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Abstract
Fracture non-union remains a significant clinical challenge despite considerable advances in diagnostic 
imaging and treatment modalities. Unpredictable healing, repeated interventions, and prolonged disability 
contribute to high patient morbidity and increased healthcare costs. Early and reliable prediction of non-
union is therefore essential for timely intervention. This review discusses traditional radiographic 
assessment using the Radiologic Union Scale for the Tibia (RUST), its inherent limitations, and the emerging 
role of artificial intelligence (AI) and deep learning in fracture analysis. In addition, we review recent 
studies—including Bayesian classifiers and simulation models—that integrate AI for early prediction of 
non-union, and we provide an updated summary table of key studies.
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Introduction
Non-union of bone after a fracture is an orthopedic condition with high morbidity and clinical burden [1]. 
Despite advances in the understanding of basic science and technology, fracture non-union remains a 
clinical problem [2]. Non-union is a difficult outcome to predict at the time of injury and throughout the 
healing process, and although it is an established complication of any fracture, in clinical practice, both 
clinicians and patients consider it a poor outcome [2]. Fracture non-union is a feared complication that 
leads to devastating consequences for the patient. Though rare, it requires complex and expensive 
treatment associated with multiple surgical procedures, prolonged hospital stays, pain, and functional and 
psychosocial disability. Implementation of treatment protocols can be complex and prolonged. Moreover, 
the resulting socioeconomic burden should not be underestimated. Being able to immediately identify 
patients at high risk for non-union will allow for early, appropriate, targeted therapeutic intervention, 
leading to a successful outcome [3].
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The RUST and non-union
The Radiologic Union Scale for the Tibia (RUST) appears to be the most reliable method to routinely assess 
bone union [4]. The use of the radiologic union scale after non-union surgery may be useful in predicting 
non-union, and adjunctive therapies such as bone stimulation, autogenous grafting, or the use of bone 
morphogenic proteins may be considered in patients with possible non-union [5–7].

RUST is a scoring system based on the degree of bridging of the fracture callus and visibility of the 
fracture line on anteroposterior and lateral radiographs [7, 8]. Although the name of the RUST score varies 
in the literature, the scoring applied in the detection of union is the same [9–12]. And there is evidence in 
the literature that this scoring system is successful in predicting non-union. The main problems in the use 
of RUST are that it is observer dependent and inter-observer agreement is not perfect, it cannot predict the 
progression of healing in the early stages of union until the callus tissue starts to transform into lamellar 
bone and becomes visible on radiographs, and in patients with implants, not all cortices can be evaluated 
because the fracture line and bone cortices are covered by the implant on radiographs. According to RUST, 
since the union assessment is made by a human, the bridging of the union needs to be visible to the eye. 
Therefore, even if RUST predicts the possibility of non-union, a certain amount of time must pass over the 
fracture (the time it takes for union findings to be visible on radiography).

Software can be used to determine fracture union and callus tissue on plain radiographs [13]. The 
software can detect pixel changes caused by the fracture callus on plain radiographs, the area, volume, and 
width of the callus. In this way, it can provide quantitative monitoring of the progress in fracture healing 
[13]. With this feature, software has the ability to detect bridges during union and the progress in union at 
an earlier time. This can provide earlier radiological prediction of non-union after fracture, thanks to 
software.

AI, non-union, and literature
There are some studies and artificial intelligence (AI) applications in the literature regarding the use of AI 
in the detection of non-union [14–18]. These articles suggest that AI can be used to detect and/or predict 
non-union [14–18]. Stojadinovic et al. [15] evaluated an AI application that could be used to predict non-
union by analyzing risk factors using Bayesian statistical methods. Degenhart et al. [18] designed a 
biomechanical model considering radiographs after intramedullary nailing in patients with femur fractures. 
And they predicted tissue differentiation in healing in these patients [18]. Although RUST criteria were used 
in this study, it was not primarily an application aimed at detecting non-union using radiological images. 
Also, predictions such as the complete tissue differentiation process in fracture healing and callus size were 
not confirmed in this study [18]. These studies were not primarily based on predicting non-union early 
using interval radiological images.

Fracture healing, AI, and the RUST score
Software can be used to determine fracture union and callus tissue on plain radiographs [13]. The software 
can detect pixel changes caused by the fracture callus on plain radiographs, the area, volume, and width of 
the callus. In this way, it can provide quantitative monitoring of the progress in fracture healing [13]. Deep 
learning algorithms are used in the field of orthopedics to detect or classify fractures from plain 
radiographs [19–21]. In addition to this application area, plain X-rays taken regularly and at certain weeks 
during the follow-up of fractures can be read into a designed deep learning model, and the information 
about the union or non-union of these fractures can be taught to this model. The success of this deep 
learning model in predicting non-union can then be tested. If the RUST criteria, in which visible callus 
bridging on plain roentgenograms is scored, predicts the likelihood of non-union, it may be possible that a 
deep learning model that can analyze even pixel changes caused by callus tissue can predict non-union in 
early fracture roentgenograms or predict non-union at higher rates. In addition, it can provide a more 
standardized union follow-up by eliminating observer-induced scoring errors. Finally, it can provide more 
reliable information by analyzing very small cortical areas and fracture lines not covered by the implant in 
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patients with implants. This needs to be investigated and proven by scientific studies. A successful deep 
learning model in this regard may provide clinicians with advantages in terms of cost, time, and treatment 
options.

To our knowledge, there is no AI application that predicts non-union by analyzing fracture healing, 
considering only radiographic healing. RUST criteria can predict non-union. However, RUST criteria have 
this prediction when the bridging in fracture healing can be evaluated by seeing it with the human eye. If 
we assume that computer software can detect signs of fracture healing on X-rays earlier than the human 
eye can see, it may be possible to make this detection using AI applications earlier than the time we can 
detect non-union, according to RUST (Figure 1). Therefore, studies on AI applications in the detection of 
fracture non-union in serial roentgenograms are needed. Being able to achieve this may bring up cost-
effective early surgical approaches for non-union.

Figure 1. CNN and X-Ray processing. Anteroposterior and lateral X-rays of fracture patients are input into an artificial 
intelligence (AI) system (A). The AI system identifies and detects the fracture line and surrounding callus tissue (B and C). The 
AI analyzes changes in the fracture line and callus formation in sequential X-rays taken at regular intervals (D and E). The 
system is then provided with data on whether these fractures ultimately achieved union or non-union. By analyzing this 
comprehensive dataset, the AI can evaluate fracture healing progression and predict the likelihood of non-union during the early 
stages of fracture healing. CNN: convolutional neural network

Summary of key studies
To facilitate a clearer understanding of the current landscape, Table 1 summarizes several key studies that 
explore the application of deep learning in fracture detection and healing prediction.

Table 1. Summary of key studies in deep learning for fracture analysis and non-union prediction

Reference Study focus Main finding Performance parameters

Porter et al. 
(2016) [13]

Automated measurement of fracture 
callus using portable software

Quantitatively monitored callus 
progression, indicating potential for 
early non-union detection

Improved measurement 
consistency

Kalmet et al. 
(2020) [19]

Deep learning for fracture detection Demonstrated reliable fracture detection 
on radiographs

Enhanced sensitivity and 
specificity over traditional 
methods

Chung et al. 
(2018) [20]

Automated detection and 
classification of proximal humerus 
fractures

Achieved high accuracy in detecting and 
classifying proximal humerus fractures

Accuracy metrics 
comparable to expert 
assessments
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Table 1. Summary of key studies in deep learning for fracture analysis and non-union prediction (continued)

Reference Study focus Main finding Performance parameters

Tanzi et al. 
(2020) [21]

X-ray bone fracture classification 
using deep learning

Established a baseline for fracture 
classification accuracy with potential for 
further improvement

Accuracy values in line 
with clinical expectations

Stojadinovic et 
al. (2011) [15]

Prognostic naïve Bayesian classifier 
for non-union prediction

Developed a Bayesian model to predict 
fracture healing outcomes following 
shock wave therapy

Specific performance 
metrics are not detailed

Degenhart et al. 
(2023) [18]

Computer-based mechanobiological 
fracture healing model for predicting 
non-union

Proposed a simulation model predicting 
healing outcomes after intramedullary 
nailing with promising results

Preliminary findings: 
detailed metrics require 
further validation

Conclusions
Integrating deep learning into fracture healing assessment offers the potential to overcome many 
limitations of traditional methods. These technologies can enable earlier and more standardized 
predictions of non-union status, significantly impacting clinical decision-making processes, leading to 
improved patient outcomes and more efficient use of healthcare resources. This perspective aims to outline 
the current landscape and inspire further research toward integrating deep learning into daily orthopedic 
practice.
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