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Abstract
The dynamic organization of chromatin plays a critical role in regulating muscle cell differentiation. Among 
the molecular elements influencing chromatin architecture, long noncoding RNAs (lncRNAs) have emerged 
as important regulators due to their capacity to act as scaffolds, recruiters of chromatin-modifying proteins, 
or as transcriptional enhancers. This review aims to explore the mechanisms by which lncRNAs influence 
chromatin structure in the context of skeletal muscle differentiation. We classified the functional roles of 
lncRNAs into three main strategies: recruitment of epigenetic modifiers, assembly of transcriptional 
scaffolds, and regulation through enhancer-like activity. We provide specific examples of lncRNAs 
associated with these mechanisms and discuss their involvement in the control of myogenic gene 
expression. These findings highlight the complexity and specificity of lncRNA-mediated chromatin 
remodeling and suggest their potential as targets for therapeutic intervention in muscle-related disorders.
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Introduction
Adult skeletal muscle is composed of numerous multinucleated myofibrils, which are made up of hundreds 
to thousands of fused, postmitotic, terminally differentiated muscle cells [1]; myofibrils have the contractile 
machinery necessary for fundamental muscle functions such as locomotion, postural support, and 
breathing; also, reception, integration and transduction of metabolic signals from most of the tissues [2–4].

The growth, maintenance, and regeneration of skeletal muscle after birth rely on a specialized group of 
stem cells found within the muscle tissue, commonly referred to as satellite cells (SC) [1]. These cells are 
positioned on the surface of muscle fibers, situated between the basal lamina and the sarcolemma [5].

https://orcid.org/0000-0002-0683-073X
mailto:ravilaa@uaemex.mx
https://doi.org/10.37349/emd.2025.1007101
http://crossmark.crossref.org/dialog/?doi=10.37349/emd.2025.1007101&domain=pdf&date_stamp=2025-08-19


Explor Musculoskeletal Dis. 2025;3:1007101 | https://doi.org/10.37349/emd.2025.1007101 Page 2

In muscular homeostasis, SC are in a quiescent state; after a stimulus induced by physical damage or 
disease, the SC are activated and re-enter the cell cycle to, on the one hand, originate myogenic precursor 
cells that in turn will fuse giving rise to new muscle fibers; and on the other hand to renew itself by 
maintaining the SC reservoir for subsequent regeneration events [6–8]. This process of muscle 
regeneration and differentiation is due to a complex process of transcriptional regulation modulated by the 
expression of the myogenic regulatory factors (MRFs). The differential expression of MRFs and their 
activity in the process of differentiation and muscle regeneration are controlled at multiple levels [9, 10].

At the epigenetic level, the combination of modifications in the chromatin structure exerts a dynamic 
and decisive role in muscle differentiation. For example, the presence of remote transcriptional regulation 
elements such as enhancers and promoters, the synthesis of non-coding RNAs (ncRNAs), post-translational 
modifications (PTMs) of regulatory proteins, as well as the combination of transcription factors and 
chromatin remodeling complexes, responds to different extracellular signals to execute gene expression in 
a given cellular context in myogenesis [11–13]. So here we highlight the role of the ncRNAs in muscle 
differentiation controlling the chromatin structure, which has recently generated an interest in many 
research groups.

Therefore, this review aims to specifically examine how long noncoding RNAs (lncRNAs) regulate 
chromatin structure in the context of skeletal muscle differentiation. We focus on three major functional 
strategies by which lncRNAs exert their influence: (1) recruitment of epigenetic regulators, (2) scaffold 
assembly for transcription factors or chromatin remodelers, and (3) enhancer-like activity. Unlike broader 
reviews on lncRNAs or general epigenetic regulation in muscle biology, this work provides a mechanistic 
classification of lncRNAs based on their chromatin-associated functions during myogenesis. By doing so, we 
aim to clarify their potential as diagnostic markers or therapeutic targets in muscle-related disorders.

ncRNAs: role in chromatin structure
In mammals, most of the transcribed genetic material does not code for proteins. Although approximately 
80% of the genome undergoes transcription, only about 1% is responsible for protein production. Based on 
their length, ncRNAs are typically categorized into two main classes [14, 15].

Small ncRNAs are below 200 bp and include micro-RNA (miRNA), small interfering RNA (siRNA), piwi-
interacting RNA (piRNA), or small nuclear RNAs (snRNA) [16]. The miRNAs are the most studied. 
Microarray analyses indicate that some miRNAs are enriched in muscle, such as miR-1, miR-133a, and miR-
206, that are up-regulated under the influence of MRFs such as myogenic differentiation 1 (MyoD) and 
myogenin (MyoG) during human and murine skeletal muscle differentiation in culture cells [17, 18].

lncRNAs represent a subclass of ncRNAs defined by their length, typically exceeding 200 bp [19]. These 
transcripts often originate from regions closely associated with protein-coding genes, including exonic or 
intronic segments, and can be transcribed in either the sense or antisense direction. Some lncRNAs are also 
found in intergenic areas, sometimes overlapping with repetitive DNA elements. Most lncRNAs are 
produced by RNA polymerase II (Pol II) and may possess characteristics similar to messenger RNAs—such 
as a 5' cap, polyadenylated tail, and splicing sites—although some lack these features [20, 21].

The nature and secondary structures of lncRNAs allow them to interact with DNA, RNA, and proteins. 
And its transcriptional pattern is, in general, more developmental stage and cell type specific. lncRNAs are 
less studied and have a greater diversity of regulatory strategies [22, 23]. lncRNAs can act as scaffolds for 
regulatory proteins, recruit histone remodeling complexes, function as co-activators or co-repressors, or 
modulate other ncRNAs. In addition to their transcriptional roles, lncRNAs also influence chromatin 
architecture and three-dimensional nuclear organization by modulating the activity and localization of 
chromatin-associated factors [24].

The chromatin structure is dynamic and is organized by specific interactions, which have a specific 
role, interaction as gene to gene, promoter to enhancer or large nuclear bodies [25]. The interactions could 
occur across multiple chromosomes. In order to better understand the role of lncRNAs in regulating the 
chromatin structure, we divide lncRNAs into three strategies: lncRNAs recruiting epigenetic regulators, 
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lncRNAs acting as scaffolds, and lncRNAs as enhancers [22] (Table 1). To facilitate understanding, Figure 1 
provides a schematic summary of the three major mechanisms through which lncRNAs regulate chromatin 
structure in muscle differentiation.

Table 1. Functional lncRNAs in skeletal muscle development that modify chromatin structure

lncRNA Functional role in chromatin regulation Target genes Biological effect Model system Ref.

NEAT1 Recruits PRC2 via EZH2, promoting 
H3K27me3

MyoG, Myh4, Tnni2 Inhibits 
differentiation

Mouse myoblasts 
(C2C12)

[35–
37]

Malat1 Recruits Suv39h1 to MyoD, induces 
H3K9me3

MyoD targets Inhibits 
differentiation

Mouse myoblasts 
(C2C12)

[38–
40]

SYISL Recruits PRC2 complex to silence key 
myogenic genes

MyoG, Myh4, 
MCK4

Inhibits 
differentiation

Mouse myoblasts 
(C2C12)

[41]

Dum Recruits DNA methyltransferases to 
silence Dppa2

Dppa2 Promotes 
differentiation

Mouse myoblasts 
(C2C12)

[32]

Myoparr Interacts with Ddx17 and PCAF to induce 
histone acetylation

MyoG Promotes 
differentiation

Mouse (C2C12), 
human

[42, 
43]

Linc-YY1 Dissociates YY1/PRC2 complex, relieving 
repression

miR-29, MyHC, 
Troponin

Promotes 
differentiation

Mouse myoblasts 
(C2C12)

[44, 
45]

Linc-
RAM

Scaffolds MyoD with Baf60c/Brg1 to 
activate targets

MyoD targets Promotes 
differentiation

Mouse (WT and KO 
models)

[47]

SRA Forms a MyoD-p68-p72 complex to 
promote transcription

MyoD targets Promotes 
differentiation

Mouse and human 
cells

[49, 
50]

Irm Scaffolds MyoD and MEF2D, activating 
downstream targets

MyoD/MEF2D 
targets

Promotes 
differentiation

Mouse (in vitro/in 
vivo)

[51]

Myolinc Interacts with TDP-43 to modulate Filip1 
expression

Filip1, Acta1, MyoD Promotes 
differentiation

Human and mouse [52]

CEeRNA Enhancer RNA acting in cis to activate 
MyoD promoter

MyoD Promotes 
differentiation

Mouse [59]

DRReRNA Enhancer RNA acting in trans to activate 
MyoG

MyoG Promotes 
differentiation

Mouse [60]

lncRNA: long nonconding RNA; NEAT1: nuclear paraspeckle assembly transcript 1; PRC2: polycomb repressive complex 2; 
EZH2: enhancer of zeste homolog 2; H3K27me3: trimethylation of histone H3 at lysine 27; MyoG: myogenin; C2C12: mouse 
myoblast cell line; Malat1: metastasis-associated lung adenocarcinoma transcript 1; MyoD: myogenic differentiation 1; 
H3K9me3: trimethylation of histone H3 at lysine 9; Dppa2: developmental pluripotency-associated 2; Dum: Dppa2 upstream 
binding muscle lncRNA; Linc-RAM: long intergenic non-coding RNA activator of myogenesis; SRA: steroid receptor RNA 
activator; CEeRNA: core enhancer RNA; DRReRNA: distal regulatory region enhancer RNA

lncRNAs recruiting epigenetic regulators
There are two principal ways to regulate the epigenetics of specific loci: the first is controlling the DNA 
methylation and the second is controlling the posttranslational histone modifications, both directly control 
the recruitment of chromatin remodelers that modify the chromatin structure.

The DNA methylation induces, in general, a transcriptional gene silencing; and it could be for lncRNA 
mediation, being a conserved process where lncRNA repressive chromatin modifications to specific regions 
of the genome [26, 27]. One of the fundamental processes in the epigenetic regulation of muscle cell 
differentiation is the establishment and preservation of DNA methylation patterns, which influence gene 
expression [28, 29]. This process is carried out by enzymes of the DNA methyltransferase (Dnmt) family, 
which are typically divided into two groups: de novo methyltransferases (Dnmt3a and Dnmt3b) and 
maintenance methyltransferases (Dnmt1) [30, 31].

This is the case of a lncRNA called developmental pluripotency-associated 2 (Dppa2) upstream binding 
muscle lncRNA (Dum). Dum was identified in skeletal myoblast cells; its expression is dynamically 
regulated by MyoD during myogenesis in vitro and in vivo. Dum promotes muscle differentiation and 
regeneration during the early stages of myogenesis by silencing the upstream gene Dppa2. Mechanistically, 
Dum binds near the Dppa2 promoter region and recruits Dnmt1, Dnmt3a, and Dnmt3b to induce DNA 
methylation and repress transcription [32].
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Figure 1. Schematic summary of the three major mechanisms by which lncRNAs regulate chromatin during muscle 
differentiation. (A) Recruitment of epigenetic regulators, (B) formation of scaffolds for transcriptional complexes, (C) enhancer-
like function via eRNA-mediated chromatin looping. NEAT1: nuclear paraspeckle assembly transcript 1; EZH2: enhancer of 
zeste homolog 2; SRA: steroid receptor RNA activator; MyoD: myogenic differentiation 1; eRNA: enhancer RNA; DRReRNA: 
distal regulatory region enhancer RNA; MyoG: myogenin

Histone modifications also play a critical role in regulating chromatin structure during myogenesis. 
These PTMs, including methylation, acetylation, phosphorylation, and ubiquitination, primarily occur on 
the N-terminal tails of histones, which are accessible and unstructured [33, 34]. These PTMs influence 
chromatin accessibility and help define transcriptionally active or repressive chromatin domains.

For example, nuclear paraspeckle assembly transcript 1 (NEAT1) is a lncRNA that promotes myoblast 
proliferation while inhibiting differentiation. NEAT1 exerts its effects by interacting with enhancer of zeste 
homolog 2 (EZH2), a core subunit of the polycomb repressive complex 2 (PRC2), which catalyzes 
trimethylation of histone H3 at lysine 27 (H3K27me3), leading to repression of myogenic genes such as 
MyoG, Myh4, and Tnni2 [35–37]. Beyond its regulatory role in differentiation, NEAT1 has been implicated in 
muscle atrophy conditions. Its overexpression in atrophic models correlates with impaired expression of 
myogenic genes, suggesting it may contribute to pathological inhibition of muscle regeneration.

Another lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (Malat1), regulates 
myogenesis by recruiting Suv39h1, a histone methyltransferase that deposits H3K9me3 marks at the MyoD 
locus. This modification represses transcription and modulates myogenic differentiation. Knockdown of 
Malat1 accelerates myogenic gene expression and muscle fiber formation [38–41].

In contrast to these repressive mechanisms, some lncRNAs promote muscle differentiation through 
transcriptional activation. Myoparr, a promoter-associated lncRNA, interacts with the RNA Ddx17 and the 
histone acetyltransferase PCAF to enhance transcription of muscle-specific genes such as MyoG. This is 
mediated by histone acetylation, which promotes an open chromatin configuration favorable to gene 
expression [42, 43].

Lastly, Linc-YY1 regulates gene expression by dissociating repressive chromatin complexes. It binds to 
YY1 and promotes the disassembly of the YY1/PRC2 complex at the promoters of target genes like miR-29, 
miR-1, MyHC, and Troponin. This relieves transcriptional repression and facilitates myogenic differentiation 
and regeneration [44, 45].
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lncRNAs as scaffolds
In addition to recruiting epigenetic regulators, lncRNAs can also influence gene expression by modulating 
the activity of sequence-specific transcription factors. In this case, the lncRNAs act as scaffolds to proteins 
that modulate gene expression [46].

For example, long intergenic non-coding-RNA (linc-RNA) activator of myogenesis (Linc-RAM) is a 
lncRNA localized in an intergenic region and has been determined to is differentially expressed in muscle 
differentiation, increasing its transcription. The absence of the expression of Linc-RAM induces an 
abnormal SC differentiation, which generates poor and abnormal muscle regeneration after damage in 
knockout mice. Linc-RAM physically interacts with MyoD acting as a scaffold to form the complex MyoD-
Baf60c-Brg1, to regulate the expression of multiple MyoD gene targets [47, 48].

Similarly, steroid receptor RNA activator (SRA), a lncRNA, is regulated during muscle genesis. SRA is a 
scaffold to form a complex SRA-MyoD-p68-p72, where p68 and p72 are RNA helicases and together with 
MyoD transcription factor induce the transcription of specific MyoD target genes, inducting myogenesis [49, 
50].

A similar strategy is employed by lncRNA intergenic regulator of myogenesis (Irm). Irm is differentially 
expressed on the upside in muscle differentiation and muscle regeneration by inducing myoblast 
differentiation. Irm acts as a scaffold inducing the complex MyoD/MEF2D formation. The complex of these 
two transcriptional generates a transcriptional regulatory framework that induces the transcription of 
muscle-specific genes and regulates muscle differentiation through mutual reinforcements [51].

On the other hand, Myolinc, a lncRNA overexpressed in muscle, induces the progression of muscle 
differentiation. Myolinc interacts with TDP-43 and directly regulates Filip1. This specific complex can bind 
to DNA or RNA to regulate the Acta1 and MyoD targets [52].

lncRNAs act as enhancer
DNA enhancers are elements that increase transcriptional output of protein-coding; the localization of 
enhancers is not specific; enhancers could be at a large distance of the target gene and in different genomic 
orientations [53]. Also, there are specific characteristics that distinct an enhancer, these characteristics 
could be: the presence of p300 acetyltransferase, the characteristic signature of H3K4me1 and H3K4me3 
histone marks; the acetylation of histones, and the high sensitivity to nucleases [54, 55]. Some studies are 
associated with the presence of Pol II on enhancer regions with the probability of the transcription of 
enhancers, which induces the formation of enhancers of RNA called enhancer RNAs (eRNAs). We can 
catalogue the eRNAs by the localization of the enhancer to respect the target gene, subdivide the eRNAs in 
cis-eRNAs and trans-eRNAs [56, 57]. The great majority of eRNAs regulate enhancer/promoter 
communication by directly recruiting chromatin modifiers, remodelers, and the transcriptional machinery, 
altering the chromatin structure and inducing an increment transcription rate [58].

Two main eRNAs have been identified as key regulators of myogenesis by orchestrating chromatin 
remodeling and shaping the hierarchy of the myogenic gene regulatory network. These eRNAs are 
transcribed from enhancer regions located near the myogenic master regulator MyoD. The core eRNA 
(CEeRNA) modulates the transcription of the nearby MyoD gene [59], while the distal regulatory region 
eRNA (DRReRNA) functions in trans to enhance transcription at the MyoG locus [60]. At their respective 
target sites, both eRNAs contribute to increased chromatin accessibility and facilitate the recruitment of 
RNA Pol II.

In the case of DRReRNA has been demonstrated that it induces a tridimensional enhancer-promoter 
interaction mediated by DNA, RNA, and protein components, by the recruitment of cohesin-CTCF complex 
[60].

The available evidence suggests that lncRNAs act at different stages of the myogenic program, with 
some functioning as early differentiation gatekeepers (e.g., Dum, Linc-RAM, NEAT1) and others modulating 
later stages of fusion and fiber maturation (e.g., Myoparr, Myolinc, CEeRNA). This points toward a possible 



Explor Musculoskeletal Dis. 2025;3:1007101 | https://doi.org/10.37349/emd.2025.1007101 Page 6

regulatory hierarchy among lncRNAs, in which chromatin silencing or remodeling is first established and 
then refined by transcriptional activation complexes. However, this model is still speculative and awaits 
systematic temporal validation.

Furthermore, several lncRNAs exhibit context-dependent or apparently contradictory functions. For 
example, Malat1 has been described as a suppressor of myogenic differentiation in vitro by recruiting 
Suv39h1 to silence MyoD targets, yet it is also broadly expressed in differentiated tissues and may support 
homeostatic functions. These dual roles may be explained by differences in expression levels, post-
transcriptional modifications, or interactions with distinct protein complexes depending on cellular 
context. Understanding these nuances will be essential to decipher the logic of lncRNA-mediated regulation 
in muscle biology.

Despite the growing number of lncRNAs identified in muscle differentiation, several fundamental 
questions remain unresolved. For instance, do lncRNAs act redundantly, with overlapping functions, or do 
they operate in a hierarchical and sequential manner? How is their expression temporally coordinated 
during different stages of myogenesis, and what upstream signals control their activation? Moreover, it 
remains unclear how lncRNAs integrate into known signaling pathways and whether they participate in 
feedback or feedforward regulatory loops. Addressing these questions will be essential for constructing a 
more comprehensive model of lncRNA-mediated epigenetic regulation in muscle biology.

Conclusions
The role of lncRNAs in regulating muscle differentiation through the modulation of chromatin structure is 
becoming increasingly evident. Although only a limited number of lncRNAs have been fully characterized in 
this context, transcriptomic and epigenomic studies have revealed a wealth of candidates potentially 
involved in myogenesis.

Future research should aim to functionally validate these emerging lncRNAs, particularly in vivo 
models of muscle injury and regeneration. Additionally, dissecting their interactions with chromatin 
remodelers and transcription factors in disease states—such as muscular dystrophies, cachexia, or 
sarcopenia—may uncover new layers of epigenetic regulation contributing to pathology.

From a translational perspective, lncRNAs represent attractive targets for diagnostic and therapeutic 
development. Their tissue specificity, dynamic regulation, and ability to modulate key differentiation 
pathways suggest they could be used as biomarkers of muscle health or as tools for modulating gene 
expression in regenerative therapies.

Advancing our understanding of the lncRNA-chromatin interface will open new avenues for 
manipulating muscle cell fate and function, with implications not only for basic biology but also for clinical 
applications in neuromuscular medicine.
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