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Abstract
The escalating threat of antibiotic resistance and its advancing mechanisms for resistance development 
underscore the imperative need for alternative approaches to treat life-threatening infections. 
Consideration of bacteriophages, as well as antimicrobial peptides (AMPs) that can specifically target and 
eliminate particular bacteria, is gaining prominence for the improved treatment of infections. The 
effectiveness of bacteriophages and AMPs has been known for a long time, and their combined use is being 
investigated recently. Studies have shown that the use of phages or phage-derived enzymes (endolysins) in 
combination with AMPs has shown promising results in combating multidrug resistant bacteria. 
Bacteriophages lyse bacteria by hijacking the bacterial cell’s metabolic machinery, leading to the production 
of phage virus inside it and finally bursting the bacteria, while AMPs act by disrupting the bacterial cell 
membrane or affecting intracellular targets after penetration. In this review, we discuss previous studies on 
the combined use of both phages or phage-derived enzymes and AMPs, demonstrating their synergistic 
effects for combating multidrug resistant pathogens. Their mechanisms of action, and possible mechanisms 
of synergy and development of bacterial resistance to these, are discussed. Approaches, including genetic 
engineering, for improving their efficacy have been discussed. Safety and ethical issues regarding their use 
in human subjects are discussed. In summary, this review emphasizes the need for further research on the 
combined use of AMPs and bacteriophages to tap their potential effectiveness for treating antimicrobial-
resistant infections.
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Introduction
A pressing concern and public health crisis is the alarming rise in infections caused by antibiotic-resistant 
bacteria of this age. The World Health Organization (WHO) declared a post-antibiotic era in 2014, stating 
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that antibiotics will be largely ineffective in the 21st century [1, 2]. Due to this increase in antibiotic 
resistance, there is a need to find other alternatives for treating bacterial infections. Phages and 
antimicrobial peptides (AMPs, described below) are being considered as one of the alternatives.

Life cycle and mechanisms of action of phages
The bacteriolytic action of phage on the bacterial cell starts with its adsorption onto the bacterial surface 
through the binding of receptor-binding proteins (RBPs) on the tail fiber of phage to specific receptors on 
the bacterial cell. This interaction is very specific, making the phage treatment distinct in nature as it mostly 
targets specific bacteria, but some phages can be polyvalent, meaning that these can target more than one 
species or genus. The examples of adsorption receptors on bacterial surfaces include OmpA, OmpC, and 
polysaccharides [3, 4]. Following adsorption, the phage injects its nucleic acid (enclosed in its capsid) into 
the cytoplasm of the bacterial cell after piercing a hole in the cell membrane and cell wall through 
enzymatic hydrolysis of the cell envelope using enzymes called virion-associated peptidoglycan hydrolases 
and depolymerases. After inserting its genetic material, the phage takes control of the metabolic machinery 
of the bacterial cell, and expression of phage genes occurs, leading to synthesis of phage components. 
Hundreds of new copies of phage DNA are synthesized, which are packed into newly formed capsids. 
Finally, the newly synthesized phage tails are attached to capsids, creating a fully infectious phage virion. To 
release these phages from infected bacteria, phages synthesize two proteins, i.e., holin and endolysin. Holins 
insert themselves into the inner bacterial cell membrane, creating holes in the membrane. Endolysins are 
muralytic enzymes that access the cell wall through these pores and enzymatically digest the cell wall, thus 
leading to bacterial cell lysis and release of phage progeny (see Figure 1) [5, 6]. The newly released phages 
find other bacterial cells and again start the lytic cycle. Strictly lytic phages are preferred for therapeutic 
purposes. Another type of cycle displayed by phages is the lysogenic cycle. In this cycle, phages integrate 
their genome inside the bacterial genome, remain dormant and are called prophages, and replicate 
alongside their host. In response to a specific trigger, dormant prophages excise themselves from the 
bacterial genome and burst into a lytic cycle [7]. Phages with lysogenic properties are not preferred for 
therapeutic purposes as these do not always kill bacteria and also lead to the transfer of toxin genes to host 
bacteria [8].

Figure 1. Schematic illustration of phage-induced bacteriolysis through the lytic cycle. (1) Adsorption of phage to the 
bacterial body and DNA injection. (2) Circularization of phage DNA to avoid enzymatic degradation. (3) Replication of phage 
DNA as well as transcription of phage DNA to produce phage proteins. (4) DNA packaging and assembly of the head and tail 
into a complete phage. (5) Disruption of the cell wall through the endolysin-holin system. (6) Release of the phage progeny.
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AMPs as a promising replacement for antibiotics and their mode of action
In eukaryotes, AMPs are a part of the innate immune system in a wide variety of organisms. Furthermore, 
besides direct killing of pathogens, AMPs interact with the immune system through certain mechanisms in 
mammals, e.g., involvement in the neutrophils’ chemoattraction, stimulation of Toll-like receptors, T-cells, 
and dendritic cells activation, and enhancing the activity of phagocytosis [9]. AMPs are mainly classified 
into two broad categories: (1) membranolytic AMPs, (2) non-membranolytic AMPs [10].

Membranolytic AMPs

Membranolytic AMPs interact with the lipid-peptide bonds in the bacterial cell membrane, resulting in its 
lysis. Multiple models have been presented to interpret this mechanism, such as the toroidal-pore model, 
barrel-stave model, and carpet model. In the toroidal pore model, AMPs are inactively inserted in the lipid-
peptide layer of the membrane, and upon exceeding a threshold limit, they activate themselves, bend the 
membrane, and disrupt it by producing pores in the membrane, leading to cell death. The barrel-stave 
model explains cell death by forming a bundle in a barrel-like shape, inserting into the lipid bilayer, and 
forming transmembrane channels, leading to cell death. In the carpet model, AMPs arrange themselves in a 
parallel manner (sheet-like) on the membrane’s surface. Upon reaching the threshold limit, AMPs 
disintegrate the membrane due to electrostatic interaction between positively charged AMPs and 
negatively charged phospholipid membrane, leading to cell death [11].

Non-membranolytic AMPs

Besides the lysis of the cell membrane, non-membranolytic AMPs target internal organelles such as 
proteins, enzymatic complexes, nucleic acids, or processes of the cell, such as protein folding, replication of 
DNA, and RNA synthesis [11]. There are countless examples of that type of AMPs, such as in dolphins, 
where Tur1A (an AMP) interacts with the ribosomes of the pathogens by blocking translation of mRNA to 
proteins. Another trp-rich AMP has been proven to kill Pseudomonas aeruginosa by inhibiting the genes 
involved in its DNA replication. Tridecaptin AMP interrupts bacterial ATP synthesis and is also effective 
against multidrug resistant (MDR) and colistin-resistant Enterobacterales. Moreover, in arthropods, 
thanatin AMP kills the bacterial cell by targeting its lipopolysaccharide (LPS) [12].

Combined efficacy of AMPs and phages as antimicrobial agents
Previous studies have focused on phage-antibiotic combinations for treating resistant infections, whereas 
research on phage-AMP synergy is still emerging, with few direct investigations. According to Rothong et al. 
(2024) [13], three peptides were identified, particularly PE04-1(NH2), PE04-2, and PE04-1, encoded from 
phage (vB_AbaAut_ChT04) endolysin. The sequence alignment of these peptides revealed their similarity 
with mammalian cathelicidin AMPs. These three peptides showed strong activity against extensively drug 
resistant and MDR bacteria, particularly Acinetobacter baumannii, and effectively inhibited biofilm 
formation. These peptides also improved survival in Galleria mellonella infection models with no 
cytotoxicity in human cell lines, supporting their potential therapeutic safety. In another study, Zhang et al. 
(2023) [14] showed that a combination of AMP, cathelicidin LL-37, and endolysin Ply2660 was superior in 
eliminating the biofilm of Enterococcus faecalis as well as for enhancing the survival rates of diseased mice 
in in vivo animal models.

Research was carried out by Gouveia et al. (2022) [15]. It was found that Staphylococcus aureus pre-
treated with R8K (a modified AMP derived from cathelicidin SMAP-29) exhibited a markedly increased 
sensitivity to the endolysin Lys11 from phage ϕ11. This increased sensitivity led to fast and extensive 
Lys11-mediated bacterial lysis, even at low levels. A related study by Mirski et al. (2019) [16] showed that 
phages selectively eliminated specific bacteria, whereas AMPs can damage bacterial membranes and 
prevent biofilm development.

Similarly, Duc et al. (2020) [17] investigated S. aureus in both planktonic and biofilm forms on various 
surfaces, including LB broth, stainless steel surfaces, polystyrene plates, and pasteurized milk. They found 
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that using phage SA46-CTH2 in combination with nisin (a natural AMP) was more effective than using 
either treatment alone. In another study by Tyagi et al. (2024) [18], it was shown that a combination of T7 
endolysin (T7L) with polymyxin B and colistin displayed synergistic effects for the eradication of biofilm of 
P. aeruginosa. This study also demonstrated that a combination of T4 endolysin (T4L) with nisin displayed 
synergistic effects for the eradication of biofilm of S. aureus. Another study showed that a synergistic effect 
was achieved on the inhibition of growth of polymyxin B-resistant Salmonella Typhimurium, resulting in a 
decrease in minimum inhibitory concentration (MIC) values of FK13 and FK16 (AMPs) when combined 
with LysPB32 endolysin [19].

A previous study showed that genetically engineered T7 phage, which expressed AMP 1018, called 
engineered phage 1018, was able to display superior efficacy in planktonic cell lysis as well as biofilm 
eradication [20]. From the results of all these previous studies, it is apparent that the synergistic potential 
of AMPs and phages can be utilized for the eradication of MDR bacteria (see Table 1 for a summary of these 
AMPs and phage combinations).

Table 1. Summary of results from previous studies combining bacteriophage/bacteriophage endolysins and AMPs.

AMP + bacteriophage/lysin 
combination

Target bacteria Outcome Reference

FK13, FK16 (AMPs) + endolysin 
LysPB32

Polymyxin B-resistant 
Salmonella Typhimurium

The combination decreased the MIC values 
against the test bacteria. Enhanced reduction of 
bacterial growth in broth culture.

[19]

Polymyxin B + T7L endolysin1.
Colistin + T7L endolysin2.
Nisin + T4L endolysin3.

Pseudomonas aeruginosa, 
Staphylococcus aureus

All three combinations exhibited synergism to 
eradicate the biofilms of the respective bacteria.

[18]

R8K (AMP) + endolysin Lys11 
(phage ϕ11)

Staphylococcus aureus Increased bacterial killing due to increased 
binding of lysin to the bacterial cell wall.

[15]

Nisin + bacteriophage, SA46-
CTH2

Staphylococcus aureus Better bacterial killing in broth and milk. Enhanced 
biofilm eradication.

[17]

LL-37 + endolysin Ply2660 Enterococcus faecalis Enhanced biofilm eradication. [14]
Genetically engineered T7 phage 
expressed the AMP (1018)

Escherichia coli Enhanced bacterial killing and biofilm eradication. [20]

AMPs: antimicrobial peptides; MIC: minimum inhibitory concentration.

Endolysin-based strategy for developing membrane-active peptides in 
gram-negative bacteria
Recent research has shown that peptides derived from endolysins hold strong potential as new 
antimicrobial agents, especially for targeting gram-negative bacteria. Endolysins mainly kill the bacterial 
cells by enzymatic hydrolysis of the peptidoglycan layer of the bacterial cell wall. But the access to the 
bacterial cell wall is hindered by the cell membrane. Some of the endolysins, especially from those of gram-
negative bacteria, are known to possess segments in the endolysin structure that help in accessing the cell 
wall by damaging and permeabilizing the cell membrane. These segments are known to possess a positive 
charge in C-terminal segments in cases of endolysins; from T4 [21], RL-2015 [22], phage 53 [23], PhiKo 
[24], and JG004 phages [25, 26], and also from another endolysin, PlyPa01 [27]. Another AMP named 
P30/Intestinalin was derived from the N-terminal region of the endolysin of LysC derived from phage 
against the bacteria Clostridium intestinale. Antimicrobial properties of this peptide have been shown to 
surpass the full-length enzyme [24]. These peptides have also been shown to be effective in in vivo murine 
models of infections, and these usually show low toxicity to human cells [28].

Mechanisms of synergy between AMPs and phages
Different possible mechanisms of synergy between AMPs and phages have been proposed. For example, 
AMPs can enhance the binding of bacteriophage endolysins [15]. A combination of AMPs’ (nisin) ability to 
kill bacteria, along with bactericidal effects of phages, enhanced the overall bacterial elimination [17]. Both 
AMPs and phages have the ability to disrupt bacterial biofilms by disruption of bacterial membranes and 
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digestion of capsular polysaccharides or exopolysaccharides (EPSs), respectively. AMPs and phages, or 
endolysins, each kill bacterial cells by engaging independent targets in bacterial cells, and their mechanisms 
of action can augment each other; furthermore, this ensures that resistance against one will not affect the 
action of the other.

AMPs can augment the killing ability of endolysins by making disruptions in cell membranes, making 
the accessibility of the cell wall easy for the enzymatic digestion of the cell wall by endolysins [29]. This 
mechanism of synergy is further reinforced by the fact that certain AMPs have been derived from phage 
endolysins of gram-negative bacteria (described in the previous section), which have been shown to 
possess positively charged peptide moieties that interact with negatively charged cell membranes to cause 
cell membrane perturbations.

Bacterial strategies to evade AMPs
Several studies have demonstrated that resistance to AMPs can develop, often as a result of changes in the 
surface charge of the bacterial cell wall or cell membrane. The outer membrane of gram-negative bacteria 
limits permeability as their natural defense. Negatively charged LPS attracts cationic AMPs, while outer 
membrane proteins further contribute to resistance via their physiological functions. Since LPS shields 
bacteria from both hydrophilic and hydrophobic molecules, enzymes like Lpx involved in its synthesis, 
along with modifications regulated by PhoPQ and PmrAB systems, are vital for AMPs resistance in many 
gram-negative bacteria [30]. Alarmingly, A. baumannii can develop colistin resistance through the total 
elimination of LPS from its outer membrane [31].

Further, mutations in two-component systems such as ParRS, ColRS, and CprS in P. aeruginosa can 
trigger their continuous activation, which causes overexpression of genes that modify LPS. In species 
lacking capsules, the O antigen chains determine surface characteristics and serve as a protective layer that 
blocks AMPs from penetrating the LPS. O-antigens shield K. pneumoniae and S. flexneri from the harmful 
effects of histones, which are found in neutrophil extracellular traps and act as AMPs. Another example 
belongs to AMPs resistance, it is the outer membrane proteins OmpU and OmpT, such as in V. cholerae, 
these proteins play a partial role in intrinsic resistance to cationic AMPs [30, 32].

Bacteria can also generate extracellular molecules that bind and trap AMPs, e.g., the SIC protein, 
staphylokinase from S. aureus, and various M protein types made by Streptococcus pyogenes [31]. They bind 
to AMPs with high affinity, stopping these peptides from reaching and damaging the host cell membrane 
and interior. Bacteria also develop resistance by modifying their efflux pumps or forming capsules, mainly 
in gram-negative bacteria [33]. Further, bacteria can develop resistance to bacteriocins (AMPs produced by 
bacteria) by mimicking producer defenses, altering their membranes, or using enzymes, similar to 
antibiotic resistance. For instance, resistance to nisin may involve enzymes like dehydropeptide reductase 
or nisinase that inactivate the bacteriocin [31, 34].

Approaches for enhancing the efficacy of AMPs
The clinical use of AMPs faces several obstacles, especially their tendency to be broken down easily due to 
bacterial protease activity. This enzymatic degradation reduces their effectiveness as therapeutic agents. 
Different strategies like adding D-amino acids, N-acetylation, lipidation, cyclization, C-amidation, and 
PEGylation have been shown to improve AMPs’ stability but often reduce antibacterial activity or increase 
toxicity. For example, lipidation can increase toxicity, while D-amino acids may lower hydrophobicity and 
effectiveness. However, homoarginine (hArg), a non-standard amino acid, has shown potential to enhance 
AMPs’ stability and improve resistance to protease degradation [35]. Further, selective fluorination of the 
AMPs, such as buforin and magainin, improves protease resistance and enhances or maintains their 
antibacterial activity [36].

To enhance the bioavailability of AMPs without altering their structure, two main strategies can be 
used: enzyme inhibition and sustained release systems. The first involves co-administering enzyme 
inhibitors to improve absorption, such as via the oral route [37]. For example, cathelin-like proteins, part of 
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the mammalian innate immune system, help protect host tissues by inhibiting microbial cysteine proteases 
and also possess direct antimicrobial properties against pathogens [38]. The second uses delivery systems 
like ethosomes, liposomes, cubosomes, transferosomes, solid lipid nanoparticles, and nanostructured lipid 
carriers. Biodegradable polymers like polylactic acid, polylactic glycolic acid, emulsions, or cyclodextrin 
derivatives are also commonly employed [37]. Other approaches include conjugating AMPs with 
nanoparticles such as metal nanoparticles, lipid-based nanoparticles, and polymer-based nanostructures 
[39].

Genetic engineering approaches for the improvement of phages and AMPs
Only using strictly lytic phages can minimize the chances of the spread of toxin or antibiotic resistance 
genes among microbial communities. Genetic engineering allows phages to be modified for removing toxin 
or antibiotic resistance genes present in the phage genome, allowing for an increase in their targetable host 
range by modifying tail fiber phage proteins [40, 41]. AMPs can be expressed from the phage genome, 
minimizing side effects associated with AMPs [20]. It can be used to alter properties of both phages and 
AMPs to extend their half-life in blood circulation and reduce the rate of their action to minimize side 
effects occurring due to the release of bacterial toxins, due to rapid bacterial lysis [10].

Advantages and disadvantages of phage and AMPs therapy
The adoption of lytic phages to treat ailments is known as phage therapy. Lytic phages completely destroy 
bacteria, unlike bacteriostatic antibiotics that merely inhibit growth [42]. Other advantages are that phages 
are self-replicating and inherently low in toxicity [43]. Their application is versatile, usable in liquids, 
creams, or embedded in solids. Moreover, they can disrupt biofilms [44] and there is less propensity of 
developing resistance against phages and their lytic enzymes, as these target indispensable elements in 
bacterial cells, such as conserved chemical bonds in peptidoglycan linkages in the bacterial cell wall.

Limitations of phage therapy include being highly sensitive to environmental conditions like pH, 
temperature, and moisture, which affect their survival and efficacy. Bacteria can also develop resistance 
through receptor changes, biofilm barriers, or CRISPR defenses and inhibition of adsorption of phages [45]. 
High specificity of phages becomes a disadvantage when infection is caused by multiple bacterial 
populations; phage therapy targeting only one bacterium can favor other bacteria, which can multiply 
rapidly. Phage cocktails can be used to treat mixed infections. During bacterial lysis, toxins and cell wall 
components can be released, potentially triggering harmful immune responses, especially in 
immunocompromised patients [46, 47]. The host’s immune system often clears phages rapidly, reducing 
their therapeutic effectiveness and complicating pharmacokinetics [48], but other studies showed these 
effects to be minimal [49]. Phages struggle to treat intracellular infections and may unintentionally spread 
antimicrobial resistance (AMR) via gene transfer [48]. Additionally, the complex composition of phage 
preparations makes it challenging for dosage calculation and quality assessment. A lack of standardized 
protocols and regulatory policies further hinders their clinical application. More time is required for new 
phage isolation, testing its interaction with bacteria in the laboratory, and phage-DNA sequencing for the 
purpose of excluding lysogeny or virulence genes, which makes the application of phage therapy more 
suitable for patients suffering from chronic infections [49].

Since AMPs target the highly conserved and vitally important targets in bacterial cells, such as cell 
membranes, there is very little likelihood of developing resistance against AMPs, which is a clear advantage 
as compared to antibiotics [10, 20, 50]. AMPs are also known to have potential limitations due to 
cytotoxicity, resulting in nephrotoxicity and hemolysis. The results of AMPs on bacterial populations can 
vary under in vivo conditions due to attack by proteases and other enzymes present in the mammalian 
body [51]. Furthermore, these can also provoke the immune system and lead to the production of 
neutralizing antibodies. Other limitations regarding their clinical applications include being unstable in the 
gastrointestinal tract and other bodily fluids, displaying poor absorption, distribution, rapid metabolic 
degradation, and excretion, causing limited bioavailability [52, 53], high production costs, and large-scale 
production challenges [54].
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Safety and regulatory concerns regarding the combined use of phages and 
AMPs
Regarding the use of phages in clinical settings, many trials have been initiated either by investigators or 
commercial companies covering diverse clinical departments and infections caused by widely different 
bacteria,  such as Acinetobacter, Enterobacter, Staphylococcus, Enterococcus, Shigella, Pseudomonas, 
Salmonella, Vibrio, Burkholderia, Serratia, Neisseria gonorrhoeae, Mycobacteria, and other common clinical 
bacteria [55]. The results from these studies have generally shown phages to be effective for bacterial 
eradications with promising clinical results and indicated that phages are generally safe for use under 
clinical settings and given a GRAS status, i.e., generally recognized as safe [56].

Though phage therapy has been practiced for a very long time in Eastern Europe and Russia [57], many 
countries are recently rediscovering their interest in this due to rapidly emerging AMR. Only recently have 
different regulations been introduced in different countries regarding the use of phages, since the use of 
phages is at its nascent stage in many Western countries. Though the regulations regarding the use of 
phages vary across different countries, the majority of countries practice the “compassionate” use of phage 
therapy, wherein phages are used as an unapproved drug for the benefit of patients when all other drugs 
and antibiotics have failed to treat infections. Phage cocktails for therapeutic purposes can be purchased 
without a prescription in Georgia and Russia [58]. In the United Kingdom, phage therapy is allowed under 
compassionate use when phages are prepared following GMP, i.e., good manufacturing practice [59]. 
Similarly, France and Belgium also practice the compassionate use of phages. Additionally, Belgium has also 
started to allow the magistral phage preparations, which allow a pharmacist to produce medicinal products 
based on a physician’s prescription for each patient following pharmaceutical standards [60]. In Australia, 
phage therapy is only being administered to patients through a special access scheme at Phage Australia 
center after being referred by a family doctor or infectious disease specialist [61]. In the USA, phages are 
classified as biological products, and their manufacturing and use for therapy must follow standards like 
GMP, preclinical research, and clinical trials [62], but the Food and Drug Administration (FDA) allows the 
compassionate use of phage therapy under exceptional situations when patients can not be enrolled for 
clinical trials [63].

The FDA has approved seven AMPs, whereas nearly 4,000 AMPs have been registered in the peptide 
database [10]. Phages are characterized as biological entities, whereas AMPs are regulated as peptides or 
small-molecule drugs [10]. When a protein molecule, whether it is an AMP or an endolysin, is expressed as 
a recombinant molecule through recombinant DNA technology using a host cell such as E. coli, it has specific 
requirements that need to be met according to criteria set out by the European Medicines Agency (EMA), 
the regulatory authority for medical products in Europe. These requirements are listed under 2001/83/EC 
and EC regulation 726/2004 [64]. Regulatory requirements for the use of phages are less stringent than 
compared for endolysins and AMPs. When using any of these treatment modalities, either alone or in 
combination, they may need to meet these regulatory criteria independently. Since the research regarding 
the combination of phages/phage-derived enzymes and AMPs is in its initial phase, with none of the 
combined therapies progressing into clinical trials, and furthermore, the regulatory distinction regarding 
the nature of these therapies, it makes it difficult to comment regarding the regulatory requirements of 
these combination therapies.

Conclusions
Progress is being made on the use of AMPs and phages for the treatment of bacterial infections. Yet, very 
few studies have been performed on the combined use of both of these to combat infections. The results 
from these few studies are promising. More future studies on clinical trials, efficacy, and safety are required. 
Regulatory requirements need to be worked out, but results from compassionate use of phages and 
magistral phage preparations of phages for patients set the stage for a regulatory framework for different 
governments across the world. The results for using these therapies for combating MDR bacteria are 
promising and set the stage for further research.
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