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Abstract

Cholecystokinin (CCK) is the most prevalent neuropeptide in the brain, where it affects satiety, pain
modulation, memory, and anxiety. Its effects are mediated by GPCRs known as the “alimentary
(gastrointestinal)” CCK;jr (CCK 1 receptor) and the brain-specific CCK,r (CCK 2 receptor). While stress
causes CCK to be released and full CCK,r agonists are potent panicogenic agents, specific CCK,r antagonists
are ineffective at lowering human anxiety. As a result, the therapeutic potential of CCK as a target in
psychiatry has been questioned. By compiling relevant new and historical scientific data retrieved from
Scopus and PubMed, the aim of this review was to suggest a new function of CCK neurotransmission, the
regulation of neuronal homeostasis during stress. Four lines of evidence were discussed that support the
hypothesis of a CCK-driven neuronal homoestasis: (1) Homeostatic plasticity including synaptic scaling and
intrinsic excitability; (2) its interaction with retrograde endocannabinoid signaling; (3) neuroprotective
role; and (4) dynamic neuromodulation of CCK release. CCK functions as a crucial and essential molecular
switch of neural circuits and neuroplasticity through its remarkable cell-specific modulation of glutamate
and GABA release via CCK,r. CCKergic neurons are downstream of the activation of cannabinoid type-1
(CB1) receptors in order to generate and stabilize rhythmic synchronous network activity in the
hippocampus. CCK is also released to modulate other neurotransmitters like dopamine and opioids when
neuronal firing is intense during the processing of anxiety/fear, memory, and pain. CCK likely functions to
restore baseline neuronal function and protect neurons from harm under these conditions. Anxiety,
depression, and schizophrenia could result from compensatory plastic changes of the CCKergic system that
go awry during neuronal homeostasis. This review concludes by examining the benefits of putative
compounds that exhibit a combination of CCK agonist and antagonist activity at multiple locations within
the CCKergic system, as well as off-targets in managing mental conditions.
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Introduction

Cholecystokinin (CCK) comprises a family of intestinal peptide hormones that share the same five C-
terminal amino acids as gastrin (Table 1). CCK exists in several forms depending on the number of amino
acids it contains and the presence in most of them of a sulfate group attached to a tyrosine located seven
residues from the C-terminus (denoted with the letter S) [1]. The secretion of the longest forms [CCK-22S
(sulfated 22-aa CCK), CCK-33S, CCK-58S] is linked to the upper gut; meanwhile, sulfated CCK octapeptide
(CCK-8S) is expressed in higher quantities than any other neuropeptide in the brain [1-3]. CCK functions
through two receptor subtypes: the “alimentary” CCK;r, largely expressed in the gastrointestinal tract, and
the “brain” CCK,r, which is predominant in the brain [4, 5] (Table 2).

Table 1. Family of CCK bioactive peptide hormones present in humans

CCK Affinity Affinity Release CCK C-terminal fragments (sequence of aa residues)

forms CCK;r CCK,r location

CCK-4 No Yes Brain Trp-Met-Asp-Phe-NH,

CCK-8NS No Yes Digestive tract  Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH,

CCK-8S  Yes Yes Brain Asp-Tyr(SO,H)-Met-Gly-Trp-Met-Asp-Phe-NH,

CCK-12S  Yes Yes Digestive tract  lle-Ser-Asp-Arg-Asp-Tyr(SO;H)-Met-Gly-Trp-Met-Asp-Phe-NH,

CCK-22S Yes Yes Digestive tract  Asn-Leu-GIn-Asn-Leu-Asp-Pro-Ser-His-Arg-lle-Ser-Asp-Arg-Asp-Tyr(SO,H)-
Met-Gly-Trp-Met-Asp-Phe-NH,

CCK-33S Yes Yes Digestive tract  Lys-Ala-Pro-Ser-Gly-Arg-Met-Ser-lle-Val-Lys-Asn-Leu-GIn-Asn-Leu-Asp-
Pro-Ser-His-Arg-lle-Ser-Asp-Arg-Asp-Tyr(SO,H)-Met-Gly-Trp-Met-Asp-Phe-
NH,

CCK-58S Yes Yes Digestive tract  Val-Ser-GIn-Arg-Thr-Asp-Gly-Glu-Ser-Arg-Ala-His-Leu-Gly-Ala-Leu-Leu-

Ala-Arg-Tyr-lle-GIn-GIn-Ala-Arg-Lys-Ala-Pro-Ser-Gly-Arg-Met-Ser-lle-Val-
Lys-Asn-Leu-GIn-Asn-Leu-Asp-Pro-Ser-His-Arg-lle-Ser-Asp-Arg-Asp-
Tyr(SO;H)-Met-Gly-Trp-Met-Asp-Phe-NH,
CCK: cholecystokinin; CCK-4: CCK tetrapeptide; CCK-8NS: non-sulfated CCK octapeptide; CCK-8S: sulfated CCK octapeptide;
CCK-12S: sulfated 12-aa CCK; CCK-228S: sulfated 22-aa CCK; CCK-33S: sulfated 33-aa CCK; CCK-58S: sulfated 58-aa CCK

Table 2. Primary anatomical distribution of CCK,r and CCK,r in the nervous system

Subdivision Structure CCK;r CCK,r
Peripheral nervous system Vagus nerve High High
Nodose ganglia High Low
Spinal cord Dorsal root ganglia Low Low
Myelencephalon NTS High Low
Area postrema High High
Parabrachial nucleus High High
Metencephalon Cerebellum High Absent
Mesencephalon Substantia nigra Absent High
Ventral tegmental area Absent High
Periaqueductal area High Low
Dorsal raphe nucleus High High
Dielencephalon Hypothalamic dorsomedial nucleus High Low
Hypothalamic ventromedial nucleus Absent High
Hypothalamic paraventricular nucleus High Low
Hypothalamic supraoptical nucleus High Absent
Hypothalamic arcuate nucleus High Low
Mammillary nuclei High Absent
Supramamillary nuclei High Absent
Telencephalon Cortex High Low
Hyppocampus High Low
Striatum High High
Nucleus accumbens High High
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Table 2. Primary anatomical distribution of CCK,r and CCK,r in the nervous system (continued)

Subdivision Structure CCK;r CCK,r
Bed nucleus of the stria terminalis High High
Amygdala High Low
Olfactory bulbs High Low

NTS: nucleus of the solitary tract. References [10, 11, 19, 28, 29, 200]

CCK is a complex and multifaceted messenger that has undergone over 600 million years of
evolutionary history [1]. In the central nervous system, CCK-mediated neurotransmission regulates feeding
behavior [6], modulation of opioid-mediated analgesia [7-9], memory, and cognition [10-12]. Interestingly,
alterations of the brain CCK system have been linked to the physiopathology of schizophrenia [13-15],
major depression [16], suicide [17], addiction [14, 18-20], and particularly anxiety [13, 21, 22]. Despite the
high hopes of the preclinical evidence, most of the CCK antagonists have been shown to be unsuccessful in
psychiatry clinical trials and as pain medicine [23-26] (see comparative Table 3). These disappointing
outcomes sparked contentious debates on the possible therapeutic benefits of drugs that target CCK,r-
mediated neurotransmission specifically [27]. Even while interest in CCK’s therapeutic potential
subsequently waned, recent discoveries on its importance in the central nervous system have reignited it
[3]- In light of this field’s resurgence, and to encourage further clinical research, the goal of this review was
to propose a new function of CCK neurotransmission: the regulation of neuronal homeostasis during stress.

Table 3. Translational gaps on the psychiatry/analgesic potential of CCK,r antagonists

Preclinical evidence Clinical trials

Compound Outcomes References Compound Outcomes References
(dosage) length (dosage) length
Cl-988 (0.001-10.0  Anxiolytic-like action in rats [208] Cl-988 (300 No anxiolytic effect in [23]
mg/kg, i.p.) elevated the X-maze, rat social mg/day, thrice general anxiety disorder
Acute interaction test, and mouse daily)
light/dark shuttle box
Four weeks
Cl1-988 (100 No anxiolytic effect in [25]
mg/day, thrice panic disorder
daily)
Six weeks
L-365,260 (3.2, 10, Antipanic-like effects in rats [209] L-365,260 (30 No anxiolytic effect in [24]
and 32 mg/kg, i.p.)  receiving brain stimulation in mg/day, four panic disorder
the dorsal PAG times daily)
Acute
Six weeks
CI-988 and L- Anxiolytic-like action in rats [210] L-365,260 CCK-4 panicogenic [211]
365,260 (8.9, 0.16, elevated the X-maze (10-50 mg) effects are antagonized
and 0.25 pmol/kg, Acute by L-365,260 in panic
i.p.) disorder patients
Acute
L-365,260 (0.1 and Enhancement of the analgesia [212] L-365,260 L-365,260 fails to [26]
0.5 mg/kg, s.c.) induced by a submaximal dose (10 mg and augment morphine-
Acute of morphine 40 mg thrice induced analgesia in
daily) chronic neuropathic pain
Two weeks

i.p.: intraperitoneal; s.c.: subcutaneous. PAG: periaqueductal grey; CCK-4: cholecystokinin tetrapeptide

Bioactive peptides of varying lengths with different N-terminal extensions [CCK tetrapeptide (CCK-4),
CCK-8, CCK-12, CCK-22, CCK-33, and CCK-58] are synthesized by enzymatic processing of the human CCK
preproprotein (115 aa residues) [1]. CCK possesses a sulfated tyrosine at the 7th amino acid residue from
the C-terminus. Notice that the C-terminal phenylalanine residue is amidated. The C-terminal sequence
(Trp-Met-Asp-Phe-NH,) is highly conserved across different CCK peptides and gastrin, and it’s important
for its biological activity.
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Methods of data collection

This review was based on documents retrieved from the Scopus and PubMed databases as of April 1, 2025.
All research publications addressing CCK in the nervous systems that were written in English and published
in peer-reviewed journals between 1975—the year when CCK was first discovered in the brain—and 2025
met the inclusion criteria. For advanced research, the following keywords were adopted to sight
documents: TITLE-ABS-KEY [(“Cholecystokinin”) AND (“CCK-A receptor” OR “CCK-B receptor” OR “central
nervous system” OR “neurotransmission” OR “brain” OR “neurons” OR “amygdala” OR “hippocampus” OR
“cortex” OR “hypothalamus” OR “anxiety” OR “learning” OR “memory” OR “satiety” OR “pain” OR
“peripheral nervous system” OR “gastrointestinal”)] AND PUBYEAR > 1975 AND PUBYEAR < 2025 AND
[LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)]. Eligible articles were based on the author’s
own experience with the topic.

CCK’s roles in neuromodulation and neuroplasticity

Several explanations have been proposed to explain the disheartening clinical trials [23-26]. The most
plausible one is “dynamic neuromodulation” [10], which means that CCK release is triggered in response to
high-frequency neuronal firing [28] to regulate the activity of other neurotransmitters. Another possibility
is that CCK could interact with both CCK;r and with CCK,r in the brain [29], producing opposite effects in
most cases [30, 31]. The mesolimbic system is the most well-known case of this [32]. CCK colocalized with
dopamine in neurons of the tegmental ventral area projecting to the medial nucleus accumbens [33]. In the
anterior part of the nucleus accumbens, CCK inhibits dopamine release via CCK,r, whereas CCK via CCK;r
promotes DA in the posterior nucleus accumbens [34]. CCK controls dopamine neurotransmission in the
limbic system, affecting motivation [35, 36], reward, and anxiety [28]. In the conditioned place preference
(CPP) test in the rat, CCK,r and CCK;r antagonists enhance and decrease respectively the rewarding effects
of morphine [37]. The close neuroanatomical distribution of CCK with opioids in the limbic system raises
the possibility of an opioid-CCK functional link [38, 39]. Remarkably, the activation of CCK;r and CCK,r by
endogenous CCK may also have opposite effects in the regulation of antidepressant effects induced by
endogenous enkephalins [31]. Herein, the reciprocal relationships between the two CCK receptor subtypes
further underscore the neuromodulatory relevance of CCK by fine-tuning the impact of opioid- and
dopamine-mediated neurotransmission.

CCK influences brain-wide structural-functional networks across the isocortex [40]. CCK’s function in
memory relies on the hippocampal neuronal circuitry [41-44]. For instance, in the developing dentate
gyrus, cortical activity guides the formation of the CCK* basket cell network, which preserves the inhibitory
to excitatory balance in the hippocampus, a crucial aspect of learning and memory [45]. More importantly,
the evidence shows that CCK release interacts with CCK,r to promote high-frequency stimulation-induced
long-term potentiation caused by NMDA receptors [46-48]. CCK is heavily present in neurons of the
hippocampus and subiculum, sending fibers to the septum and hypothalamus [49]. In the dorsomedial
nucleus of the hypothalamus, CCK shifts the plasticity of GABA synapses from long-term depression to long-
term potentiation [50]. There is proof that CCK-containing interneurons play a crucial role in the regulation
of place-cell temporal coding and the development of contextual memories [51]. Given the evidence that
CCK,r antagonists have carry-over effects in the baseline for anxiety after the drug is cleared [52], it is
conceivable that CCK may generate plastic changes in the brain [3, 53-56].

CCK in networks connecting anxiety, pain, and memory

CCKergic pathways appear to be interwoven with key components of the anxiety/fear, memory, and pain
networks such as the amygdala, cortex, hippocampus, periaqueductal grey (PAG), and hypothalamus [57]
(Figure 1). Intravenous administration of full CCK,r agonists such as CCK-4 [58] and the sinthetic analogue
pentagastrin [59] is panicogenic in healthy volunteers and worsens symptoms in panic attack patients.
Functional magnetic resonance imaging in humans points to a cerebral activation in anxiety-related brain

Explor Drug Sci. 2025;3:1008125 | https://doi.org/10.37349/eds.2025.1008125 Page 4



regions following CCK-4-induced panic challenge [60, 61]. In rodents, CCK-induced anxiety is linked to
CCKjr activation at the basolateral amygdala (BLA) [28, 62, 63-65] and cerebral cortex [29, 66].
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Figure 1. The CCKergic system across anxiety, pain, and memory networks. The diagram illustrates the primary brain
networks (framed with dashed lines) that regulate: (1) anxiety and memory at the body-brain interface; (2) cortical processing of
anxiety, pain, and memory; and (3) anxiety-pain interactions between the mesencephalon and spinal cord. Solid arrows
represent main network paths, while empty arrows imply CCK release. With the exemption of the cortical CCKergic projections
to the nucleus accumbens and the mesolimbic and mesocortical dopaminergic and CCKergic projections from the tegmental
ventral area, CCK release often happens in local circuits responsible for specific neuronal processing. Additionally, the diagram
displays the coexpression of both subtypes of CCK receptors (=), as well as the prevalence of a certain subtype (>). References
[14, 29, 47, 85, 88, 93-95, 98, 100, 103, 107-109, 114, 162, 163, 165, 166, 170-179, 181-184, 187] were used in the diagram
construction. CCK: cholecystokinin; BLA: basolateral amygdala; VTA: ventral tegmental area; Nacc: nucleus accumbens; PVN:
paraventricular nucleus of the hypothalamus; NTS: nucleus of the solitary tract; HPA: hypothalamic-pituitary-adrenal; PAG:
periaqueductal grey

Glutamate-GABA harmony plays a critical role in anxiety [67, 68], pain [69], and memory [70-72]. CCK
is interspersed in the excitatory-inhibitory neural circuits of limbic cortices [73, 74]. Enhanced neuronal
excitability may be one of the mechanisms by which the selective CCK,r activation causes anxiety and panic
attacks in humans [75]. GABA release is crucial for regulating anxiety and fear processing in BLA [62, 76],
hippocampus [77, 78], and cerebral cortex [48]. GABAergic inhibition is modulated by CCK,r [62, 79, 80]
and to a lesser degree by CCK;r [29, 62]. CCK controls glutamate [81, 82] and GABA [83] release in the
hippocampus. When anxiety is expressed, CCK controls electrical activity in the cortex [29]. Similar CCK-
mediated mechanisms play an important role in cognition [11, 84]. By facilitating glutamate release and
gating GABAergic basket cell activity in the hippocampus, CCK regulates memory rather than encoding it
[82].

In inflammatory pain, the CCK/CCK, system of the central amygdala switches from an anxiogenic to
analgesic role that implicates descending control to the spinal cord [85]. CCK takes part in the descending
pain facilitation system, particularly in the rostral ventromedial medulla and spinal cord [86, 87]. CCK
contributes to pain hypersensitivity and is implicated in the nocebo effect [8]. This effect is likely to be
mediated by the CCK input from the anterior cingulate cortex to the lateral PAG [88]. Interestingly, the
CCK;r is thought to be responsible for anxiety-induced hyperalgesia states in this structure [89], since it
mediates the anxiogenic effect of CCK [90-92]. Integrating aversive memories and mediating defensive and
emotional states, including fear, anxiety, and pain, may be important functions for CCK in the PAG [93].
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The hypothalamic CCK plays a role in mediating stress responses, particularly the hypothalamic-
pituitary-adrenal (HPA) axis [94-96] and stress-induced suppression of appetite [97]. Corticotropin-
releasing hormone (CRH) and CCK are strongly related in the human CNS [98]. There is also evidence that
the hypothalamus acts as the primary coordinator of memory updating [99]. HPA alterations impact on
memory [100]. The paraventricular nucleus of the hypothalamus (PVN) is a major site of CCK concentration
in the hypothalamus and where CRH neurons express CCK [101]. The CRH type 1 receptor or CRHR1
interacts with CCK to trigger anxiety [102]. Therefore, it is not extrange that PVN, a node for the CCK-
regulated stress responses [103], is also one of the significant sites of glucocorticoid negative feedback
regulation of the HPA axis [104]. Besides glucocorticoid feedback via bloodstream, PVN receives projections
from the hindbrain neurons in the nucleus of the solitary tract (NTS) [105], the port of entry of vagal
afferents.

The vagus nerve, which presents both CCK;r and CCK,r [106], is the route that uses intraperitoneal CCK
to enhance memory retention [107, 108]. CCK activating vagal afferent C fibers enhances memory
consolidation and retention involved in long-term visceral negative affective state like in irritable bowel
syndrome [109]. Peripheral CCK may work partially through centrally projecting neurons from the nucleus
tractus solitarius [110], since it has been connected to the activation of brain stem neurons, amygdala, and
hypothalamus [111]. In contrast to the central CCK, which uses CCK,r found in the hippocampus to produce
its mnemonic effects [47, 48, 56, 112, 113], peripheral CCK may aid in memory formation via CCK;r [114,
115]. Brain-derived neurotrophic factor is likely to be an intermediate of vagus nerve/CCK-1R-mediated
memory [116].

Growing preclinical evidence points to an impact of CCK on memory [41, 45, 51, 53, 55, 56, 81, 112,
117-119]. NMDA receptors promote CCK release in the cerebral cortex [120] and the hippocampus, where
it switches long-term potentiation [121]. Through neuroplasticity, memory offers tools to rewire anxious
brain patterns, lowering hypervigilance, and encouraging more balanced responses [122-124]. Similarly,
rather than merely being a moment-to-moment appraisal of a nociceptive input, perception of pain is a
dynamic process that is influenced by prior experience and basal anxiety levels [8, 125]. Trace fear memory
development is facilitated by neuroplasticity processes through CCKergic projections terminals of the
anterior cingulate cortex into the lateral amygdala [126]. Anticipatory stress may be impacted by CCK’s role
in fostering associative memory [47, 127, 128]. This implies that, via modulating memory and neural
plasticity, CCK may have a great impact on anxiety/fear [126] and nocebo pain effect [8].

CCK and neuronal homeostasis during stress and pain

Neuronal homeostasis refers to the nervous system’s ability to maintain a stable internal environment and
regulate neuronal firing, ensuring proper function and adaptation to changing conditions. CCK would carry
out its neuronal homeostatic function in four ways: (1) Homeostatic plasticity mechanisms; (2) interaction
with retrograde endocannabinoid signaling; (3) neuroprotection; and (4) dynamic neuromodulation of CCK
release occurring after high-frequency neuronal firing (for a summary, see Table 4).

Table 4. Summary of the key research on CCK-driven neuronal homeostasis

Process Main findings Brain region References

Homeostatic plasticity CCK colocalizes with glutamate neurons and controls  Cortices, hippocampus, [62, 73, 74, 79,

(I): synaptic scaling glutamatergic excitatory projections and local amigdala, ventral 80, 82, 83, 153]
GABAergic basket cells that gate signal flow and tegmental area

modulate network dynamics

CCK stimulates glutamate release and promotes long- Cortices, hippocampus, [46—48, 81, 82,
term potentiation amygdala 120, 121]

CCK shifts the plasticity of GABA synapses from long-  Hipothalamus [50]
term depression to long-term potentiation

Homeostatic plasticity CCK-8 enhances acid-sensing ion channel currents in ~ Spinal cord [130]
(I): intrinsic excitability ~ primary sensory neurons
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Table 4. Summary of the key research on CCK-driven neuronal homeostasis (continued)

Process Main findings Brain region References
Endocannabinoid Coupling of CCKergic interneurons co-expressing CB1  Hippocampus [136]
interactions receptors is involved in the generation and stability of

rhythmic synchronous network activity of the
hippocampal CA1 subfield

CB1 and CCK, receptors work together to modulate Cortex, periaqueductal [80, 137]

cortical GABAergic release in opposite ways grey
Neuroprotection CCK triggers anti-oxidative stress pathway Striatum, substantia [146]
nigra

CCK inactivates pro-inflammatory microglia response  Medial prefrontal cortex, [147]
caudate-putamen,
hippocampus

Dynamic Serotonin induces CCK release via 5-HT,R Cortex, nucleus [153]
neuromodulation of accumbens
CCK release GABA regulates CCK release Cortex [156]
NMDA receptors promote CCK release Cortex, hippocampus [120, 121]
Dopamine controls CCK release Striatum [157]
Endogenous opioids mediate CCK release Spinal cord, frontal [158, 159]
cortex

CCK: cholecystokinin; CB1: cannabinoid type-1

Synaptic scaling and intrinsic excitability changes are crucial components of neuronal homeostatic
plasticity, since they stabilize firing and overall network function around a set-point value in the face of
activity fluctuations [129]. CCK can influence synaptic transmission, potentially through synaptic
mechanisms (affecting glutamate and GABA release) or postsynaptically altering receptor sensitivity. CCK
can alter the properties of ion channels, impacting intrinsic excitability, that is, the neurons’ firing threshold
and firing rate. In the context of chronic pain, CCK-8 enhances acid-sensing ion channel currents in rat
primary sensory neurons [130]. Through its remarkable cell-specific modulation of excitatory and
inhibitory signals and synaptic transmission, the CCK system can influence these mechanisms, contributing
as an essential molecular switch to regulate the functional output of neural circuits [74, 131]. Synaptic
plasticity is an interesting aspect of neuronal homeostasis in which endogenous CCK release could
hypothetically operate to ameliorate the impairment induced by stress to synaptic plasticity [132].

The endocannabinoid system plays a significant homeostatic role in brain functions [133]. Cortical
CCK*-GABA basket cells, which exert perisomatic inhibition of pyramidal cells [73, 74, 134], are
downstream of the activation of cannabinoid type-1 (CB1) receptors in the forebrain [135]. The
endocannabinoid system is involved in the generation and stability of rhythmic synchronous network
activity of the CA1 region of the hippocampus that impacts cognitive processes, which is mediated by the
chemical and electrical coupling of CCK interneurons co-expressing CB1 receptors [136]. Additionally, CB1
and CCK; receptors work together to modulate cortical GABAergic release in opposite ways in the cortex,
making them relevant to anxiety [80]. The similar thing occurs with CCK;r in the PAG that can both oppose
and reinforce opioid and cannabinoid modulation of pain and anxiety within this brain structure [137].
Lastly, the amygdala projection CCK*-glutamatergic neurons to the nucleus accumbens, which regulates
mood stability, have CB1 receptors [138]. Thus, CB1 receptors widely mediate endocannabinoid effects on
glutamatergic and GABAergic transmission to modulate cortical networks and the expression of anxiety and
fear [139]. It is likely that fear-related psychiatric diseases may be the result of the dysfunctional CCK-CB1
homeostatic interactions [140-142].

Homeostatic mechanisms protect neurons from harm, particularly during times of stressful and
chronic pain situations, as well as prolonged and intense cognitive efforts accompanied by stress (i.e.,
cognitive overload). Chronic stress and pain have detrimental effects on the limbic system [143]. Oxidative
stress may be a major component of anxiety pathology [144], while chronic pain leads to the weakening or
loss of these synaptic connections, leading to maladaptive changes in the brain [145]. Neuroprotection by
CCK can occur through an anti-oxidative stress mechanism [146] or by the anti-inflammatory inactivation
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of microglia through CCK,r [147]. Preclinical evidence suggests that CCK could even help with depression,
Parkinson’s and Alzheimer’s diseases through CCK,r [76, 82, 148-150] and cerebral ataxia via CCK;r [151].

The fact that CCK release mostly monitors neuronal activity and that no single neurotransmitter
directly causes it reinforces CCK’s role in modulating certain aspects of neuronal homeostasis. It is known
that the interaction of CCK with serotonin in the cortex under aversive conditions [152], and that serotonin
functions as a strong CCK release factor in the cerebral cortex and nucleus accumbens by activating 5-HT;
receptors on the CCK-releasing terminals [153]. In the ventral tegmental area, CCK is released from the
somato-dendrites of dopamine neurons, triggering long-term potentiation of GABAergic synapses onto
those same dopamine neurons [154] and dopamine release in the nucleus accumbens and the amygdala via
CCKyr [155]. GABA regulates CCK release in the cortex [156], while dopamine controls CCK release in the
neostriatum [157], and opioids mediate CCK release in the spinal cord [158] and frontal cortex [159].
Through its ability to colocalize and interact with these neurotransmitters, CCK is actually in the position to
modulate a broad range of behaviors and functions.

The most illustrative example is the homeostasis of the opioid system by CCK [11, 39]. CCK,r activity
accounts for neuropathic pain [160] and the development of opioid tolerance and/or dependence after
chronic administration of opioids [158]. CCK;r also contributes to the anti-opioid action of CCK [161, 162]
and visceral pain at the level of dorsal root ganglia [163], but the cooperative stimulation of both CCK;r and
CCK,r produces modest opioid-like effects [164, 165]. CCK-opioid interactions are in the onset and
manifestation of stress-induced hyperalgesia [89], morphine withdrawal-induced stress [166], and
addiction [37].

The homeostatic CCKergic system hypothesis

The dynamic neuromodulatory action of CCK through two receptors [10], its neuroplasticity role [53], and
the involvement in overlapping brain processes (anxiety, pain, and memory) suggests that the CCKergic
system is a network of three main components (CCK, CCK;r, and CCK,r) interacting together to restore
baseline neuronal function. The brain produces C-terminal sulfated octapeptide fragments of CCK-8 or CCK-
8S, one of the major neuropeptides in the brain, followed to a lesser degree by CCK-4 [167], which is
released in distinct limbic regions under anxiety [168]. The distribution of CCK;r and CCK,r across the
peripheral and central nervous system differs, as do their affinities for these fragments. Though sparsely
distributed in the brain, CCK;r is highly selective for the CCK-8S, whereas CCK,r is more common in the
brain but less selective due to its interchangeable binding with CCK-8S and CCK-4 [169]. The components of
the CCKergic system would be positioned conveniently over several network subdivisions responsible for
different brain processes, resulting in a particular pattern of CCK;r and CCK,r activation across subdivisions
depending on where and how CCK-8S and CCK-4 are released (Figure 1). Any imbalance in the CCKergic
system could change how the brain processes memory, pain, and anxiety.

Several neural pathways were connected in this model to bolster the CCKergic system hypothesis. One
of them is the HPA axis, which is regulated by CCK in the human brain [98], and whose disruption can lead
to alteration of neuronal homeostasis [170]. The HPA axis plays a crucial role in regulating body stress
response, including its impact on anxiety and memory [100]. CCK function on the HPA axis might be
accomplished through CCK,r [94, 95] (Figure 1). The vagus nerve, which contains both CCK receptors [103],
and the NTS, which expresses CCK [171], form the brain-gut axis, the main brain-body communication
[172]. Since the NTS is an essential autonomic integration center with reciprocal connections with the PAG,
the HPA axis, and the amygdala [173], its participation in CCK-mediated anxiety and memory cannot be
excluded [107-109, 174] (Figure 1). It should come as no surprise that endogenous peripheral and brain
CCK, each activating unique neural circuits, have anxiogenic and anxiolytic effects respectively through the
CCK,r [174, 175], whereas the inhibition of peripheral CCK impairs memory [174].

In the cerebral cortex, NMDA receptors trigger CCK release [47]. Although CCK,r is regarded as the
brain-specific receptor, the electrical activity of local neuronal networks in the fronto-parietal neocortex
[176] and hippocampus [177] is under the control of diffuse populations of CCK;r. The intercalation of CCK-
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expressing neurons with excitatory and inhibitory neuronal circuits of the limbic system controls
dopamine-mediated neurotransmission [14] (Figure 1), which in turn modulates anxiety-like behaviors
[178] and memory [179]. Rat anxiety-like behaviors are undeniably mediated by CCK,r- [180], while CCK;r
antagonists also have anxiolytic effects [181, 182]. Both of these effects seem to depend on cortical CCK
receptors [29]. The enhancing effects of CCK in memory [183] also require the participation of both
receptors, albeit through different pathways [114]. Thus, CCK;r agonists and CCK,r antagonists both
enhance memory in an olfactory recognition test in the rat [184]. This could be the reason why the injection
of the selective CCK,r agonist BC264 into the nucleus accumbens impairs memory in the rat [185]. Short-
term memory is affected in healthy volunteers by the panicogenic agent CCK-4, a full CCK,r agonist [186].
While CCK-4 is raised during stress [168], high levels of CCK-8S during the induction of stress can mitigate
the detrimental effects of stress on hippocampal synaptic plasticity and memory [147]. This demonstrates
how CCK;r and CCK,r work in conjunction to support CCK function at the cortical intersection of anxiety
and memory [29].

The cortical CCKergic system may contribute to pain modulation [187] through the CCK/CCK,r system
within the amygdala [85] and likely by the connections of the anterior cingulate cortex to lateral PAG [88].
In the rat, CCK microinjection into the ventrolateral and dorsolateral PAG produces anxiolytic-like and
anxiogenic-like effects, respectively [93]. Additionally, through the activation of CCK,r, CCK exerts its
pronociceptive and anxiety-induced hyperalgesia effects in the PAG [89, 188]. Spinal CCK;r also contributes
to the anti-opioid action of CCK [161, 162]. Because CCK;r and CCK,r produce modest opioid-like effects
[164, 165], it is anticipated that coordinated activation of both receptors across the cortex-PAG-spinal cord
axis will play a role in the nexus of anxiety and pain (Figure 1).

Neuronal homeostasis over a wide range of temporal and spatial scales requires dynamic plastic
changes of neuronal and circuit activity [189]. Because of their active neuromodulatory and neuroplasticity
roles, the elements of the CCKergic systems work together to support cognition and affective regulation [10,
48, 53, 64, 76]. During neuronal homeostasis, compensatory plastic changes of the CCKergic system could
go awry. Therefore, it should not come as a surprise that certain cortical areas of the schizophrenic brain
exhibit abnormal CCK mRNA expression [190, 191], and that the cerebral cortex of suicide victims shows
abnormally elevated CCK,r binding [192]. In the rat, interindividual differences in “novelty-seeking”—a
behavioral trait associated with anxiety and addiction—are influenced by varying expression of CCK
elements across the limbic system. [193, 194]. Restoring the proper function of the entire CCK system,
rather than just a single component, may be necessary for the correction of certain mental conditions.

Conclusions

The link between anxiety and CCK,r expression is not as straightforward as it was first thought [195]. Even
if intravenous administration of full CCK,r agonists [58] is panicogenic in healthy volunteers and worsens
symptoms in panic attack patients, CCK,r antagonists have not been proven to alleviate panic attacks [24,
25]. They are also ineffective in generalized anxiety disorder [23]. Even worse, patients with panic disorder
receiving long-term treatment with the drug had an unforeseen higher baseline incidence of panic attacks
than those receiving a placebo [24]. The findings are also controversial when it comes to pain management.
The potent CCK agonist ceruletide is characterized as a robust analgesic [196], whereas the CCK antagonist
proglumide ameliorates neuropathic pain [197], potentiates opioid analgesia [198, 199], and inhibits the
nocebo effect [8]. In contrast to preclinical predictions, morphine-induced analgesia is not increased by a
full CCK,r antagonist [26]. It follows that the intended therapeutic effect might not be achieved by
specifically targeting the brain-specific CCK,r. It might be more appropriate to take into account additional
components of the CCKergic system, such as CCK;r [200, 201]. The scientific evidence gathered in this
review regarding the intricate neuromodulatory and neuroplasticity functions of the CCK neuropeptide
supports the idea that certain affective, pain, and cognitive disorders, and even neurological conditions like
epilepsy [202, 203] may be associated with dysregulations of the homeostatic CCKergic system, rather than
an overactive CCK,r-mediated neurotransmission.
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Novel compounds that have a combination of CCK agonist and antagonist activities could be a good
addition to existing mental health drugs. These compounds have the ability to simultaneously affect
multiple pathways within the CCKergic system. Combining the two activities may be able to get around the
drawbacks of single-target strategies [204] and provide more extensive therapeutic advantages. Given that
CCKyr can control imbalances in dopaminergic neurotransmission [14, 155], a compound with CCK;r
agonism and CCK,r antagonism may potentially lessen anxiety while influencing other aspects of mood
regulation [192]. In a similar vein, these compounds could offer a fresh strategy for managing psychotic
symptoms [13-15]. Furthermore, different individuals may exhibit varying degrees of CCK-ergic activity
[193, 194] and receptor subtype activity. Compounds with combined agonist/antagonist activity could
potentially be tailored to address the individual differences.

Finally, a fascinating but little-known pharmacological feature that merits additional investigation is
the discovery of positive allosteric modulators that target the physiologic spatial and temporal engagement
of CCKyr by CCK [205]. The synthesis of a single CCK-based ligand with several off-targets is another
intriguing research avenue. For example, bifunctional peptides that act as agonists on § and p opioid
receptors as agonists and with CCK receptors as antagonists provide a good alternative for the treatment of
chronic neuropathic pain [206].

In conclusion, the pharmacological development of such putative CCKergic agents is associated with
abnormal dopamine and opioid neurotransmitters like schizophrenia [14, 191], depression [16, 192], and
addiction [207].
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