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Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multipotent progenitor cells with the capacity to 
differentiate into various mesenchymal lineages, including osteogenic, chondrogenic, and adipogenic 
tissues, rendering them promising candidates for regenerative medicine. This review delves into current 
foundational and preclinical research concerning BMSCs, with a particular emphasis on the use of 
genetically modified rat-derived BMSCs expressing green fluorescent protein (GFP) to facilitate in vivo cell 
tracking during tissue repair. It also examines various administration strategies, including intra-articular 
injections and magnetically guided cell targeting, to evaluate their therapeutic efficacy. Emerging evidence 
highlights the pivotal role of BMSCs in regenerating musculoskeletal tissues, including muscle, meniscus, 
and cartilage. Notably, the application of external magnetic fields (EMF) to direct magnetically labeled 
BMSCs to injury sites has demonstrated encouraging outcomes in cartilage repair. Furthermore, advances 
in BMSC culture techniques, single-cell genetic analysis, and tissue engineering methodologies may further 
augment their therapeutic potential. Preclinical and early-phase clinical studies underscore the promise of 
BMSCs as a minimally invasive therapeutic modality in orthopedic and regenerative medicine. Further 
research is essential to refine their applications and optimize delivery strategies, such as the use of internal 
magnetic fields generated by magnetized material implanted in damaged knee cartilage, to ensure long-
term efficacy and safety.
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Introduction
Bone marrow mesenchymal stem cells (BMSCs) are pivotal in the fields of pluripotency, 
immunomodulation, and tissue regeneration. We aimed to elucidate the fundamental biological properties 
of BMSCs, particularly their multipotent differentiation potential and delineate their therapeutic relevance 
in orthopedic medicine. Key preclinical methodologies are explored, including the use of green fluorescent 

https://orcid.org/0000-0002-6857-0128
mailto:shinobu_yanada@jpte.co.jp
mailto:shinobu_yanada@jpte.co.jp
https://doi.org/10.37349/emd.2025.100792
http://crossmark.crossref.org/dialog/?doi=10.37349/emd.2025.100792&domain=pdf&date_stamp=2025-05-21


Explor Musculoskeletal Dis. 2025;3:100792 | https://doi.org/10.37349/emd.2025.100792 Page 2

Graphical abstract. The evolving strategies for bone marrow mesenchymal stem cell (BMSC) therapy in cartilage repair. 
Initially, characterized BMSCs were administered via intra-articular injection (IAI) following in vitro analysis. Currently, green 
fluorescent protein (GFP)-expressing rat-derived BMSCs enable in vivo tracking, and magnetically guided delivery using 
external magnetic fields (EMF) has demonstrated clinical benefit in directing cells to cartilage lesions. Future approaches aim to 
enhance targeting precision and therapeutic efficacy through internal magnetic fields (IMF) and advanced single-cell analyses 
such as RNA sequencing

protein (GFP) transgenic rats, magnetic field-facilitated cell aggregation, and investigations into telomere 
biology in the context of BMSC differentiation dynamics.

Residing within the bone marrow niche, BMSCs are indispensable to the advancements in regenerative 
medicine and tissue engineering. In 1968, Friedenstein et al. [1] successfully isolated these 
nonhematopoietic, fibroblast-like adherent cells from bone marrow, demonstrating their capacity to 
differentiate into osteogenic and adipogenic lineages. Caplan [2], in 1991, introduced the term 
“mesenchymal stem cells (MSCs)” to highlight their multipotency and regenerative capabilities. 
Subsequently, Johnstone et al. [3] provided compelling evidence that aggregated bone marrow-derived 
stromal cells could undergo chondrogenic differentiation. Caplan [4] later modified the hypothesis and 
stated that BMSCs primarily act as signaling entities involved in tissue repair, thereby enabling their use in 
cell-based therapeutic approaches for cartilage and bone regeneration.

Subsequent investigations have significantly advanced the understanding of BMSC biology, particularly 
regarding their immunomodulatory functions and interactions within inflammatory microenvironments. 
The paracrine effects of BMSCs, which secrete a diverse array of bioactive molecules such as transforming 
growth factor-beta (TGF-β), hepatocyte growth factor (HGF), and prostaglandin E2 (PGE2), play a pivotal 
role in promoting tissue regeneration, immune regulation, and maintaining immune homeostasis [5–7]. 
Moreover, their ability to suppress immune rejection by modulating T-cell proliferation underscores their 
potential for allogeneic transplantation [8].
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Recent technological advancements have introduced innovative strategies to enhance the therapeutic 
efficacy of BMSCs. The use of GFP-expressing rats has enabled precise in vivo tracking of BMSC migration 
and differentiation, facilitating a rigorous assessment of their regenerative capabilities [9]. Additionally, 
magnetic field-mediated cell aggregation techniques have been employed to improve the targeted delivery 
and retention of BMSCs at injury sites, thereby maximizing their therapeutic impact [10, 11]. These 
advancements are particularly valuable in addressing persistent challenges, such as poor engraftment and 
limited post-transplantation cell viability.

Concurrently, research into BMSC telomere dynamics has yielded critical insights into their 
proliferative capacity and long-term functionality. Telomere attrition, a consequence of serial passaging in 
vitro, poses a significant barrier to their clinical utility, necessitating the optimization of culture conditions 
to preserve stem cell characteristics [12, 13]. Promising strategies aimed at modulating telomerase activity 
have emerged, offering potential solutions to enhance the viability and functional capacity of BMSCs [14].

Clinically, BMSC-based interventions have demonstrated considerable promise in orthopedic 
applications, including cartilage repair, osseous defect reconstruction, and tendon regeneration [15, 16]. In 
preclinical models of osteoarthritis, intra-articular BMSC administration has demonstrated efficacy in 
attenuating cartilage degeneration [17]. Furthermore, MSC-derived extracellular vesicles have exhibited 
protective effects on the extracellular matrix (ECM) [18]. Nevertheless, several barriers continue to hinder 
the clinical translation of BMSC therapies. Key challenges include donor variability, heterogeneity within 
cell populations, and the lack of standardized culture protocols, which warrant further investigation [19]. 
Additionally, challenges related to large-scale manufacturing and regulatory approval must be addressed to 
ensure the reproducibility, safety, and efficacy of BMSC-based therapeutics [20].

Research on tracking transplanted cells using BMSCs isolated from GFP 
rats
The characteristics of BMSCs are defined by their multipotency, self-renewal capacity, immunomodulatory 
abilities, secretion of bioactive factors, and promotion of angiogenesis. Their differentiation into various 
tissue types, such as bone, cartilage, and adipose tissue, is pivotal for in situ tissue regeneration and organ 
repair following cell transplantation. These attributes have been the subject of extensive research [21–24].

Fluorescent proteins have transformed the visualization and tracking of cells and tissues. Among them, 
GFP, first identified by Shimomura et al. [25], is widely favored for its strong fluorescence, high stability, 
and minimal toxicity. GFP has advanced biological research, enabling the observation and analysis of 
various biological processes. Its integration into the genomes of numerous animal models, including rats, 
has expanded research capabilities. GFP rats serve as indispensable tools across diverse fields, such as 
cytogenetics, neuroscience, immunology, and developmental biology.

GFP rats provide distinct advantages in regenerative medicine, including the real-time tracking and 
evaluation of transplanted cell dynamics to assess therapy efficacy, comprehensive analysis of tissue 
regeneration and repair, optimization of therapeutic protocols by studying cell behavior at specific sites like 
knee joints, and the development of noninvasive imaging techniques for quantitatively assessing 
regenerative processes and therapeutic outcomes. Table 1 outlines their applications in orthopedic 
research.

Studies were initiated using BMSCs isolated from GFP rats, inspired by Hakamata et al. [34], who 
introduced GFP rats as tools for organ transplantation research in 2001. At that time, no studies had 
tracked transplanted cells to verify their efficacy in orthopedic contexts. GFP rat-derived BMSCs were used 
in foundational studies targeting orthopedic tissues such as cartilage, bone, meniscus, and muscle.

GFP rats enable the tracking of transplanted cells through fluorescence, providing insights into their 
localization, dynamics, and the tissue repair process. This approach is essential for evaluating the efficacy of 
cell transplantation and optimizing cell therapy strategies.
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Table 1. Applications of GFP rats in orthopedic research

Category Study focus Reference

In vivo cell tracking Monitoring of BMSC migration and differentiation Han et al. [26] 2012
Cartilage repair Demonstrated enhanced ECM synthesis via GFP-labeled BMSCs Yin et al. [27] 2016
Bone healing Assessed BMSC migration to bone injury sites Li et al. [28] 2018
Tendon healing Evaluated tendon integration with GFP rat derived BMSCs Safi et al. [29] 2018
Functional recovery following spinal 
cord injury

Assessed BMSC migration to spinal cord injury sites Yi et al. [30] 2019

Gene expression analysis Functional genomic profiling of GFP rat derived BMSCs He et al. [31] 2006
Scaffold integration Compatibility and differentiation potential of GFP rat derived 

BMSCs within scaffolds
Rooney et al. [32] 
2008

Angiogenesis Role of GFP-BMSCs in enhancing neovascularization for tissue 
engineering

Zhang et al. [33] 
2006

GFP: green fluorescent protein; BMSCs: bone marrow mesenchymal stem cells; ECM: extracellular matrix

Initial investigations focused on BMSC transplantation for muscle injury repair. BMSCs derived from 
GFP labeled Sprague-Dawley (SD) rats were transplanted into partial-thickness lacerations in the tibialis 
anterior muscle. Histological analysis revealed that BMSCs promoted muscle fiber maturation, and the 
injured muscle regained near-normal functional strength within 1 month. However, immunohistochemical 
analysis showed that the transplanted BMSCs neither fused with, nor differentiated into mature skeletal 
muscle fibers. Instead, they gave rise to muscle precursor cells. These findings indicate that BMSCs facilitate 
skeletal muscle regeneration through mechanisms that did not involve direct fusion with muscle fibers [35].

The effects of BMSCs on meniscus repair were studied by creating meniscus-like structures using 
scaffolds derived from normal meniscus tissue combined BMSCs. Meniscus devitalization was induced in 
thirty SD rats using three freeze-thaw cycles with liquid nitrogen. GFP-SD rat-derived BMSCs were cultured 
for 2 weeks and seeded onto the scaffolds. Fluorescence microscopy and immunohistochemical staining 
revealed GFP-positive cells on the surface and in deeper zones of the scaffolds at one and 2 weeks, 
respectively. By 4 weeks, ECM deposition was observed, alongside messenger RNA (mRNA) expressions of 
aggrecan and type X collagen. Indentation stiffness testing indicated significant increases in tissue stiffness, 
comparable to normal meniscus tissue. These results confirmed that BMSCs seeded onto meniscus-derived 
scaffolds can form structures resembling a normal meniscus [36].

Further investigations assessed tissue co-cultured with BMSCs and meniscus-derived scaffolds 
transplanted into meniscal defects. At 4 weeks postsurgery, cell proliferation and ECM deposition were 
evident in the transplanted tissue. By 8 weeks, articular cartilage in the acellular scaffold group exhibited 
greater damage than in the cell-seeded or meniscectomy groups, highlighting the protective effects of 
BMSC-seeded scaffolds [37].

The mobilization of BMSCs following intra-articular injections into injury sites was evaluated. Partial 
injuries were induced in the meniscus and cartilage of the knee joints of SD rats. Following wound closure, 
106 or 107 BMSCs isolated from GFP rats were injected into the knee joints. At the 106 BMSC dose, GFP-
positive cells were identified at the injured anterior cruciate ligament (ACL) in all knees. At the 107 BMSC 
dose, GFP-positive cells were also detected at injury sites in the medial meniscus and femoral condyle 
cartilage, accompanied by signs of ECM deposition around the cells. These findings suggest that BMSCs 
injected into the joint migrate to damaged tissues, promoting tissue regeneration, and offering a minimally 
invasive alternative to traditional surgical treatments for such injuries [38].

The effects of intra-articular BMSC injections on partial tears of the ACL were also investigated, using a 
total of 98 male, 12-week-old SD rats. Histological and biomechanical analyses revealed that the injected 
MSCs facilitated the healing of partially torn ACLs. This approach highlights intra-articular MSC injections 
as a promising therapeutic option for treating partial ACL tears [39].
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Magnetically labeled BMSCs: a novel method for targeted cell delivery
Studies conducted by Agung et al. [38] and Kanaya et al. [39], examined the potential of intra-articular 
BMSC injections for treating partially damaged intra-articular tissues. However, an increased number of 
injected cells led to the formation of intra-articular scar tissue, highlighting the need for a minimally 
invasive method to localize stem cells precisely at the injury site and evaluate its therapeutic efficacy.

In parallel, a research group in the same laboratory explored the accumulation of artificially 
magnetized liposomes at cancerous sites using external magnetic fields (EMF) [40]. By the early 2000s, 
technologies for magnetically labeling cells or proteins and separating them using magnetic techniques 
were already established in biotechnology. Although the concept of magnetic targeting using magnetic 
fields to direct drugs to target sites was known, its application to cells remained unexplored.

In cartilage repair, cells are typically transplanted as suspensions [41], sheets [42, 43] or incorporated 
into scaffolds [44, 45]. However, attempts to magnetically label cells for therapeutic use in orthopedics 
were unsuccessful. If achieved, this approach could enhance the engraftment efficiency of transplanted 
cells. Conventional methods such as cell suspensions, often encounter challenges, including diffusion from 
the target site and uneven distribution due to gravity, limiting therapeutic efficacy. Additionally, the limited 
availability of autologous cells emphasizes the need for efficient cell localization strategies.

To address these challenges, basic research was conducted on minimally invasive treatments using 
magnetically labeled cells [46].

A method was developed to magnetically label BMSCs by conjugating magnetic beads with antibodies 
targeting the cluster of differentiation 44 surface antigen, arginine-glycine-aspartic acid-serine peptides, 
and small carboxyl group-modified beads, Ferri Sphere 100C (diameter: 310 nm). These labeled cells 
exhibited reduced proliferation compared to nonlabeled cells but demonstrated efficient accumulation at 
target site under magnetic influence and chondrogenic differentiation in vitro [47]. Further investigations 
revealed that complexes of magnetic beads and MSCs could undergo osteogenic differentiation [48]. 
Additionally, magnetic fields were found to regulate chondrogenic differentiation by lowering the 
concentration of TGF-β, a soluble factor involved in chondrogenesis [49].

This approach was extended to neural progenitor cells, where magnetic targeting successfully localized 
the cells and promoted axonal growth in vitro [50, 51]. In a rat spinal cord injury model, magnetically 
labeled BMSCs were effectively directed to the injury site using a magnetic field, highlighting a minimally 
invasive method for BMSC transplantation in spinal cord injury treatment [52]. In oncology, magnetic 
accumulation of natural killer cells targeting osteosarcoma was explored, demonstrating its potential as an 
immunotherapy strategy [53]. A list of applications of magnetically labeled BMSCs in orthopedic research is 
shown in Table 2.

Table 2. Applications of magnetically labeled BMSCs or scaffolds in orthopedic research

Category Study focus Reference

SPIO labeling 
techniques

Optimization of iron oxide nanoparticle uptake for MRI contrast 
enhancement

Jasmin et al. [54] 
2011

In vivo tracking High-resolution MRI monitoring of SPIO-labeled BMSCs in orthopedic 
applications

Lu et al. [55] 2025

Cartilage repair Evaluation of magnetically guided BMSC transplantation for cartilage repair Chen et al. [56] 2013
Muscle repair Evaluation of magnetically guided BMSC transplantation for muscle repair Oshima et al. [57] 

2014
Tendon-bone healing Investigation of magnetic targeting for enhanced BMSC retention in bone 

defects
Zhang et al. [58] 2024

Nerve regeneration Application of SPIO-labeled BMSCs in spinal cord injury model Zhang et al. [59] 2015
Angiogenesis rromotion Contribution of SPIO-labeled BMSCs to vascular network formation Cao et al. [60] 2009
Scaffold integration Compatibility and differentiation potential of BMSC in SPIO-labeled scaffolds Chen et al. [61] 2018
SPIO: superparamagnetic iron oxide; BMSCs: bone marrow mesenchymal stem cells; MRI: magnetic resonance imaging
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Clinical applications: magnetization of BMSCs for cartilage repair
Wakitani et al. [62] treated patients with extensive full-thickness articular cartilage defects using bone 
marrow- or periosteal-derived MSCs combined with type 1 collagen gel, achieving favorable clinical 
outcomes at 24 weeks post-transplant. Henning et al. [63] used Ferucarbotran-labeled MSCs for tracking 
purposes. To advance clinical applications, Ferucarbotran, a magnetic resonance imaging (MRI) contrast 
agent, was used to magnetically label BMSCs for clinical purposes. Studies on osteochondral defects in the 
central patella of rabbits and pigs demonstrated that magnetically labeled BMSCs could be directed to 
target sites using an EMF [64]. Furthermore, magnetized human BMSCs were injected into degenerated 
human cartilage during total knee arthroplasty, and guided by an EMF. These cells were subsequently 
cultured in chondrogenic medium for 3 weeks. Histological analysis confirmed ECM production, 
highlighting their potential for osteoarthritis treatment [65].

To advance translational research for clinical application in humans, the safety and quality of 
magnetically labeled human BMSCs were evaluated in vitro. It was demonstrated that magnetic labeling did 
not adversely affect the safety or quality of the MSCs [66]. Subsequent clinical trials evaluated the safety 
and efficacy of this approach in five patients with localized knee cartilage defects. A 1.0 T permanent 
magnet was precisely positioned on the knee joint, based on the lesion’s location, followed by the injection 
of magnetized autologous BMSCs. No adverse events were reported during the treatment or follow-up 
periods. MRI and arthroscopy revealed significant cartilage repair, while clinical outcome scores including 
the International Knee Documentation Committee subjective knee evaluation and the Knee Injury and 
Osteoarthritis Outcome Score showed notable improvements in knee-related quality of life at 48 weeks 
post-treatment. These findings establish magnetic targeting therapy as a promising, minimally invasive 
method for cartilage repair [67].

Future directions
BMSCs comprise only 1% of bone marrow cells, necessitating efficient expansion techniques for clinical 
applications. The study of telomere status in post-differentiated BMSCs is critical to understanding cellular 
senescence, regenerative capacity, and long-term functional maintenance. Telomeres, DNA sequences at the 
ends of chromosomes, shorten with each cell division. While BMSCs are pluripotent and capable of 
differentiating into bone, cartilage, and adipose cells, repeated differentiation and self-renewal lead to 
telomere shortening, resulting in cellular senescence and functional decline. It is essential for post-
differentiation BMSCs used in regenerative medicine to maintain effective functionality within the body. 
Telomere analysis enables predicting the functional lifespan of differentiated cells, thereby facilitating the 
design of culture conditions and differentiation protocols that minimize telomere shortening. These 
advancements have the potential to pave way for personalized medicine in the future through telomere 
analysis by tailoring BMSC therapies to individual patients, optimizing differentiation processes through 
novel culture techniques, and standardizing cell quality control using telomere length as an indicator.

The role of fibroblast growth factor-2 (FGF-2) in enhancing MSCs expansion and maintaining their 
differentiation potential, especially in chondrogenesis, was investigated. Telomere length analysis revealed 
that MSCs cultured with FGF-2 preserved their differentiation potential and long telomeres, suggesting that 
telomere length may serve as a valuable marker for chondrogenic progenitor cells [68].

Further analysis focused on the quality of MSCs by profiling the expression of cytokines, including 
growth factors, mRNAs, and microRNAs, in human BMSCs. The results showed that, regardless of their 
proliferative and chondrogenic differentiation capacities, these cells exhibited the potential to promote 
cartilage repair in vivo [69].

Microscopic observation has confirmed the heterogeneity of BMSCs. A diverse population becomes 
apparent under the microscope displaying various morphologies, including larger, flattened cells, elongated 
cells, and polygonal cells. Recent advancements in single RNA expression analysis provide innovative 
approaches to investigating BMSC heterogeneity and their roles in tissue repair [70]. Gene analysis offers 
the potential to track the effects of transplanted cells in bone-cartilage repair without relying on GFP rats. 
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Understanding the mechanisms underlying cellular aging and differentiation potential is critical in 
developing more effective BMSC-based therapies.

Tissue engineering research using BMSCs holds a pivotal role in regenerative medicine and 
bioengineering. The unique capability of BMSCs to differentiate into various tissue types enables their 
application in addressing a wide range of diseases and injuries, including bone defect repair, articular 
cartilage regeneration, and muscle restoration. In addition, their flexibility in cell sourcing allows for 
straightforward harvesting from iliac bone marrow, facilitating both autologous and allogeneic 
transplantation. Despite their advantages, such as high adaptability post-transplantation and the potential 
for patient-specific therapies, challenges persist. These include the substantial cost and time required for 
culture and differentiation, the need for long-term safety and efficacy evaluation, and the risk of immune 
rejection in allogeneic transplantation.

Tissue engineering was proposed by Langer and Vacanti [71] in 1993. It provides groundbreaking 
medical treatments and holds immense significance for the following seven reasons. 1) It addresses the 
organ shortage crisis as the worldwide demand for organ transplants significantly surpasses the available 
donor supply, enabling the creation of organs and tissues using the patient’s own cells. 2) It advances 
regenerative medicine by facilitating the repair and regeneration of tissues and organs damaged due to 
injury or disease. By integrating cells, scaffolds, and bioactive factors, it substantially enhances the scope of 
tissue restoration. A notable example is cartilage regeneration using J-TECs’ Autologous Cultured Cartilage, 
JACC, which involves encapsulating autologous chondrocytes in atelocollagen gel [72], resulting in 
significant improvements in patients’ quality of life. 3) Human tissues developed through tissue engineering 
serve as valuable models for understanding the pathophysiology of diseases, enabling the reproduction of 
human-specific reactions that are beyond the scope of animal experiments. In recent years, the use of 
“organoids” developed from patient-derived cells has gained prominence. 4) Drug development can become 
significantly more efficient with the use of artificial tissues that closely mimic human tissues, enabling the 
evaluation of drug safety and efficacy. These tissues serve as a precise alternative to animal testing, 
providing more accurate data while mitigating ethical concerns. Notably, liver and kidney model tissues are 
already being used in drug metabolism studies. 5) It contributes to personalized medicine by using the 
patient’s own cells to create tissue, thereby avoiding rejection and enabling treatments tailored to 
individual needs. 6) It drives technological innovation by combining disciplines such as biomaterials, 
nanotechnology, stem cell biology, and bioprinting. The advancements in technologies and materials are 
being applied beyond the field of medicine. Finally, it contributes to sustainable medicine by reducing costs 
associated with organ transplantation and chronic disease treatment, while promoting more efficient use of 
medical resources. This approach supports natural healing processes and enhances the overall 
sustainability of healthcare systems. For these reasons, advances in tissue engineering hold the promise to 
overcome the limitations of conventional medicine, offering innovative treatments and groundbreaking 
technologies. Future research in this field is expected to bring significant benefits to countless patients.

In particular, combining BMSCs with advanced scaffold materials, such as decellularized scaffolds or 
novel biodegradable materials enriched with ECM derived from allogeneic or autologous tissues, could 
enhance therapeutic efficacy. Furthermore, the exploration of BMSC-loaded scaffolds for articular cartilage 
repair, combined with advancements in magnetic targeting methods, is expected to open new horizons for 
minimally invasive therapies (Figure 1).

The scaffold using magnetized biodegradable materials is arthroscopically placed into the 
osteochondral defect following the dissection of degenerated cartilage. Subsequently, a suspension of 
magnetically labeled BMSCs is injected, enabling their accumulation in the affected area.

Conclusion
BMSCs exhibit substantial potential for regenerating bone, cartilage, and muscle tissues due to their 
multipotency. Their efficacy in muscle, meniscal, and cartilage repair has been well demonstrated. 
Magnetically labeled BMSCs facilitate minimally invasive and targeted delivery methods, significantly 
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Figure 1. Future directions in magnetic targeting of BMSCs with advanced scaffolding materials for cartilage repair 
therapy. BMSCs: bone marrow mesenchymal stem cells

enhancing therapeutic outcomes. Clinical applications, such as intra-articular injections, have shown 
promising results in cartilage regeneration. Future research should prioritize optimizing cell expansion 
techniques and improving targeted cellular accumulation. Advancing the understanding of cellular 
senescence and differentiation will further refine therapeutic strategies. Integration of BMSCs with gene 
editing technologies, tissue engineering methodologies, and biomaterials offer the potential for more 
effective and personalized regenerative treatments.
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