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Abstract
Gene-based medicine is transforming modern healthcare by offering precise, personalized interventions 
that target the genetic causes of disease. Breakthroughs in gene editing technologies, including clustered 
regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) nuclease technologies (CRISPR-
Cas9), base editing, and prime editing, are enabling promising therapeutic applications for rare inherited 
disorders and complex conditions like cancer. Furthermore, improvements in both viral and non-viral 
delivery methods are expanding clinical possibilities and enhancing safety measures. Despite these 
advancements, challenges such as off-target effects, ethical considerations, production complexities, and 
high costs continue to hinder widespread adoption. This review explores current innovations in gene-based 
medicine, addresses remaining obstacles, and outlines future directions, emphasizing the transformative 
potential of genomic-driven therapies for patients worldwide.
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Introduction
Gene-based medicine traces its origins to landmark experiments in the late 20th century, when researchers 
began exploring the feasibility of delivering functional genes to correct inherited disorders [1]. Early 
breakthroughs, such as the first successful gene therapy for adenosine deaminase deficiency in the early 
1990s, demonstrated the potential to treat diseases at their genetic roots rather than merely managing 
symptoms [2, 3]. Since then, the field has rapidly diversified, incorporating RNA-based strategies, refined 
viral and non-viral vectors, and powerful genome-editing tools to address a broader range of conditions. In 
essence, gene-based medicine seeks to intervene at the molecular blueprint of life (i.e., the genome), 
offering a radical shift from symptomatic care to targeted, potentially curative therapies. These 
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Graphical abstract. Gene-based medicine. Part of the graphical abstract is modified from [14]. © 2023 by the authors. CC BY. 
AAV: adeno-associated virus; CRISPR: clustered regularly interspaced short palindromic repeat; Cas: CRISPR-associated

foundational advances established the framework for modern gene therapy, setting the stage for the 
transformative technologies and clinical applications explored in this paper.

Gene-based medicine has quickly emerged as a transformative force in modern healthcare, 
fundamentally altering our approach to diagnosing, treating, and preventing disease [4]. By directly 
targeting the genetic underpinnings of various conditions, researchers and clinicians are increasingly able 
to develop highly precise and personalized treatments. Central to this wave of innovation is the advent of 
powerful gene-editing technologies, such as clustered regularly interspaced short palindromic repeat 
(CRISPR)-associated (Cas) nuclease technologies (CRISPR-Cas9), which have democratized the ability to 
manipulate genetic material with unprecedented speed and accuracy [5]. Equally important are the 
expanding efforts to translate preclinical findings into clinical settings, leading to successful gene therapy 
approvals for inherited disorders, certain cancers, and neurological diseases [6]. However, the rapid ascent 
in this field also brings forth pressing questions about safety, regulatory oversight, ethical boundaries, and 
cost-effectiveness [7]. This review seeks to chart a path forward by highlighting major breakthroughs, 
examining ongoing challenges, and envisioning future directions that could propel gene-based medicine 
from a specialized therapeutic niche to a mainstay of healthcare worldwide.

Key breakthroughs and emerging trends
The recent surge in gene-based medicine owes much to scientific discoveries and methodological advances 
that have reshaped our grasp of disease etiology. The following subsections detail these crucial 
developments, ranging from novel gene-editing platforms to innovative delivery systems, while elaborating 
on emerging trends that promise to influence both research and clinical practice.

Gene editing technologies

CRISPR-Cas9 stands at the forefront of gene editing due to its relative simplicity, efficiency, and versatility 
[5]. By leveraging the bacterial immune response system, scientists can introduce targeted cuts to the DNA 
double helix, enabling the repair or replacement of faulty genetic segments. Beyond CRISPR-Cas9, there has 
been growing interest in base editing and prime editing, which allow for precise single-nucleotide 
modifications and more refined editing processes (Figure 1). These refined tools expand the scope of what 
is genetically feasible, opening the door for therapeutic interventions that can tackle disorders at their 
source.



Explor Drug Sci. 2025;3:1008124 | https://doi.org/10.37349/eds.2025.1008124 Page 3

Figure 1. Schematic representation of gene editing mechanisms. This figure illustrates three major gene editing 
approaches: (A) CRISPR-Cas9; (B) base editing; and (C) prime editing. CRISPR-Cas9 works by introducing double-stranded 
DNA breaks through a Cas9 nuclease guided by a guide RNA (gRNA). These breaks can be repaired through non-homologous 
end joining (NHEJ), which may result in insertions/deletions, or through homology-directed repair (HDR) for precise corrections. 
Base editing utilizes a catalytically impaired or “nickase” Cas9 fused with a deaminase enzyme [either a cytidine deaminase 
(CDA) or an adenosine deaminase (ADA)] to convert single nucleotides (e.g., C-to-T or A-to-G) without creating double-
stranded breaks. Prime editing combines a nickase Cas9 with a reverse transcriptase enzyme and a prime editing gRNA 
(pegRNA) that directs both binding and template extension to enable more diverse and precise edits. These methods expand 
the range of possibilities for genetic interventions, each balancing ease of use, efficiency, and off-target considerations. For 
more details on these editing techniques, please refer to [8]. CRISPR: clustered regularly interspaced short palindromic repeat; 
Cas: CRISPR-associated

The potential to correct hereditary mutations, eliminate disease-causing viral DNA, combat age-related 
diseases, or neutralize oncogenes has ignited extensive research, although the challenges of off-target 
effects and unpredictable genomic outcomes persist [4, 9–11].

There are clear core distinctions between CRISPR-Cas9 (introducing double-stranded breaks), base 
editing (targeted, single-nucleotide changes), and prime editing [precise insertions, deletions, and 
substitutions guided by a prime editing guide RNA (pegRNA)]. Key factors of these methodologies, such as 
mechanism of action, DNA break requirements, off-target effects, tissue specificity, and clinical maturity, are 
listed in Table 1.

Novel delivery systems

While lipid nanoparticles (LNPs) have received significant attention for their low immunogenicity and 
strong encapsulation capabilities, various other non-viral vectors (such as silicon-based nanoparticles, 
metal nanoparticles, polymers, dendrimers, polysaccharide nanoparticles, and carbon-based 
nanoparticles), as well as exosomes, show promise for targeted drug and gene delivery [12, 13] (Figure 2).

Exosomes demonstrate natural biocompatibility and the potential for targeted cargo release, while 
liposomes and solid LNPs offer structurally defined systems that can improve stability and protect 
therapeutic payloads. Polymeric nanocarriers, on the other hand, may allow for modular approaches to 
loading and controlled release but could raise concerns about biodegradability and manufacturing 
scalability. To provide a clearer contrast between these technologies, Table 2 summarizes key attributes, 
such as immunogenic profiles, gene loading capacities, and suitability for various clinical settings, across 
different carrier types. Overall, these options highlight that there is no universally optimal delivery 
platform. Instead, selecting the most suitable system depends on disease-specific requirements, the 
intended therapeutic payload, and practical considerations such as cost, safety, and patient accessibility.

Delivering therapeutic genes into patient tissues efficiently and safely remains one of the central 
obstacles in gene-based therapy. Viral vectors, including adeno-associated viruses (AAVs), have 
traditionally been favored for their relatively high transduction rates [5]. Yet issues like immunogenicity, 
limited packaging capacity, and the possibility of insertional mutagenesis continue to spur interest in non-
viral alternatives. LNPs, for example, have emerged as a promising approach, offering lower 
immunogenicity and the flexibility for repeated dosing. Exosomes, which represent the own extracellular 
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Table 1. Comparison of CRISPR-Cas9, base editing, and prime editing

Key features CRISPR-Cas9 Base editing Prime editing

Mechanism of 
action

Utilizes a Cas9 nuclease and a 
gRNA to create DSBs at 
specific DNA loci.

Uses a Cas9 nickase fused to a 
deaminase enzyme to convert one 
nucleobase to another without 
introducing DSBs.

Involves a Cas9 nickase fused to a 
reverse transcriptase domain and 
uses pegRNAs to install insertions, 
deletions, or substitutions.

Types of edit Disrupts or replaces targeted 
DNA via NHEJ or HDR.

Enables precise single-nucleotide 
modifications, such as C-to-T or A-
to-G at specific locations.

Capable of making more varied edits, 
such as base changes and small 
insertions/deletions, without 
generating full DSBs.

DNA breaks 
required

Yes, it creates DSBs. Typically, only a nick is made in one 
strand.

No DBS breaks. Instead, it relies on a 
nick in a single strand for polymerase 
extension.

Off-target 
considerations

Off-target cleavage can occur 
if the gRNA has partial 
homology to non-target sites, 
but high-fidelity variants 
reduce this risk.

Generally, there are fewer off-target 
edits compared to Cas9-induced 
DSBs, but some off-target 
deaminations may still occur.

This method generally has reduced 
off-target activity compared to 
standard CRISPR-Cas9, although 
optimization is ongoing.

Efficiency and 
accuracy

While often highly efficient, 
results can vary depending on 
the cell type and repair 
pathway.

The precision for single-base 
changes is typically high, with 
efficiency depending on the 
accessibility of the target site and 
the surrounding base context.

It offers moderate to high precision, 
but efficiency can be lower than base 
editing, with ongoing improvements to 
pegRNAs and enzymes.

Tissue-specific 
efficiency

Success depends on vector 
choice, promoter specificity, 
and cellular repair machinery.

Similar factors affect the efficiency, 
which may vary depending on the 
tissue or cell line due to differences 
in deaminase expression and DNA 
accessibility.

It is currently under active 
investigation and optimal tissue 
tropism depends on delivery methods 
and pegRNA design.

Toxicity profile Potential for cytotoxicity 
resulting from DSBs, which 
can be improved by using 
high-fidelity Cas9 variants.

This is typically lower cytotoxicity 
since no DSBs are created, but the 
risk of off-target deamination 
remains a concern.

There is a lower risk of large genomic 
rearrangements, but low-level off-
target events are still possible.

Stage of 
development

Widely studied and is being 
used in multiple clinical trials, 
as well as in ex vivo therapies.

There is growing clinical interest 
with some proof-of-concept studies 
conducted in genetic and acquired 
diseases.

The technology is rapidly evolving 
with preclinical studies showing high 
promise, but broad therapeutic use is 
still in progress.

Complexity and 
size

This technology requires 
minimal resources: only a 
single Cas9 protein plus gRNA 
(100 nt).

The combination of Cas9 nickase 
and deaminase adds approximately 
1 kb of extra size, requiring careful 
design to prevent off-target 
changes.

The system includes Cas9 nickase, 
reverse transcriptase, and more 
complex pegRNAs for design 
flexibility.

DSB: double-stranded break; gRNA: guide RNA; HDR: homology-directed repair; NHEJ: non-homologous end joining; pegRNA: 
prime editing gRNA; CRISPR: clustered regularly interspaced short palindromic repeat; Cas: CRISPR-associated

vesicles of an individual, are another avenue under investigation due to their biocompatibility and capacity 
for cargo encapsulation of drugs and potential gene therapeutic active compounds [15–17]. As vector and 
nanoparticle research converges with tissue-specific promoters and cell-targeting ligands, the quest for 
optimal delivery solutions is poised to yield next-generation platforms capable of reaching previously 
inaccessible targets.

Personalized medicine

Personalized medicine in the context of gene-based approaches capitalizes on genomic, transcriptomic, and 
proteomic data to tailor interventions. Instead of adopting one-size-fits-all protocols, clinicians can now 
stratify patients by genetic risk factors, individual molecular signatures obtained by transcriptomics, 
proteomics, metabolomics, and the usage of artificial intelligence (AI) algorithms combined with machine 
learning, ultimately offering safer and more effective treatments [18]. In oncology, for instance, identifying 
specific driver mutations in a tumor of a specific patient can guide the selection of therapies that directly 
interfere with those genetic aberrations [19, 20]. Pharmacogenomics complements this customization by 
determining the response of patient to specific drugs, thereby mitigating adverse effects and optimizing 
treatment outcomes [21]. Gene-based medicine reinforces the central premise of personalized healthcare: 
no two individuals share an identical genetic landscape, and hence, treatment strategies ought to reflect 
that uniqueness.
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Figure 2. Classification of viral and non-viral delivery systems for gene-based therapies. This figure outlines the principal 
strategies for delivering gene-editing components or therapeutic genes to target cells. On the non-viral side, lipid nanoparticles 
(LNPs), silicon-based nanoparticles, metal nanoparticles, polymers, carbon-based nanoparticles, dendrimers, exosomes, and 
many other synthetic carriers provide an alternative for transient, re-dosable delivery with lower immunogenic risk. On the viral 
side, adeno-associated virus (AAV), lentivirus, and adenovirus serve as common vectors, each offering distinct advantages in 
cargo capacity, tropism, and duration of expression but varying in immunogenicity and safety profiles. Figure 2 is modified from 
[14]. © 2023 by the authors. CC BY

Table 2. Comparative overview of AAV vectors, LNPs, and exosomes

Delivery 
platform

Delivery 
efficiency

Tissue specificity Immunogenic risk Advantages Limitations

AAV vectors Generally, high 
transduction 
efficiency

Specific serotypes 
exhibit tropism for 
muscle, liver, retina, 
etc.

Moderate to high; 
pre-existing 
neutralizing 
antibodies are 
common

Long-term gene 
expression; well-
characterized biology

Limited transgene 
capacity (~ 4.7 kb); risk of 
immune response can 
reduce efficacy

Lipid 
nanoparticles 
(LNPs)

Moderate to 
high 
(depending on 
formulation)

Variable; targeting 
ligands can be 
incorporated for 
cell-type specificity

Relatively low, 
though some 
infusion-related 
reactions are 
possible

Non-viral, potentially 
allowing repeated 
dosing; scalable 
manufacturing

Potential instability in 
circulation; optimizing 
composition for each 
target remains complex

Exosomes Variable and 
still under 
investigation

Intrinsic targeting 
properties reflect 
parent cell origin; 
some potential for 
tissue-specific 
engineering

Generally low; 
derived from 
endogenous 
vesicles, but risk 
varies by source

Natural 
biocompatibility; can 
carry diverse cargos 
(RNA, proteins, or 
small molecules)

Large-scale production 
and purification remain 
challenging; cargo 
loading and consistent 
characterization are still 
evolving fields

AAV: adeno-associated virus

Growing evidence suggests that AI plays an essential role in enhancing genomic research and the 
development of gene-based therapies. Machine learning algorithms can process complex genomic datasets 
more efficiently, helping to pinpoint critical genetic markers and therapeutic targets with high precision. 
This capability is particularly crucial in personalized medicine, where interventions are tailored to 
individual molecular profiles. AI-driven approaches also show promise for guiding the selection and 
optimization of delivery vectors, as computational models can predict how efficiently different nanoparticle 
formulations or viral constructs will reach intended tissues. By integrating these insights with emerging 
tools like exosomes and lipid platforms, researchers can expedite the translation of novel gene therapies 



Explor Drug Sci. 2025;3:1008124 | https://doi.org/10.37349/eds.2025.1008124 Page 6

into clinical applications. Recent work highlights how AI-driven methodologies streamline the analysis of 
both large-scale genomic data and nanoparticle behavior, underscoring the growing convergence of 
computational intelligence and gene-based medical innovation [22, 23]. Importantly, for the shaping of 
these initiatives, it will be essential to establish a regulatory network with standardized language, which 
includes information about terminology and guidance for promoting best practices in automation and 
digitalization [24].

Clinical applications and case studies

From rare genetic disorders, such as spinal muscular atrophy, to more prevalent conditions like certain 
forms of cancer, the clinical success of gene-based therapies has advanced beyond experimental proof-of-
concept. The US Food and Drug Administration (FDA) has approved 45 cellular and gene therapy products 
as of May 15, 2025 [25] (Table S1), highlighting the rapidly expanding range of strategies used to treat 
various diseases. These therapies come from various manufacturers, including large pharmaceutical 
companies such as Bristol-Myers Squibb, Novartis, and Pfizer, as well as smaller specialized biotech firms. 
Many of these products focus on hematologic malignancies, such as multiple myeloma, B-cell lymphomas, 
and acute lymphoblastic leukemia, illustrating the effectiveness of chimeric antigen receptor (CAR) T-cell 
and other autologous T-cell immunotherapies (e.g., ABECMA, YESCARTA, KYMRIAH). These therapies 
involve collecting own T cells from patients, genetically modifying them to target cancer cells, and then 
reintroducing them to trigger a specific immune response.

Several hematological and hereditary disorders have also seen significant therapeutic progress. 
Products like HEMGENIX and BEQVEZ, which use AAV vectors to deliver functional copies of the factor IX 
gene, offer transformative treatments for hemophilia B. Similarly, ZYNTEGLO offers an AAV-independent 
gene therapy approach for β-thalassemia, potentially leading to curative results. Additionally, two gene 
editing-based approaches (CASGEVY and LYFGENIA) represent cutting-edge interventions for sickle cell 
disease. In the field of muscular dystrophies, ELEVIDYS utilizes AAV technology to deliver a shortened yet 
functional form of the dystrophin gene to patients with Duchenne muscular dystrophy.

Aside from inherited conditions, a subset of therapies leverages viral vectors or engineered cells to 
address complex disorders such as type 1 diabetes (e.g., LANTIDRA for islet cell transplantation), macular 
telangiectasia (ENCELTO employing an encapsulated cell-based gene therapy), and various 
immunodeficiencies. More recently, oncolytic viral therapies (e.g., IMLYGIC) and allogeneic cell products 
(e.g., HPC cord blood-derived treatments for inherited or acquired hematopoietic disorders) have 
broadened the scope of gene-based medicine. These modalities collectively demonstrate the clinical 
potential of both autologous and allogeneic approaches, employing vectors derived from AAVs, oncolytic 
herpes simplex viruses, or lentiviruses to confer durable therapeutic benefits. Many of these products also 
exemplify the transition toward personalized medicine, custom-tailored fronts in which patient-derived 
cells and tissues are central to the treatment process.

Taken together, the FDA-listed therapies highlight the diversity of targets and delivery systems in 
modern gene and cell-based interventions. From scaffold-based tissue-engineered products to genetically 
reprogrammed T cells, they suggest a future where an even wider range of diseases, beyond cancer and 
inherited disorders, can be treated with safe, effective, and personalized approaches. These advancements 
not only open novel avenues of treatment but also set the stage for integrating precision diagnostics and 
emerging technologies like AI into the development of next-generation therapies.

Specific examples include the FDA approvals of gene therapies targeting inherited retinal diseases and 
β-thalassemia, indicating that rigorous clinical trials can validate the safety and efficacy of gene-based 
interventions and drive new therapeutic avenues [26]. Meanwhile, in the field of oncology, CAR T-cell 
therapies have demonstrated compelling results, and ongoing research and clinical trials are expanding 
their application to multiple cancer types, including solid tumors [27]. These successes underscore both the 
feasibility of gene-based therapies and the vibrant pipeline of emerging candidates moving through 
preclinical and clinical phases. One illustrative example is the use of the one-time gene therapy 
onasemnogene abeparvovec-xioi (Zolgensma) for the treatment of pediatric patients suffering from spinal 
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muscular atrophy type 1. This is a lethal hereditary condition caused by mutations in the survival motor 
neuron 1 (SMN1) gene. In pivotal clinical trials, infants not older than 2 years who received this AAV9-
based gene therapy demonstrated significant improvements in motor milestones, including head control 
and the ability to sit unsupported, which are typically unattainable with standard care [28]. These 
outcomes were also correlated with prolonged survival and reduced respiratory support requirements. 
Despite the remarkable efficacy of the therapy, the high cost and potential liver toxicity or adverse immune 
responses highlight the need for ongoing long-term surveillance [28]. Nevertheless, Zolgensma represents a 
breakthrough in treating a previously intractable neuromuscular disorder, showcasing how gene therapies 
can provide pronounced clinical benefits while underscoring the importance of addressing safety, long-
term benefits, and accessibility concerns in new clinical trials.

Another compelling case study involves ornithine transcarbamylase deficiency (OTCD), an X-linked 
urea cycle disorder characterized by life-threatening hyperammonemia. In early clinical investigations, 
gene therapy efforts primarily employed adenoviral vectors to introduce a functional OTC gene into 
hepatocytes, thereby restoring partial enzymatic activity [29]. Although these initial trials underscored the 
potential for gene replacement to reduce ammonia levels, adverse events also highlighted the need for 
more refined vector design and improved safety protocols. Ongoing research now focuses on using AAV-
based approaches, which generally offer lower immunogenicity and longer-term gene expression [29]. 
While still in development, these next-generation therapies aim to mitigate the severe metabolic 
complications associated with OTCD and provide a durable, potentially curative option for patients 
otherwise reliant on strict dietary regimens and chronic ammonia-lowering medications. Nevertheless, the 
experience made in the first patient treated in the UK with the liver-directed editing treatment with ECUR-
506, delivering a gene encoding the editing enzyme and an OTC gene, is highly encouraging [30].

Nevertheless, recent developments underscore that gene therapy can pose significant safety risks. 
According to a July 18, 2025, communication from the FDA, three patients experienced fatal acute liver 
failure following treatment with AAVrh74 gene therapy from Sarepta. Two cases occurred in non-
ambulatory pediatric males with Duchenne muscular dystrophy treated with ELEVIDYS, while the third 
involved an adult with limb girdle muscular dystrophy who died 80 days post-treatment after presenting 
with elevated liver enzymes. These incidents prompted the FDA to request a suspension of ELEVIDYS 
distribution and to place clinical trials involving the implicated gene therapy products on hold, highlighting 
the need for ongoing vigilance and stringent safety monitoring in the rapidly evolving field of gene-based 
medicine [31]. Therefore, well-designed clinical trials, along with a careful assessment of which gene 
therapies are ethically and scientifically defensible, remain crucial in minimizing risks and ensuring patient 
safety.

Moreover, discussions of gene editing methodologies include ethical, legal, and economic dimensions 
that extend well beyond familiar concerns about the generation of “designer babies” and equitable access. 
Real-world examples, such as the controversial use of CRISPR in human embryos by a researcher in China, 
illustrate the risks of unapproved germline manipulation and have prompted governments worldwide to 
revisit and tighten their regulatory frameworks [32, 33]. In the European Union, therapies must meet 
stringent standards laid out in directives on advanced therapy medicinal products, while the FDA closely 
monitors clinical trials and post-market surveillance. Moreover, in the US the use of federal funds to finance 
genetic modification experiments in gametes and embryos is prohibited [34].

Beyond regulatory oversight, high therapy costs, often exceeding hundreds of thousands of dollars, 
spark intense debate over financial accessibility, insurance reimbursement, and the broader societal 
implications of gene editing [35]. These factors, coupled with growing concerns about data privacy and the 
ownership of genetic information, highlight a complex landscape that requires robust public engagement, 
international collaboration, and transparent governance to balance innovation with responsibility.
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Ongoing challenges
Despite inspiring breakthroughs and success stories, gene-based medicine faces substantial hurdles. These 
challenges encompass a broad spectrum, from the technical details of ensuring safe and efficacious 
therapies to the larger ethical and social considerations that arise whenever healthcare delves into the 
genetic domain.

Safety and regulatory considerations

Safeguarding patient well-being is paramount, and gene-editing tools must surmount issues related to off-
target effects, long-term stability, and immune responses. Regulatory bodies across the globe weigh both 
the promise and the risks associated with gene-editing tools, often grappling with inadequate precedents 
and evolving guidelines and special regulations for researchers, clinicians, and industry [36, 37]. As the field 
matures, regulators must find a balance between enabling technological innovation and maintaining 
rigorous standards that protect patients from unforeseen complications. Collaboration among academic 
institutions, industry, and regulatory authorities is imperative to craft agile yet robust frameworks for 
approving and monitoring gene-based therapies [36, 37].

Ethical implications

Ethical debates surrounding genetic manipulation span a spectrum that includes germline editing, equity in 
access, and the broader societal impact of modifying the human genome [35]. Intervening in germline cells, 
where changes can be inherited by subsequent generations, sparks particularly heated controversy, fueling 
both hope for disease eradication and fears of “designer babies” [38, 39]. Public engagement and 
transparent dialogue are essential to ensure that ethical guidelines remain both scientifically informed and 
socially responsive. By actively involving patient advocates and community representatives, researchers 
and policymakers can work to preserve public trust while fostering responsible innovation.

Delivery and manufacturing constraints

Scaling up gene-based therapies from proof-of-concept studies to large patient populations involves 
complexities in manufacturing, quality control, and distribution [40]. Issues such as batch-to-batch 
variability, costs associated with complex production processes, and the stringent conditions required to 
maintain product efficacy all challenge the feasibility of widespread deployment. Delivery constraints 
remain a fundamental barrier as well. Many gene-based therapies rely on tissues or cells being transduced 
at high efficiency while minimizing exposure to off-target areas, which can result in unintended genetic 
modifications at sites closely resembling the desired target sequence [32, 41]. Incorporating regulatory 
elements for tissue-specific expression in viral vectors can also be an effective means to reduce off-target 
effects [42]. Moreover, diverse experimental and in silico methods, as well as bioinformatics algorithms, 
have emerged that are also helpful in identifying off-target effects and their consequences [43, 44]. 
Concerted efforts in research and development devoted to vector engineering, manufacturing protocols, 
and supply-chain logistics will be critical in overcoming these bottlenecks. Examples show that 
standardized protocols can reduce production time, generation costs, and process risk [45].

Cost and accessibility

Even when scientific and regulatory aspects are overcome, high prices can limit the reach of gene-based 
therapies to only a small subset of patients. The cost burden comes from specialized materials, complex 
manufacturing processes, and significant investment in research and development. Insurance frameworks 
and reimbursement policies vary widely across countries, creating ethical dilemmas and economic 
disparities [46]. To prevent a scenario where only wealthy nations or patients benefit from gene-based 
advances, stakeholders must explore novel pricing models, public-private partnerships, and global 
collaboration to distribute responsibility and risk more equitably.

Although gene-based therapies offer unparalleled potential for treating previously intractable 
conditions, high development and production costs often result in prohibitively expensive treatments for 



Explor Drug Sci. 2025;3:1008124 | https://doi.org/10.37349/eds.2025.1008124 Page 9

patients. For example, some advanced therapies come with price tags in the hundreds of thousands or even 
millions of dollars, raising concerns about equitable access and reimbursement models. While in certain 
regions, such as parts of the European Union, national healthcare systems help subsidize or negotiate the 
cost of these treatments, significant disparities persist globally [35]. Cost-control measures for gene and cell 
therapies tend to be stricter in Europe compared to the US. For instance, Roctavian therapy is priced at 
around US$2.9 million but only US$1.5 million in Germany, while Lenmeldy is priced at US$4.25 million in 
the USA but a slightly more reasonable £2.8 million (about US$3.8 million) in the UK. Companies seem to 
have significant freedom in shaping their therapies, highlighting the need for greater transparency in 
pricing [39].

Unfortunately, in some low- and middle-income countries, insurance frameworks are limited or 
nonexistent, making many gene therapies inaccessible to most patients. Visual comparisons of therapeutic 
costs by region, along with transparent assessments of both direct and indirect financial burdens on 
patients and healthcare systems, can shed light on how pricing structures impact widespread adoption and 
long-term sustainability. As a result, there is a rising demand for innovative financing mechanisms, such as 
installment payment plans or outcomes-based pricing, to ensure that advances in gene-based medicine 
benefit patients worldwide in a fair manner [47].

Future directions
The outlook for gene-based medicine is undoubtedly bright as researchers refine current methods and 
discover next-generation solutions. However, sustainable progress requires ongoing innovation, careful 
governance, and interdisciplinary partnerships that integrate the needs and insights of diverse 
stakeholders.

Next-generation gene editing

Refinements to CRISPR-Cas9, along with emerging technologies like base editing, aim to reduce off-target 
edits and expand the genetic changes that can be made. Scientists are also exploring more controlled 
inducible systems that activate gene editing only in response to specific signals [48]. These advances are 
expanding the scope from single-gene monogenic disorders to more complex, polygenic diseases, unlocking 
therapeutic possibilities for once-deemed intractable conditions.

Recent advances in gene editing technology go far beyond the groundbreaking CRISPR-Cas9 approach. 
New, more refined and precise systems have been developed that can achieve single-nucleotide 
modifications or complex genomic alterations. As discussed, base editors, for example, use a “nickase” 
variant of Cas9 fused to a cytosine or adenine deaminase, allowing for targeted nucleotide conversions 
without causing double-stranded breaks. Another innovative technique is prime editing, which combines 
Cas9 nickase with a reverse transcriptase module and specially designed pegRNAs to enable flexible 
editing, including insertions, deletions, and substitutions. It is now crucial to improve the accuracy of all 
these tools and establish conditionally activated enzymes to minimize off-target activity and enhance 
therapeutic potential. The advancement of these tools, including base editors, prime editors, and advanced 
CRISPR variants, will further expand the scope and precision of genome manipulation. This progress paves 
the way for novel precision therapies in inherited diseases, oncology, and beyond.

Expanding clinical applications and translation

Encouraged by promising clinical results in oncology and early-phase trials for neurological and 
cardiovascular diseases, many researchers anticipate broader use of gene-based therapies or exosome-
based vesicles that can effectively cross the blood-brain barrier for conditions with substantial unmet 
clinical needs [49, 50]. As more patients undergo these treatments and sustained investment in research, 
growing data sets will help define safety parameters, optimal dosing, and long-term benefits, continually 
enhancing delivery vector construction and manufacturing, as well as treatment algorithms, including 
ethical considerations [50–52]. Over time, gene-based medicine, including nanoparticle-based genomic 
medicines, may prove transformative for disorders that have remained elusive under conventional 
therapeutic paradigms, ultimately reshaping standards of care in multiple clinical specialties [53].
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There are also some important challenges regarding clinical translation when using different delivery 
systems. Although AAV vectors have shown robust gene delivery and sustained expression, pre-existing 
neutralizing antibodies may limit their efficacy. In contrast, LNPs and exosomes exhibit lower 
immunogenicity and can facilitate multiple dosing, but can face challenges in achieving high transduction 
rates and consistent targeting (Table 2), emphasizing the importance of tailoring delivery strategies to 
balance efficacy, safety, and long-term viability in clinical applications. As the field continuously evolves, 
these parameters may shift over time with ongoing research and technological advancements.

Integrating multi-omics approaches

The concept of “multi-omics” emphasizes the integration of genomic, transcriptomic, proteomic, and 
metabolomic datasets, providing a comprehensive view of human disease mechanisms [54]. Combining 
gene-based therapies with advanced diagnostics that synthesize these large data streams could refine 
patient selection and predict therapeutic outcomes more accurately. Genome-wide association studies 
(GWAS), combined with transcript-level analyses or transcriptome-wide association studies (TWAS), can 
identify essential regulatory networks, highlighting pathways amenable to gene-based interventions [55]. 
Through this holistic approach, clinicians can make data-driven decisions that enhance both efficacy and 
safety.

International regulations and restrictions

A more comprehensive view of gene therapy requires recognizing that regulatory pathways vary widely 
across regions, influencing both the pace and scope of clinical translation. For instance, the European 
Medicines Agency (EMA) applies a stringent approval process under regulations specific to advanced 
therapy medicinal products, while the FDA oversees a structured pathway that includes expedited 
designations for promising therapies [56, 57]. In China, the National Medical Products Administration 
(NMPA) has introduced recent reforms to accelerate innovative treatments with advanced therapy medical 
products, but ethical controversies, such as unauthorized germline interventions, have spurred tighter 
oversight [58]. Against this complex backdrop, it is also important to acknowledge the perspectives of 
skeptics, patients who have experienced off-target effects, and advocacy groups that champion more 
patient-centric and ethically responsible application of these technologies from philosophical, theological, 
public, scientific, and clinical perspectives [59, 60]. By engaging these diverse viewpoints and regulatory 
frameworks, researchers and policymakers can develop a balanced, globally informed strategy for 
advancing gene-based medicine.

Collaborative ecosystems

Fostering broader success in gene-based medicine requires a strong ecosystem of collaboration. 
Partnerships range from academia and industry-driven research consortia to regulatory agencies and 
patient advocacy groups. Large-scale public-private collaborations have already accelerated vaccine 
development through pooled resources, shared data repositories, and coordinated clinical trial networks, 
as seen in the vaccine development during the COVID-19 pandemic [61]. A similar model could streamline 
gene therapy development, where transparent communication and shared objectives reduce redundancies 
and promote ethical, efficient progress. Crucially, fostering strong links between scientific innovation and 
ethical oversight will be vital to maintaining public confidence and ensuring that gene-based therapies 
uphold societal values [62]. Despite international and national legal regulations that need to be considered, 
human genome editing research requires a close network of collective scientific self-regulation, regardless 
of whether it is conducted in public institutions, private sectors, or in public-private partnerships [63].

Conclusions
Gene-based medicine represents an unprecedented leap forward in the quest to combat human disease at 
its foundational genetic level. Buoyed by breakthroughs in gene editing, sophisticated delivery systems, and 
personalized therapeutics, the field shows immense promise for treating both rare and widespread 
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disorders. Nevertheless, these transformative possibilities are accompanied by equally weighty challenges. 
Technical limitations in delivery, ethical considerations surrounding the sanctity of the genome, and 
economic barriers that restrict access all warrant thoughtful, multifaceted solutions. As gene-based 
therapies move more firmly into clinical practice, the collective focus must remain on responsible 
innovation, global collaboration, and patient-centricity. By balancing robust scientific advances with 
vigilant regulation and community engagement, gene-based medicine could revolutionize healthcare, 
ushering in a future where targeted, prophylactic, and even curative interventions become reality for 
patients in need.
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