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Abstract
Aim: Physical activity (PA) is increasingly used as a patient-centered means to treat and/or cope with pain 
and other symptomology resulting from clinical health conditions. Despite the increasing use of wearable 
sensors to track PA in healthy and patient cohorts, few algorithms are equally accurate in assessing 
sedentary and light PA as moderate and vigorous. Given that many older adults and patient cohorts are less 
active, there is a need for simple algorithms that are easily implemented and valid for the assessment of 
even low activity levels. Thus, the purpose of this study was to test a simple nonlinear modification to a 
validated linear algorithm for hip- and wrist-worn accelerometry to measure human PA energy 
expenditure.
Methods: Triaxial accelerometers were worn on the wrist and hip during 14 standardized laboratory-
based activities in 37 healthy adults across the lifespan [19–65 years, 19 females (F)]. Combined with 
previously reported energy expenditure data, linear and power equations transforming accelerations to 
estimates of oxygen consumption (VO2) were compared.
Results: The nonlinear algorithm provided equally accurate measures of PA energy expenditure as linear 
approaches, with the added advantage of being able to estimate even low energy expenditure, a necessary 
outcome to differentiate sedentary and light PA. Further, the nonlinear algorithm produced a slightly better 
estimate of PA when using wrist than hip accelerometry.
Conclusions: A simple nonlinear algorithm provides a better means for monitoring PA in populations with 
low activity levels due to its improved ability to discern sedentary from light PA. This is particularly 
relevant for older and clinical populations as even light levels of PA may provide therapeutic benefits.
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Introduction
Despite the mounting evidence supporting the value of regular physical activity (PA), anywhere from 56% 
to 96% of adults do not meet the 2018 Physical Activity Guidelines for Americans of 150 minutes of 
moderate PA per week [1–4]. In some populations, such as those with clinical conditions or older adults, 
even fewer are routinely achieving 150 minutes of moderate-to-vigorous PA [5–7]. Independent of meeting 
physical activity guidelines, sedentary time is also a risk factor for poorer health outcomes [8]. The health 
benefits of regular light PA and/or reducing sedentary time across a wide range of populations have been 
postulated and supported by strong evidence across a range of populations [5, 9, 10]. Thus, effective means 
to differentiate sedentary, light, moderate, and vigorous PA are needed.

Objective measures of PA have gained popularity and acceptance in commercial and more recently, 
healthcare domains [11–13], providing some advantages over the traditional self-report methodologies. 
However, while activity measurement has been validated in numerous studies, largely in young adults [2, 
14–21], there remain considerable variations in the algorithms used to estimate energy expenditure from 
triaxial acceleration signals [22, 23] with relatively few parsimonious wrist-based algorithms to choose 
from.

Older approaches to estimating PA from hip-worn accelerometry found the relationship between 
activity “counts” and activity intensity often depended on the type and intensity of the activity itself. In fact, 
the use of “Crouter equations” involved the use of two linear equations to fit what is essentially a nonlinear 
relationship [16]. In response, multiple complex machine learning and random forest approaches have 
been developed [21], yet without clear or consistent improvements in energy expenditure estimates over 
more simple algorithms [23]. Advances in PA measurement have moved away from the use of “counts”, 
which are often ill-defined and can vary from device to device, towards the use of raw accelerations to 
extract mean and variance of accelerations per unit time, such as that proposed by Hildebrand et al. [19]. 
However, the linear nature of the Hildebrand approach makes it unable to differentiate sedentary from light 
activity, as the algorithm intercept produces a minimum or floor energy expenditure estimate of 
approximately 2 metabolic equivalents (METs). To address this limitation, a follow-up study identified 45 
milli g/minute (mg/min) as a cut-off for classifying sedentary behavior that can be applied separately [24]. 
While this is an improvement, it is not fully able to address the inherent nonlinearities observed. For 
example, using their linear algorithm, the 45 mg/min cut-off is equivalent to 2.49 METs. Thus, when this 
correction is applied, the linear algorithm is incapable of identifying any light activity in the range from 1.6 
METs to 2.48 METs. This level of PA translates to energy expenditure levels expected for many activities of 
daily living (ADLs) and slow walking [25, 26], common types of activities for many patient cohorts [27].

Traditionally, hip-worn accelerometers were commonplace with numerous algorithms proposed and 
validated in the literature. However, wrist-worn devices are increasingly popular due to improved 
compliance and ease of use [20]. Indeed, there has been a substantial increase in consumer-based activity 
monitoring devices worn on the wrist [28]. However, studies have demonstrated that algorithms to 
estimate PA levels typically differ between hip and wrist-worn measurements [20], with wrist accelerations 
often higher than hip for the same activities [19].

While the linear Hildebrand approach produced the most consistent estimates of moderate to vigorous 
PA (MVPA) relative to a validated hip measure of activity out of several different algorithms, its inability to 
detect a region of light PA is a substantial barrier to its use in both healthy and clinical populations [29]. 
Nonlinearities in the relationships between acceleration outcomes and energy expenditure are often 
reported (despite the use of linear regression [16, 19]). We hypothesized that a modified Hildebrand 
approach, using a nonlinear algorithm, could resolve this problem and eliminate the need to apply a 
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separate cut-off to differentiate sedentary from light behavior, while maintaining the accuracy in estimating 
MVPA. Thus, the primary purpose of this study was to test this hypothesis using mean raw acceleration 
signals measured at the wrist and the hip in healthy adults across the lifespan performing a range of 
different controlled laboratory tasks from sedentary to vigorous intensity. These findings would then 
provide the needed validation as a basis for its use in patient cohorts, who may be expected to have 
generally lower levels of PA. Secondarily we aimed to compare hip and wrist accelerations across activities 
to investigate if a simple transformation may be applicable between wear locations and to explore whether 
this may be applicable for improving comparisons across methodologies.

Materials and methods
A combination of previously reported [19] and newly collected accelerometry data, with their 
corresponding measured or estimated oxygen consumption (VO2), were best fit to linear and nonlinear 
equations. To supplement the previously reported laboratory tasks, additional data involving a wider range 
of task intensities, particularly higher intensity tasks, were collected. The process of collecting and 
extracting the data, fitting the parameter values for each model, and the statistical comparisons to assess 
these models are outlined below.

Participants

A total of 37 [18 males (M), 19 females (F)] healthy, non-smoking adults were recruited to participate in 
this single-visit study. Exclusion criteria included elevated blood pressure (> 140/90 mmHg), or a history of 
any medical condition that would place them at increased medical risk to perform exercise. All participants 
provided written informed consent as approved by the University of Iowa Biomedical Institutional Review 
Board prior to participating in this observational study. After providing consent, participants completed 
activity and demographic surveys to characterize the population, including general perceived global health 
and the Rapid Assessment of Physical Activity (RAPA). Height (m) and weight (kg) were assessed and used 
to determine body mass index (BMI), and body composition was assessed using a bioimpedance scale 
(Tanita TBF-300A). Study data were collected and managed using Research Electronic Data Capture 
(REDCap) tools [30].

See Table 1 for summary characteristics of the study cohort. The ages ranged from 19–65 years [mean 
37.1, standard deviation (SD) 14.5]. Sex differences were assessed using t-tests, or Chi-square tests as 
appropriate, without adjustment for multiple comparisons. Only BMI differed significantly between men 
and women (t35 = 2.5, p = 0.02) (Table 1), where men had higher BMI on average, yet body fat (%) was not 
different between the sexes (t35 = 1.9, p = 0.07).

Table 1. Mean (SD) of demographic characteristics of the study population

Demographic characteristics All
(n = 37)

Males
(n = 18)

Females
(n = 19)

Sex difference
p-value

Age (yrs) 37.1 (14.5) 35.4 (13.3) 38.7 (15.8) 0.50
BMI (kg/m2) 23.7 (4.2) 25.3 (4.4) 22.1 (3.3) 0.02
Body fat (%) 22.2 (8.0) 19.7 (7.6) 24.6 (5.9) 0.07
RAPA (1–7 scale) 6.0 (1.4) 6.3 (1.6) 6.3 (7.9) 0.31
n (%) Caucasian 35 (94.6%) 17 (94.4%) 18 (94.7%) 0.97
n (%) Reporting good or excellent health 35 (94.6%) 16 (88.9%) 19 (100.0%) 0.23
SD: standard deviation; BMI: body mass index; RAPA: Rapid Assessment of Physical Activity

Protocol summary

Each subject completed a series of controlled tasks, representing everyday activities while wearing two 
ActiGraph™ wGT3X-BT ± 8g triaxial accelerometers (ActiGraph LLC, Pensacola, FL) worn on the non-
dominant wrist and ipsilateral hip. The hip accelerometer failed to collect data for one female subject. 
Therefore, only 36 participants (18 M, 18 F) were included in the analyses involving hip data points. Each of 
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the tasks assessed in the battery of standardized activities lasted 3 minutes (see Table 2 for task 
descriptions) including each level of the modified Bruce protocol (MBP), monitored with a stopwatch. The 
only deviations from this 3-minute duration occurred for: stair climbing ascending 7 flights of stairs and 
descending 7 flights of stairs, which lasted only 1–2 min each for most individuals; and over-ground 
walking, which involved walking a prescribed distance (350 m, 3–4.5 min). Only the first 5 stages of the 
MBP were assessed as higher stages rely on both increased incline and speed (see Table 2). The test was 
stopped if the heart rate reached 85% of the predicted maximum, following standard guidelines as 
previously described [31]. Additionally, treadmill walking, jogging, and running tasks were performed after 
the Bruce protocol at 0% incline. Individuals were given the choice of the two running tasks to choose from 
the 2–3 velocity options indicated (see Table 2). This was to allow for the collection of more intense activity 
data points recognizing not all individuals are equally capable of achieving or maintaining these running 
speeds. A brief rest of at least 2 min was provided between each activity, apart from the MBP stages which 
were performed consecutively. If requested, or if participants’ heart rate had not recovered to < 100 
beats/min, additional time was allowed before starting the subsequent task. For all tasks, participants were 
monitored to ensure they tolerated the activity level without problem (e.g., subjective report, diaphoresis, 
excessive shortness of breath). Note that the study procedures did not involve any health-related 
interventions, nor were any biomedical or health-related outcomes assessed. Thus, this observational study 
did not meet the requirements of a clinical trial per the standard guidelines put forth by the ICJME or World 
Health Organization (WHO).

Table 2. Controlled activities performed while wearing hip- and wrist-worn accelerometers

Order Task Description

1 Lying quietly Laying supine on a plinth
2 Keyboarding Type the Declaration of Independence (hard copy provided) in a Word document on a 

desktop computer
3 Window washing (simulated) Whiteboard erasing of a 1.2 × 2.4 m (4 × 8 ft) whiteboard using the dominant hand was 

used to simulate window washing
4 Sweeping† Using a standard broom, participants swept confetti into a pile and then using a dustpan, 

placed the confetti into a garbage bag
5 Over-ground walking† At a self-selected velocity, participants walked 350 m (1,145 ft) through hallways. Mean 

walking speed was calculated (distance/time)
6 Ascending stairs Walked up 7 flights of stairs at a comfortable pace, minimal handrail use. The mean 

climbing speed calculated
7 Descending stairs Walked down 7 flights of stairs at a comfortable pace, with minimal handrail use. The 

mean descending speed calculated
8 Modified Bruce protocol 

(MBP) stages 1–5
Subjects progressed from Stages 1 through 5 as tolerated without rests; subjects were 
discouraged from using handrails unless necessary

Stage conditions:

Stage 1: 2.74 km/h (1.7 mph), 0% incline
Stage 2: 2.74 km/h (1.7 mph), 5% incline

Stage 3: 2.74 km/h (1.7 mph), 10% incline
Stage 4: 4.0 km/h (2.5 mph), 12% incline

Stage 5: 5.5 km/h (3.4 mph), 14% incline
9 Sitting in a chair Between treadmill activities, sat quietly in a chair
10 Treadmill walking† 4.8 km/h (3 mph), 0% incline
11 Treadmill jogging 8.0 km/h (5 mph), 0% incline
12 Treadmill running 1 Subjects ran at their choice of 9.7, 11.3, or 12.9 km/h (6, 7, or 8 mph) (if they felt 

comfortable doing so), with 0% incline
13 Treadmill running 2 Subjects ran at their choice of 14.5 or 16.1 km/h (9 or 10 mph) (if they felt comfortable 

doing so), with 0% incline
†: performed tasks again after 1st 17 tasks in the following order: treadmill walking, followed by overground walking, and lastly 
sweeping
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Accelerometry analysis

Acceleration signals were collected at 60 Hz, averaged over each second, and then across each minute using 
custom MATLAB (MathWorks®, Inc., Natick, MA) software following previously reported methodology [19]. 
In brief, the Euclidian norm minus one (ENMO) of the triaxial raw acceleration time signals was computed 
[see Eq. (1)] as the root mean square of the three axes minus 1 g to account for the acceleration due to 
gravity. Average ENMO accelerations (g/min) for each task were computed for the middle 2.5 minutes of 
each task for the hip and the wrist sensors, where 1 g (1000 mg) is the acceleration due to gravity, 9.81 
m/s2. The minimum ENMO value per minute was set to 0 in the event the ENMO was negative (e.g., small 
calibration or rounding errors). Due to typically small values, accelerations were also reported in units of 
mg.

Energy expenditure

The mean VO2 (mL/kg/min) of each task in the current study was estimated from direct observation 
coupled with reported norms from the available literature (see Table S1). First, the Compendium of 
Physical Activities Database was used to compile a list of relevant publications reporting VO2 for 
comparable activities to gather as comprehensive and representative an estimate as possible across 
participants, given our approximately equal representation of males, females, young and old adults [25, 26]. 
From this list, each citation was retrieved, evaluated for task similarity and methodological quality, and 
relevant VO2 data points were extracted. Mean and SD VO2 values for each task were calculated, and 
weighted by sample size (Table S1).

Linear and nonlinear algorithms

Using the approach previously described, we fit acceleration—VO2 relationships for hip- and wrist-worn 
devices using both linear and nonlinear algorithms [19]. This included previously reported VO2 data 
measured directly [19] as well as the current data collected for this study. While the mean data from the 
prior study was processed using the GGIR package, similar final outputs were used in both (mean 
accelerations/min) and plotted together to ensure they appeared to show good overlap supporting their 
face validity. Collectively, these data were fit using least squares regression to linear [Eq. (2)] and nonlinear 
[Eq. (3)] algorithms, weighted by sample size using SPSS (IBM, v 25.0). Thus, both algorithms required only 
two parameters, a and b, to define the relationships between VO2 and ENMO accelerations using wrist-worn 
and hip-worn devices.

Energy expenditure classifications

In addition to reporting energy expenditure in relative VO2 units, METs, are also commonly used. That is, 1 
MET typically represents the resting levels of VO2, or 3.5 mL/kg/min. This is useful, as PA is often classified 
by MET levels as: sedentary (≤ 1.5 METs), light (1.6 to < 3.0 METs), moderate (3.0 to < 6.0 METs), or 
vigorous (≥ 6.0 METs) [32]. Accordingly, each standardized activity was also classified as sedentary, light, 
moderate, or vigorous using the estimates generated by the linear and nonlinear algorithms, for both wrist 
and hip wear locations. Secondarily, we adjusted the linear model classifications using the previously 
reported acceleration cut-off values of 45 mg/min (wrist) and 47 mg/min (hip) to identify sedentary 
activities (we refer to as linear-alternate algorithm) [24].

Statistical analysis

The linear and nonlinear algorithms were assessed based on their coefficient of determination (R2), 
between measured accelerations and expected VO2 values. To compare the newly fit linear hip and wrist 
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models (i.e., with updated model parameters using additional data collected) to those originally reported, 
percent differences in VO2 estimates were calculated for typical ranges of acceleration ENMO values: 
ranging from 0 mg/min to 800 mg/min for hip (0–0.8 g/min) and 0 mg/min to 1400 mg/min for wrist 
(0–1.4 g/min), in increments of 10 mg.

Comparisons between linear and nonlinear model estimates of energy expenditure were performed to 
assess for differences in activity classification (sedentary, light, moderate, vigorous) for the newly assessed 
tasks using Chi-square analyses, taking into account wear location. In addition, agreement between linear 
and nonlinear models was assessed using Cohen’s kappa statistic for hip- and wrist-wear locations 
separately. Secondarily, kappa statistics between the linear-alternate and nonlinear models were assessed.

To assess for differences between hip- and wrist-worn accelerations across tasks, three-way repeated 
measures analysis of variance (RM ANOVA) was used considering wear location, task, and sex. Post-hoc 
tests for task-specific hip-wrist differences were performed using Bonferroni corrections.

Repeatability of the hip- and wrist-worn accelerations was assessed using two-way, random intra-class 
correlations (ICC) for absolute agreement between ENMO accelerations for the three repeated tasks 
(sweeping, treadmill walking, and over-ground walking) for hip- and wrist-wear locations. RM ANOVAs 
were also performed (task × time) for each wear location to explore for a systematic bias between repeat 
assessments that may reflect the effects of fatigue as these three tasks were performed prior to and 
following the most intense treadmill activities. Post-hoc tests were performed as appropriate.

Secondary analyses were performed to assess the relationships between wrist and hip accelerations. 
Differences between ENMO accelerations obtained from the wrist versus the hip for each of the tasks were 
assessed using paired t-tests with Bonferroni correction (for 20 comparisons). Correlations between hip 
and wrist ENMO accelerations collectively and by task were assessed using Pearson correlation coefficients 
(R).

All statistical analyses were performed using SPSS® v.26.0 (IBM Corp., Armonk, NY). Significance was 
set at p ≤ 0.05, with adjustment for multiple comparisons as needed. Mean and SD are provided in text and 
standard errors (SE) are shown in figures unless otherwise noted.

Results
Wrist and hip energy expenditure algorithms

The best fit linear and nonlinear algorithms for the wrist- and hip-based accelerations are provided in Eqs. 
(4)–(7), below. Using these equations, mean ENMO accelerations from the wrist explained 80% (linear) and 
89% (nonlinear) of the variance in expected energy expenditure across tasks (Figure 1A and B). Similarly, 
for the hip, 81% and 85% of the variation in expected energy expenditure was explained by the mean 
ENMO acceleration values, using the linear and nonlinear models (Figure 1C and D).

The new linear models were similar to the original Hildebrand linear models but with the additional 
data collected, produced on average 7.3% and 10.9% lower VO2 estimates, and slightly higher R2, than 
previously reported.
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Figure 1. Mean (SD) measured accelerations (g) versus expected oxygen consumption (VO2) for wrist (A and B) and hip (C and 
D) accelerations collected in the current study (blue or green data) and previously reported mean (SD) accelerations and 
measured VO2 (Hildebrand, 2014 [19], red). The linear algorithm is shown in panels A and C; the nonlinear algorithm is shown in 
panels B and D. Equations of the best-fit lines are provided in the text as Eqs. (4)–(7)

Differences in task intensity classification

The linear and nonlinear equations resulted in similar task intensity classifications for nearly all tasks at or 
above the light classification (see Figure 2). However, as expected, the lowest intensity tasks: lying, sitting, 
and keyboarding were classified as light 100% of the time for both wrist and hip linear algorithms (i.e., 
sedentary is below the linear model intercept); whereas the nonlinear algorithms classified these tasks as 
sedentary in 30–70% of individuals (see Figure 2). No other differences between linear and nonlinear 
approaches were observed at the p ≤ 0.01 level. When considering differences between hip and wrist, 
sweeping and the lowest MBP stages (1–4) were classified as moderate in more individuals using wrist than 
hip accelerometry, regardless of the processing method (p ≤ 0.001). However, all other tasks were assigned 
in proportions that were not different between measurement locations. A graphical representation of the 
linear-alternate algorithm is provided in Figure S1, showing its improved ability to discern sedentary 
behavior over the linear algorithm.

When assessing overall agreement across all tasks and intensities, the kappa statistic showed 
significant moderate agreement between the nonlinear and linear models (e.g., wrist k = 0.76; p < 0.001), 
due largely to the agreement observed in tasks at or above light intensity. When the sedentary correction 
was applied to generate the two-step linear-alternate algorithm, the agreement with the nonlinear 
algorithm increased to k = 0.82 (p < 0.001), with disagreements largely remaining in the lower activity tasks 
(see Figure S1). Yet, the correction produced somewhat inconsistent results for wrist and hip wear 
locations (i.e., comparing results for linear-alternate between wrist and hip), with the hip correction more 
closely matching the nonlinear algorithm than the wrist.
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Figure 2. Linear and nonlinear algorithm activity intensity category distribution (% of individuals) for each task, classified as 
sedentary (green; ≤ 1.5 metabolic equivalents, METs); light (yellow; > 1.5 to < 3.0 METs); moderate (blue; ≥ 3.0 to < 6.0 METs); 
and vigorous (pink; ≥ 6.0 METs). Note, only the nonlinear model identifies sedentary intensity levels without needing a 
secondary means to do so. Hip and wrist differed on classification for sweeping and walking at 1.7 mph in the 1st stage of the 
MBP (p ≤ 0.01). OG: overground; MBP: modified Bruce protocol; TM: treadmill; running A: slower speed (6–8 mph); running B: 
faster speed (9–10 mph)

Hip versus wrist accelerations

When comparing hip and wrist accelerations within each task (Figure 3), inconsistent differences were 
observed. The wrist was greater than hip accelerations for 9 of the 14 tasks, and no different for 5 of the 
tasks. Differences were most notable for tasks at the two ends of the spectrum: light tasks including lying 
down, sitting, and typing, and higher intensity tasks such as jogging and running (p < 0.001). Functional 
activities were mixed, with erasing a whiteboard not reaching significance (p = 0.21), whereas sweeping 
produced the largest difference in wrist versus hip accelerations of any tasks performed (p < 0.001).

Figure 3. Mean (SE) wrist (dark blue) and wrist (light blue) accelerations per minute (mg/min) for 14 tasks showing similarities 
and differences between wear locations: 9/14 tasks showed significantly higher wrist than hip accelerations, and 5 showed no 
difference. MBP: modified Bruce protocol; TM: treadmill; running A: slower speed (6–8 mph); running B: faster speed (9–10 
mph). *: p <0.05; **: p < 0.01; ***: p < 0.001
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When plotting hip (y-axis) versus wrist (x-axis) ENMO accelerations for each task, the linear and 
quadratic fits resulted in similar R2 values of 0.87 and 0.90, respectively (Figure 4). That is, multiplying 
wrist accelerations by 0.56 explained 87% of the variance in hip measurement. The two curves differed by 
only 10–15% until reaching wrist acceleration values of approximately 1.8 g/min, when they began to 
diverge by more than 10%. However, this rarely occurred, with 1% (n = 8) and 0.3% (n = 2) of 703 
observations exceeding 1.6 or 1.8 g/min at the wrist, respectively. Thus, differences between the two curve 
fits were minimal for 99% of the tasks and individuals assessed. Hip and wrist ENMO accelerations were 
significantly correlated for most tasks of moderate or higher intensity (see Table S2). However, select tasks 
showed no significant correlation between hip and wrist assessments, particularly lower-intensity tasks: 
lying, sitting quietly, and keyboarding, and one moderate-intensity task, sweeping (Table S2). Overall, when 
evaluating all wrist and hip accelerations across individuals and tasks, they were highly correlated (R = 
0.93, p < 0.001).

Figure 4. Individual wrist versus hip accelerations per minute for all assessed tasks. The identity line (i.e., if wrist = hip 
accelerations) is shown as a linear blue dashed line. The quadratic (red, solid) regression line shows the hip vs wrist nonlinear 
relationship: hip = 0.01 + 0.830 * (wrist) – 0.195 * (wrist)2, R2 = 0.90; the black linear line shows the hip vs. wrist linear 
relationship: hip = 0.04 + 0.56 * (wrist), R2 = 0.87

Repeatability of acceleration measurement

The ICCs for the three repeated tasks (sweeping, over-ground walking, and treadmill walking) were 
consistently excellent for hip: 0.957, 0.899, and 0.902, and good to excellent for wrist: 0.945, 0.684, and 
0.947, respectively. Overground walking showed the lowest repeatability of the three tasks, particularly for 
wrist-worn assessment, indicative of varied arm use during over-ground walking. Pairwise small but 
significant increases in hip accelerations were observed for the second compared to the first trials (F2,35 = 
22.8, p < 0.001). However, no significant effect of time was observed at the wrist overall (F2,36 = 1.02, p = 
0.32) or time-by-task interaction (p = 0.38). The hip accelerations were consistently 5–6% higher for the 
walking and sweeping trials, whereas at the wrist only the overground walking task showed 6% higher 
accelerations in the second trial. The treadmill walking and sweeping average accelerations were identical 
(0% different).

Discussion
While PA is not without risks, it is widely recognized as providing many physical and mental health 
benefits, including older adults and those with clinical conditions [5, 6, 9, 10, 33]. The use of wearable 
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sensors has great potential to aid clinicians in caring for their patients as well as provide objective 
assessments for patients to self-monitor their health and provide a degree of locus of control over their self-
management. The use of objective wearables may be of value in clinical rehabilitation and/or hospital 
settings to better track activity levels throughout a patient’s day and not only when nursing or 
rehabilitation therapies can assist with movement [11]. However, there remains a critical need for 
researchers to have validated algorithms to accurately interpret the acceleration signals, particularly at the 
lower PA intensities when targeting patient populations.

A wide range of processing models have been proposed to estimate PA metrics from raw acceleration 
signals, including simple, linear regression [19] to more complex decision tree models [21]. Following the 
law of parsimony, which suggests that the simplest model to adequately represent a phenomenon should be 
chosen, finding the most accurate yet straightforward model is optimal. The current study supports the use 
of a single nonlinear equation to define activity intensity based simply on the mean accelerometer ENMO 
output. Indeed, the estimated energy expenditure for light, moderate, and vigorous activities in the current 
study was nearly identical to the previously validated Hildebrand linear approach, supporting that this 
basic approach is generalizable. However, the nonlinear algorithm has the added advantage of being able to 
discriminate sedentary from light activity which is not possible using the original linear Hildebrand 
approach without implementing a 2nd step, which adds potentially unnecessary complexity. Certainly, 
identifying specific behaviors as sedentary using techniques such as machine learning is an alternate 
strategy to assigning low energy expenditures as sedentary, but is beyond the scope of this study.

While linear models provide a simple and traditional approach, their drawback is the intercept value 
defining the lowest VO2 estimate when accelerations are zero. Hildebrand reported wrist and hip model 
intercept values of 7.28 and 6.67 mLO2/kg/min, respectively, using a similar methodology as this current 
study [19]. This translates to 2.1 and 1.9 METs, even when no activity is measured. Thus, sedentary 
behavior (based on typical cut-offs of < 1.5 METs or < 1.6 METs) would be identified as light activity, 
regardless of the true energy expenditure required. In recognition of this limitation, they proposed 
acceleration cut-offs to separately identify sedentary activity before applying their linear model [24]. This 
correction factor, 45 mg or below for the wrist (47 mg for the hip) in adults was reported to have excellent 
sensitivity (> 95%) but only moderate specificity (74–78%) [24]. However, the sedentary cut-off values 
identified: 44.8 mg/min and 47.4 mg/min for wrist and hip, respectively, correspond to 2.49 METs and 2.66 
METs using their linear equation [19]. This correction results in erroneously identifying light activity 
occurring between 1.5 METs and 2.5–2.7 METs as sedentary. Accordingly, this correction factor approach 
cannot identify any light activity until it exceeds 2.5 METs when this correction is applied. Whereas the 
nonlinear model provides similar estimates as the linear-alternate model without the limitations associated 
with this two-step approach.

Crouter and colleagues [16] observed a similar nonlinear phenomenon, addressing the nonlinearities 
between activity counts measured using hip-worn devices and energy expenditure with the use of two, 
discontinuous linear equations. While the commonly referred to “Crouter equation” approach relies on the 
variance of the acceleration signal as the equation determinant, this variance is somewhat collinear with 
intensity. That is, greater variation was observed at the lower intensities (i.e., lifestyle activities), and less 
variation was observed with walking, jogging, and running, which were the higher-intensity activities 
evaluated. Further, this two-regression model approach has not been adapted to process raw 
accelerometry data, rather it uses only “count” data for the hip and is unavailable for wrist-worn 
measurement [15, 16]. Corrections available in software platforms, such as ActiLife to adjust wrist-based 
measurement for use with hip-based algorithms induce greater error than observed differences between 
hip and wrist wear during walking [34]. Thus, single nonlinear equations that are specific to hip and wrist 
wear provide easily defined and user-friendly approaches to estimating energy expenditure across the 
intensity spectrum from acceleration data that can be transparently processed by the end user.

Two studies comparing four different processing algorithms further support the use of this nonlinear 
modification. The first is similar to the current study, in that it involved lab-based activities but in young 
adults [23]; the second assessed daily free-living PA in women with fibromyalgia [35]. Both compared the 
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linear and nonlinear approaches included in the current study, relying only on mean accelerations per 
minute, as well as two more complex approaches that relied on acceleration variability metrics (SD of the 
signal) and/or random forest methods [21]. Only this nonlinear algorithm resulted in estimates of low, 
moderate, and high PA that correlated consistently with self-reports in the patient cohort; the linear 
Hildebrand showed significant correlations only with estimated time spent in MVPA, and the random forest 
methodology only significantly correlated with sedentary time [35]. In the laboratory-based activities, the 
nonlinear model was the best algorithm to match measured VO2 for sedentary and light tasks, was excellent 
at representing moderate walking, but tended to underestimate VO2 for the moderate activities involving 
disproportionate arm use (i.e., walking while texting on a phone) [23]. Overall, these additional 
investigations support the current findings suggesting the utility of a simple nonlinear algorithm but also 
show that no algorithm is perfectly able to reflect all forms of PA.

Studies have demonstrated that wrist- and hip-based measurements are not interchangeable, typically 
requiring separate algorithms [18–20]. Our findings support that hip and wrist assessments can be 
significantly different yet show that these differences vary with activity. Overall, we observed wrist ENMO 
accelerations were approximately 75% greater than hip accelerations, particularly for the sweeping and 
running activities, with the hip-wrist relationship displaying a strong linear component, particularly 
through the intensity range of daily activities. Our results suggest that if desired, any wrist correction 
should be moderate at most and that either a linear or a weak nonlinear curve explains roughly 87–90% of 
the variance observed between hip and wrist ENMO assessments, making their comparison across studies 
not as problematic as some have suggested.

The increasing use of wrist-worn devices has clearly outpaced the development of wrist-worn 
algorithms. While the accuracy of wrist-based measurement has been called into question [20], the current 
study, along with the previous linear Hildebrand model, collectively suggest that similar if not better 
estimates can be obtained from wrist-based algorithms. We observed R2 for the wrist that slightly 
surpassed the hip algorithms when using the nonlinear model. Previous reports using the linear model 
reported only slightly worse R2 values at the wrist (i.e., 0.75 to 0.76) compared to the hip (i.e., 0.79–0.81) 
[19]. Accordingly, we can confidently conclude that the nonlinear wrist algorithm is at least as good as the 
nonlinear hip algorithm across a wide range of activities and intensities.

In addition to the global limitations of accelerometry to assess PA, specific limitations of the current 
study should be noted. First, we assessed the non-dominant wrist without holding any purses, bags, or 
assistive devices during ambulation, which may limit generalizability when assessing lifestyle PA estimates 
under “real world” conditions and in patient cohorts. These results are limited to the wear sites assessed 
and may not generalize to other sites used such as the thigh, ankle, or low back. Further, we did not assess 
VO2 at the individual level but used observation and previous literature to generate mean (SD) estimates of 
energy expenditure. However, we combined our results with previously reported data using indirect 
calorimetry [19] to minimize this limitation and reduce potential bias. Additionally, in another study using 
indirect calorimetry to measure VO2, supporting results were reported [23]. Order effects of the controlled 
tasks cannot be ruled out, but the repeatability of the 3 tasks tested twice—with the second test being at 
the end of the protocol, suggests order had minimal impact on accelerometry measurements. Lastly, the fact 
that our linear model closely matched the original Hildebrand linear model, but with extra data at a wider 
range of task intensities, supports that this limitation minimally affected our outcomes. However, despite 
the inclusion of young and older adults, these findings may not fully translate to clinical populations. Future 
studies involving patient cohorts would be beneficial to further assess these models in the populations 
being targeted.

In conclusion, these findings support the use of a simple nonlinear algorithm for wrist- or hip-worn 
accelerometry for estimating energy expenditure for most tasks, particularly if sedentary behavior and/or 
light PA is of interest. However, if only identification of MVPA is needed, the linear algorithms produce 
nearly identical results and thus are appropriate for this purpose. Recognizing that the acceleration 
magnitudes can differ between locations, distinct wear location algorithms are optimal to estimate energy 
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expenditure most accurately, and caution should be used when attempting to transform between hip and 
wrist accelerations due to the nonlinear and inconsistent nature of this relationship, particularly for low 
intensity or functional tasks.
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