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Abstract
Parkinson’s disease is typified by Lewy bodies and the selective death of dopaminergic neurons in the 
substantia nigra. α-Synuclein aggregation, neuroinflammation, mitochondrial dysfunction, and oxidative 
stress are key components of its pathophysiology. The neuroprotective potential of natural substances with 
anti-inflammatory and antioxidant qualities has drawn attention in recent years. A naturally occurring 
isoflavone that is mostly present in red clover and other legumes, biochanin A has shown promise as a 
treatment option for Parkinson’s disease. Preclinical research has shown that biochanin A uses a variety of 
methods to provide notable neuroprotective benefits. By activating the Nrf2/ARE pathway, it scavenges 
reactive oxygen species (ROS), upregulates antioxidant defense enzymes, and inhibits pro-inflammatory 
mediators by modifying the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling 
cascade. Additionally, it has been demonstrated that biochanin A preserves neuronal integrity in 
Parkinson’s disease models by reducing dopaminergic neuronal death, inhibiting microglial activation, and 
mitigating mitochondrial dysfunction. Its potential as a neurotherapeutic agent is increased by its capacity 
to pass the blood-brain barrier. To investigate its safety, bioavailability, and effectiveness in people, more 
translational and clinical research is necessary. Biochanin A’s incorporation with neuroprotective 
techniques may pave the way for novel supplementary treatments for Parkinson’s disease. Therefore, the 
current review aims to present a thorough investigation of the molecular basis of biochanin A’s anti-
Parkinson properties in Parkinson’s disease, building on the body of existing research that explains these 
properties.
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Introduction
A progressive neurodegenerative disease, Parkinson’s disease (PD) is marked by the selective death of 
dopaminergic neurons in the substantia nigra pars compacta (SNpc). This condition causes non-motor 
symptoms like cognitive decline and autonomic dysfunction in addition to the classic motor symptoms of 
bradykinesia, rigidity, and tremor [1]. Its global frequency is believed to be around 1% in those over 60 and 
up to 4% in people over 80. Its prevalence rises sharply with age, especially after the age of 60 [2, 3]. Rising 
life expectancy, better diagnostic tools, and population aging are all contributing to the gradually growing 
burden of PD, with estimates suggesting that by 2040, the number of affected people may double [4]. 
Additionally, the illness exhibits a small male preponderance, and its complicated etiology and 
epidemiological patterns are influenced by both hereditary and environmental variables [5]. The main 
characteristic of this disease is the loss of dopamine in the striatum due to the degeneration of 
dopaminergic neurons in the SNpc, which disrupts the circuitry of the basal ganglia and causes the classic 
motor symptoms, such as bradykinesia, rigidity, resting tremor, and postural instability [6]. Lewy bodies, 
which are intracytoplasmic inclusions mostly made of misfolded and aggregated α-synuclein protein, are a 
major pathogenic feature of PD [7]. The core pathophysiology of PD includes oxidative stress, mitochondrial 
failure, neuroinflammation, and aberrant protein aggregation [8]. Excessive reactive oxygen species (ROS) 
and impaired adenosine triphosphate (ATP) generation are caused by mitochondrial malfunction, which 
also causes oxidative damage and apoptosis [9]. Dopamine metabolism itself, which generates hydrogen 
peroxide and other hazardous intermediates, aggravates oxidative stress even more [10]. Furthermore, it is 
becoming more widely acknowledged that neuroinflammatory processes are mostly driven by activated 
microglia and increased pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), 
interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), important causes of dopaminergic neuron degradation 
in PD [11]. Additionally, there is proof that α-synuclein aggregates propagate from cell to cell in a prion-like 
manner, which contributes to the disease’s progressive character and anatomical spread across the nervous 
system [12]. A naturally occurring isoflavone mostly present in red clover (Trifolium pratense), soy, and 
other legumes, biochanin A has garnered increasing interest because of its potential for neuroprotection 
[13]. A phytoestrogen with anti-inflammatory, anti-apoptotic, and antioxidant properties, biochanin A, may 
be able to lessen the intricate pathophysiology of neurodegenerative diseases like PD [14]. By scavenging 
ROS, decreasing lipid peroxidation, and upregulating endogenous antioxidant defenses such as glutathione 
(GSH), catalase (CAT), and superoxide dismutase (SOD), biochanin A has shown strong antioxidant activity 
[15]. Moreover, biochanin A inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
signaling and microglial activation, which lowers the expression of inflammatory mediators [16]. 
Furthermore, it modulates mitogen-activated protein kinase (MAPK) signaling pathway to inhibit apoptosis 
and oxidative stress mediated inflammatory stress to confer anti-Parkinson’s activity. In light of these 
diverse impacts, biochanin A is an intriguing medicinal phytochemical that demands more research in the 
context of PD. The objective of this review is to provide an overview of the current understanding of 
biochanin A’s neuroprotective processes and possible applications in the treatment and prevention of PD. 
Trifolium repens, commonly known as white clover, is a herbaceous perennial plant belonging to the 
Fabaceae family. It is widely cultivated as a forage crop and is recognized for its trifoliolate leaves and 
small, white flowers. White clover contains various bioactive compounds, including flavonoids, isoflavones, 
phenolic acids, cyanogenic glucosides, saponins, and condensed tannins [17]. These molecules contribute to 
its medicinal properties, such as antioxidant, anti-inflammatory, and antimicrobial effects. Additionally, it 
plays a role in nitrogen fixation, improving soil fertility. Red clover (Trifolium pratense) contains a diverse 
range of bioactive molecules with medicinal, ecological, and agricultural significance [18, 19]. Here are 
some examples: formononetin, biochanin, quercetin, kaempferol, linamarin, lotaustralin, scopoletin, 
resveratrol, coumestrol, etc., as shown in Figure 1 [20]. According to several research conducted to date, 
Trifolium pratense has a variety of therapeutic properties, including neuroprotection. Several Chinese 
herbs, including the leaves and stems of Trifolium pratense, contain the isoflavonoid biochanin A. It has a 
number of therapeutic effects, including hepatoprotective, anti-inflammatory, antioxidant, and anticancer 
properties [20]. Research has shown that biochanin A may have neuroprotective properties, such as 
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lowering inflammation and preventing the generation of ROS, which might aid in the treatment of AD and 
cerebral ischemic stroke. The isoflavone biochanin A, which is derived from Trifolium pratense, thus has 
neuroprotective properties [21].

Figure 1. Schematic representation of various classifications of Trifolium pratense

Pharmacokinetics and biotransformation of biochanin A
Biochanin A is lipophilic and has good permeability; therefore, it is rapidly absorbed into the gut. In the 
liver, biochanin A is extensively metabolized. Research has shown that hydroxylation, glucuronide 
conjugation, and sulfate conjugation transform it into bioactive metabolites [22]. One of the active 
metabolites of biochanin A is genistein, which also goes through phase I and phase II interactions with 
hydroxy-biochanin A in the liver. Human oral absorption and water solubility have been reported to be 
inadequate [23]. The bioavailability of biochanin A in rats was noted by Moon et al. [24]. Rat bile and 
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plasma were found to contain greater levels of conjugates of biochanin and its metabolite genistein. In 
plasma, biochanin was only 1.5% present as a free fraction. Furthermore, the apparent volume of 
distribution is greater, and the clearance of biochanin A and its metabolite genistein is higher [24].

Biochanin A modulates the oxidative stress mediated inflammatory stress 
to confer anti-Parkinson’s activity
Numerous studies show that oxidative stress is a key factor in the development of Parkinson’s [25–27]. 
Reduced levels of antioxidants like CAT, GSH, glutathione peroxidase (GPx), SOD have been shown to 
contribute to oxidative stress in renal tissues [28]. Numerous cell-line and in vivo studies have investigated 
the anti-Parkinson’s effects of biochanin A, highlighting its ability to inhibit the oxidative stress-mediated 
inflammatory stress as shown in Table 1 [27, 29, 30]. Using lipopolysaccharide (LPS)-induced oxidative 
stress and damage Sprague Dawley rat model, Wang et al. [29] demonstrated that biochanin A (25, 50 
mg/kg; intraperitoneal) significantly increased the reduced SOD, GPx activities in the midbrain of rat. 
Moreover, it also reduced the increased MDA level. Using HE staining, it significantly alleviated the nuclear 
condensation and acidophilia degeneration in neurons of the SNpc. It considerably decreased the quantity 
of apoptotic cells in the SNpc by using Hoechst 33258. It considerably reduced the quantity of activated 
microglia with an amoeboid morphology, according to immunohistochemical labeling. Additionally, it 
decreased the elevated Iba-1 level in the SNpc. In addition, it boosted the SNpc’s decreased TH-positive 
neurons. Furthermore, it greatly reduced the expression of p47phox, p67phox, and gp91phox in the SNpc, 
according to immunohistochemistry. It also decreased the expression of gp91phox, p47phox, and p67phox 
in the plasma lemma portion of SNpc, according to Western blot research. It also demonstrated that it also 
improved motor dysfunction in rats. Moreover, immunofluorescence analysis revealed that it also reduced 
the increased Iba level in the LPS-induced microglial activation rat model [29].

Table 1. Numerous in vivo and in vitro studies that delineate the anti-Partkinson’s activity of biochanin A

Model Dose/concentration Observed molecular modulations Reference

LPS-induced oxidative stress and 
damage rat model

(25, 50 mg/kg; i.p., n = 
8)

Increased SOD, GPx activities in the midbrain.
Reduced MDA level.

Reduced number of apoptotic cells, Iba-1 level 
in the SNpc.
Increased TH-positive neurons.

Suppressed the expression of p47phox, 
p67phox, and gp91phox in the SNpc.

[29]

LPS-induced damage to dopaminergic 
neurons rat model

(25, 50 mg/kg; i.p., n = 
16)

Decreased microglia activation.

Reduced the Iba-1 expression level.
Increased the TH-positive neurons in the SNpc.

Reduced the IL-1β, IL-6, and TNF-α levels in 
the serum.

Reduced the IL-1β and TNF-α in the brain.

Inhibited the phosphorylation of ERK, JNK, and 
p38.

[27]

Iron and rotenone-induced Parkinson’s 
disease rat model

(3 and 30 mg/kg; i.p., 
n = 9)

Increased the dopamine level and substantia 
nigra TH expression in the brain.

Reduced the MDA level in the SNpc.

Increased the level of GSH in the SNpc.

[30]

LPS-induced inflammatory responses in 
the primary microglia cell model

(1.25, 2.5, 5 µM) Reduced the ROS, NO, IL-1β, and TNF-α 
levels.

[27]

LPS-induced inflammatory responses in 
the primary microglia cell model

(15, 20, 25, 30 µM) Reduced the activity of microglia cells. [27]
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Table 1. Numerous in vivo and in vitro studies that delineate the anti-Partkinson’s activity of biochanin A (continued)

Model Dose/concentration Observed molecular modulations Reference

LPS-induced pro-inflammatory response 
in the BV2 microglial cell model

(1.25–5 µM) Decreased the cell viability and increased pro-
inflammatory cytokines.

Reduced the activation of microglia in BV2 
cells.

Reduced the increased TNF-α and IL-1β 
levels.

Decreased the mRNA expression of NO and 
iNOS. 
Reduced the JNK, ERK, p38, ROS, and MAPK 
levels.

[34]

LPS-induced damage in the microglial 
cell model

(0.25, 1, 2.5 µM) Inhibited the production of pro-inflammatory 
cytokines such as TNF-α, NO, and SOD.

Increased dopaminergic neurons.
Reduced the TH-IR neurons.

[14]

LPS: lipopolysaccharide; SOD: superoxide dismutase; GPx: glutathione peroxidase; MDA: malondialdehyde; Iba-1: indole-3-
butyric acid; SNpc: substantia nigra pars compacta; TH: tyrosine hydroxylase; IL-1β: interleukin-1 beta; IL-6: interleukin-6; TNF-
α: tumor necrosis factor alpha; ERK: extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; BV2: mouse microglial 
cell line; iNOS: inducible nitric oxide synthase; ROS: reactive oxygen species; MAPK: mitogen-activated protein kinase

Oxidative stress plays a crucial role in inflammatory processes by disrupting cellular homeostasis and 
triggering immune responses. When ROS accumulate beyond the body’s antioxidant defenses, they activate 
inflammatory pathways such as NF-κB, leading to the production of cytokines and chemokines such as IL-
1β, IL-6, and TNF-α [31, 32]. This oxidative imbalance contributes to tissue damage, exacerbating 
conditions like Parkinson’s and Alzheimer’s. Additionally, oxidative stress influences inflammasome 
activation, further amplifying inflammation [33]. Using LPS-induced damage of dopaminergic neurons in 
Sprague Dawley rats, biochanin A (25, 50 mg/kg) significantly suppressed microglia activation. Moreover, it 
also reduced the Iba-1 expression level. In addition to this, it also increased the reduced TH-positive 
neurons in the SNpc part of rat’s brain. Furthermore, ELISA revealed that it also reduced the increased IL-
1β, IL-6, and TNF-α levels in the serum. Western blot analysis revealed that it reduced the increased 
expression of IL-1β and TNF-α in the rat’s brain. Furthermore, biochanin A (1.25, 2.5, 5 µM) also reduced 
the increased ROS, NO, IL-1β, and TNF-α levels [27]. Wu et al. [34] demonstrated that biochanin A (1.25–5 
µM) significantly decreased the increased cell viability and increased pro-inflammatory cytokines. It also 
significantly reduced the increased TNF-α and IL-1β levels in LPS-stimulated microglial cells. Moreover, 
western blot analysis and RT-PCR revealed that it also significantly decreased the increased mRNA 
expression of NO and iNOS in LPS-induced pro-inflammatory response in the BV2 microglial cell line model, 
as shown in Figure 2 [34]. Using LPS-induced damage in microglial cell, Chen et al. [14] documented that 
biochanin A (0.25, 1, 2.5 µM) significantly inhibited the production of pro-inflammatory cytokines such as 
TNF-α, NO, and SOD. It also increased the reduced dopaminergic neurons. Moreover, it significantly 
increased the reduced dopamine uptake. Additionally, it also reduced the increased TH-IR neurons [14]. 
Iron and rotenone-induced PD Sprague Dawley rat model, Yu et al. [30] nstrated that biochanin A (3 and 30 
mg/kg; i.p.) significantly increased the reduced dopamine level and substantia nigra TH expression in the 
brain of rat. Moreover, it also significantly reduced the increased MDA level in the SNpc. It also increased 
the reduced level of GSH in the SNpc. It also significantly increased the reduced latency time of rat [30]. By 
inhibiting the oxidative stress-mediated inflammatory stress cascade, biochanin may potentiate the anti-
Parkinson’s activity.

Modulation of the MAPK signaling pathway to inhibit apoptosis to confer 
anti-Parkinson’s activity
The MAPK pathway plays a significant role in PD by influencing neurodegeneration, oxidative stress, and 
inflammation [35, 36]. Research suggests that improper protein phosphorylation due to dysfunction in 
kinases and phosphatases contributes to PD progression. Specific MAPKs such as JNKs, ERK1/2, and p38. 
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Figure 2. Mechanistic interplay of biochanin A in Parkinson’s disease by targeting the oxidative stress-mediated 
inflammatory stress and MAPK signaling pathway to inhibit apoptosis. It may protect the neuron by increasing the 
dopaminergic neurons to potentiate anti-Parkinson’s activity. MAPK: mitogen-activated protein kinase; ROS: reactive oxygen 
species; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; JNK: c-Jun N-terminal kinase; ERK: extracellular 
signal-regulated kinase; MDA: malondialdehyde; IL-6: interleukin-6; TNF-α: tumor necrosis factor alpha; IL-1β: interleukin-1 
beta; SOD: superoxide dismutase; CAT: catalase; GSH: glutathione

MAPKs have been implicated in PD pathology [37]. Moreover, biochanin A (25, 50 mg/kg) inhibited the 
phosphorylation of ERK, JNK, and p38. MTT assay revealed that biochanin A (15, 20, 25, 30 µM) reduced the 
activity of microglial cells [27]. It also significantly reduced the increased JNK, ERK, p38, ROS, and MAPK 
levels in BV2 cells. Moreover, it also reduced the activation of microglial in BV2 cells [34]. The p38 MAPK 
and JNK pathways are often associated with stress-induced apoptosis, where they activate caspase cascades 
leading to cell death [38]. Biochanin A (10–60 mg/kg) showed significant improvement in motor functions, 
decreased T-turn and T-LA, and enhanced swim score. It increased striatal dopamine content in iron and 
MPTP-induced mice. Biochanin A (1–10 µM) significantly decreased superoxide anion generation in the 
cultures. Additionally, it significantly decreased the MDA level in the SNpc of mice. It also reduced p38 
MAPK phosphorylation in the cultures. Furthermore, it also reduced the increased apoptosis in the 
substantia nigra parts of body [39]. Modulation of MAPK-mediated apoptosis potentiates the anti-
Parkinson’s activity.

Other activities of biochanin A in neuroprotection
Restoration of mitochondrial function via PGC-1α

Mitochondrial dysfunction is a significant contributor to numerous degenerative diseases, and bochanin A 
has been found to support mitochondrial biogenesis by activating peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC-1α). As a key regulator of energy metabolism, PGC-1α controls 
the expression of genes involved in oxidative phosphorylation. Through this activation, biochanin A 
enhances cellular energy production, which may strengthen neuronal and muscle function, offering 
potential therapeutic benefits for conditions such as Parkinson’s and Alzheimer’s disease [40–44].

Anti-apoptotic and cell-survival mechanisms

Biochanin A plays a vital role in regulating apoptosis by enhancing the expression of Bcl-2, an anti-
apoptotic protein, while simultaneously reducing levels of pro-apoptotic Bax and caspase-3. Apoptosis, or 
programmed cell death, is essential for cellular balance, but its excessive activation can lead to 
neurodegeneration and tissue damage, as seen in conditions like stroke and multiple sclerosis. By 
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modulating apoptotic pathways, biochanin A may provide protective benefits against cellular stress and 
inflammatory damage [41].

Neuroprotection via estrogen-receptor binding

Biochanin A demonstrates a strong affinity for Erβ receptors in the brain, effectively replicating the 
neuroprotective benefits of estrogen while avoiding activation of Erα, which is linked to adverse effects 
such as an increased risk of cancer. Estrogen signaling plays a vital role in cognitive function, synaptic 
plasticity, and neuronal health; however, conventional hormone therapies come with associated risks. By 
selectively targeting Erβ, biochanin A presents a promising therapeutic option for addressing cognitive 
decline, menopausal symptoms, and neurodegenerative disorders [42, 43].

Increase in BDNF expression for synaptic health

Biochanin A has been associated with the upregulation of brain-derived neurotrophic factor (BDNF), a 
critical protein involved in synaptic plasticity, neuronal survival, and cognitive processes. Elevated BDNF 
levels may contribute to improvements in learning, memory retention, and neuroregeneration. Since 
decreased BDNF expression is commonly observed in neurodegenerative disorders and depression, 
biochanin A’s potential to boost its production highlights its promise as a therapeutic agent for cognitive 
enhancement [42].

Histone deacetylase modulation for gene expression

Biochanin A functions as a regulator of histone deacetylases (HDACs), enzymes responsible for modifying 
chromatin structure to influence gene expression. Research has highlighted the potential of HDAC 
inhibition in neuroprotection, cancer treatment, and immune system regulation. Through its ability to 
adjust HDAC activity, bochanin A may facilitate favorable gene expression changes that help mitigate 
oxidative stress, reduce inflammation, and slow disease progression [42].

Inhibition of protein aggregation in neurodegeneration

The accumulation of misfolded proteins is a defining characteristic of neurodegenerative conditions like 
Alzheimer’s and PD. Biochanin A has demonstrated potential in minimizing protein aggregation, which may 
help lessen the harmful effects associated with these dysfunctional proteins. By targeting this process, 
bochanin A could contribute to slowing disease progression or alleviating symptoms in individuals affected 
by neurodegenerative disorders [42].

Limitations of biochanin A
The pharmaceutical potential of biochanin A, a naturally occurring isoflavone present in red clover and 
other legumes, is substantial because of its anti-inflammatory, anti-cancer, and antioxidant qualities. 
Nevertheless, a number of pharmacokinetic and metabolic issues restrict its practical use. Its low water 
solubility, which significantly impairs its absorption in the gastrointestinal system when taken orally, is one 
of its main disadvantages. It is difficult to attain therapeutic plasma concentrations because of its limited 
oral bioavailability, which is usually less than 10%. Biochanin A also undergoes a lot of fast metabolism, 
including phase I processes like demethylation to genistein and phase II reactions like glucuronidation and 
sulfation. These metabolic activities change it into more polar metabolites that are rapidly eliminated from 
the body and are frequently less active or inert. Its duration of effect is limited by the short plasma half-life 
caused by the fast clearance. Furthermore, biochanin A’s systemic distribution and effectiveness are further 
limited by its weak permeability across cellular membranes. These restrictions show that in order to 
improve its pharmacokinetic profile and therapeutic potential, sophisticated formulation techniques or 
structural alterations are required.
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Future directions
Future research should concentrate on methods to get over biochanin A’s pharmacokinetic constraints, 
which include poor solubility, limited oral bioavailability, quick metabolism, and short half-life, in order to 
maximize its therapeutic potential. The creation of innovative drug delivery vehicles, such as solid lipid 
nanoparticles, liposomes, micelles, and nanoparticles, is one encouraging avenue. These systems can 
increase absorption, defend against premature metabolism, and improve solubility. The production of 
prodrugs or analogs with better pharmacokinetic characteristics by structural alteration of biochanin A is 
another crucial strategy. Co-administration with enzyme inhibitors (such as cytochrome P450 or 
glucuronidation inhibitors) may also prevent metabolic breakdown and extend its systemic availability. 
Bypassing first-pass metabolism and boosting bioavailability, alternate administration methods, including 
transdermal, intranasal, or sublingual delivery, might be investigated. Lastly, in order to optimize dosage 
schedules and assess safety and effectiveness in people, pharmacokinetic-pharmacodynamic modeling and 
clinical translation studies are crucial. The goal of these future directions is to fully realize the therapeutic 
potential of biochanin A and optimize its clinical value.

Conclusions
Biochanin A is a phytoestrogen and naturally occurring isoflavone that has demonstrated encouraging 
neuroprotective potential in PD. In neurodegenerative diseases, it reduces oxidative stress and 
neuroinflammation, two major factors that cause neuronal damage. By triggering the PI3K/Akt signaling 
pathway and blocking the MAPK cascade, biochanin A reduces pro-apoptotic factors and increases anti-
apoptotic proteins. Furthermore, it increases antioxidant defenses while suppressing inflammatory 
mediators such as TNF-α, IL-1β, NF-κB, and iNOS. Since these processes work together to prevent neuronal 
death and support cellular integrity, biochanin A is a promising therapeutic target for PD. Poor oral 
bioavailability is the main limitation of biochanin A, which is mostly caused by its high first-pass 
metabolism and poor water solubility. Developing biochanin A as a medicinal drug is hampered by the 
absence of clinical research and pharmacokinetic characterization of its metabolites. Future research might 
expand their potential as therapeutic agents for neurodegenerative diseases by validating their efficacy via 
preclinical and clinical investigations.
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