but could also be applied 
and validated in other research fields, such as activity prediction and ADMET property prediction, to improve 
the interpretability of ML models. The implementation used in this paper can be downloaded from https://
github.com/Pharmacelera/predictive-model-coloring.
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