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Abstract
Alzheimer’s disease (AD), the term “dementia”, describes a specific neuropathology together with the 
development and progression of age-related cognitive and functional loss. Formononetin is naturally 
occurring isoflavone recognized for its potential health benefits, anti-oxidant, anti-inflammatory, anti-
cancer, and anti-apoptotic properties. Neurodegenerative disorders arise from the gradual loss of function 
and eventual death of nerve cells in the brain or peripheral nervous system. Astragalus membranaceus is a 
traditional plant with a variety of pharmacological and biochemical properties, including antiviral, anti-
hyperglycaemic, and immunomodulatory effects. Moreover, the expression of membrane-bound and 
soluble receptor for advanced glycation end products (RAGE) is enhanced in the AD brain due to increased 
levels of soluble and insoluble amyloid-beta (Aβ) peptides. Additionally, in inflammatory circumstances, 
leukocytes’ firm attachment and transmigration to endothelial cells are regulated by intercellular adhesion 
molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). Formononetin also possesses anti-
bacterial, anti-inflammatory, anti-cancer, anti-oxidant, and estrogenic activity. Formononetin has emerged 
as a promising agent in the modulation of mediators involved in neurodegenerative disease. Formononetin 
might modulate nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway to potentiate the anti-
Alzheimer’s activity. Additionally, formononetin might inhibit the Aβ/RAGE interaction which further 
inactivates the activity of extracellular signal regulated kinase (ERK), Janus kinase (JNK) signaling pathway 
that results in the reduction of nuclear translocation of nuclear factor kappa B (NF-κB) and also reduces the 
cytokines level to ameliorate AD. It might inhibit the ICAM, VCAM, and THP-1 proteins. Therefore, this 
compound offers potential therapeutic benefits by reducing cytokine levels to ameliorate AD. This review 
article is designed to explore the mechanistic interplay underlying the anti-Alzheimer’s effect of A. 
membranaceus, especially formononetin.
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Introduction
Neurodegenerative diseases are disorders that cause nerve cells, mostly in the brain, to gradually 
deteriorate. With little progress achieved in the previous ten years in creating viable treatments, 
neurodegenerative illnesses of the brain represent a significant and growing worldwide health concern [1]. 
The sixth-most prevalent cause of mortality worldwide is Alzheimer’s disease (AD), an incurable 
neurological illness that causes a slow decline in brain function [2]. Up to 80% of dementia diagnoses are 
due to AD, which is by far the most prevalent cause of dementia [3]. The number of sick people is predicted 
to reach about 152 million by 2050, with emerging nations experiencing the largest rise [4]. With an 
emphasis on the role of non-physician health care providers and caregivers, the special report examines the 
broader health care system for older persons with cognitive impairments. Currently, an estimated 6.9 
million Americans 65 and older suffer from AD. By 2060, this figure may rise to 13.8 million if no new 
treatments are developed to prevent or treat AD [5]. The brain produces a protein that takes the shape of 
“plaques” and “tangles”. The peptide amyloid-beta (Aβ) is created when fragments of the natural amyloid 
precursor protein (APP) split off, and α-secretase, β-secretase, and γ-secretase all play a part [6]. AD is 
indicated by neurotic plaques that form Aβ peptide (Aβ42) and neurofibrillary tangles (NFTs) made of 
hyperphosphorylated tau protein [7]. Due to its 20% higher oxygen consumption than other organs, the 
brain is more vulnerable to reactive oxygen species (ROS) and reactive nitrogen species (RNS) which 
interact with neurons which results in mitochondrial malfunction, lipid oxidation, or changes in the redox 
potential of Aβ metal ions, which causes nerve cell death [8]. When receptor for advanced glycation end 
products (RAGE) and Aβ interact, inflammatory signaling pathways are triggered, ROS are released to 
create oxidative stress, and neuroinflammation results, which leads to mitochondrial and neuronal 
malfunction [9]. Prior studies showed a clear correlation between cognitive functions and the novel 
function of the hippocampus vascular cell adhesion molecule 1 (VCAM-1) in brain aging control [10]. 
Whereas, platelet, white blood cell, and vascular endothelial adhesion can be mediated by the inflammatory 
factor intercellular adhesion molecule 1 (ICAM-1), which is released by vascular endothelium [11]. 
According to the existing clinical evidence, the beneficial benefits of statins are mediated by changes in the 
metabolism of tau and Aβ, as well as other clinical characteristics of AD and genetic and lifestyle risk factors 
[12]. Since beta site APP cleaving enzyme 1 (BACE1) plays a part in the amyloidogenic cleavage of APP, 
which produces Aβ, it is a logical target in the development of drugs for AD [13]. Moreover, the two primary 
categories of phytoestrogens are flavonoids and non-flavonoids, which are naturally occurring nonsteroidal 
phenolic plant chemicals. Additionally, isoflavones can be regarded as endocrine disruptors that could have 
detrimental effects on the environment or the health of a certain population [14]. Formononetin is an 
isoflavone that is mostly derived from certain leguminous plants, including Caulis Spatholobi, Pueraria 
lobata, and Astragalus membranaceus [15]. Evidence suggests that a neuroprotective ingredient in herbal 
remedies like A. membranaceus and Glycyrrhiza uralensis, formononetin has the ability to target many 
pathways [16]. Several theories revealed that the neuroprotective potential of the O-methylated isoflavone 
formononetin has drawn a lot of attention and has been the subject of several studies. Whereas, to deliver 
neuroprotection, formononetin alters a number of endogenous mediators [17]. Additionally, it has been 
demonstrated to reduce oxidative stress and apoptosis in brain tissue after ischemia injury, aiding in the 
recovery from neurodegeneration brought on by stroke [18]. It has a variety of pharmacological actions, 
including anti-oxidant, anti-inflammatory, anti-cancer, and anti-apoptotic qualities [18]. Various lines of 
evidence indicate that formononetin modulates the Aβ/RAGE mediated pro-inflammatory cytokines to 
ameliorate AD [19]. In addition to this, formononetin significantly decreased the VCAM-1 and ICAM-1 levels 
in cells, the percentage of nuclear p65 protein level, and decreased the localization of nuclear factor kappa 
B (NF-κB) [20]. Additionally, formononetin modulates the oxidative stress mediated nuclear factor 
erythroid 2-related factor 2 (Nrf-2) signaling pathway to potentiate the anti-Alzheimer’s activity [21]. 
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Therefore, by synthesizing the published reports on the neuroprotective capabilities of formononetin, we 
aim to give an insight into the current status of its mechanistic potential in neuroprotection.

Classification of components of A. membranaceus
A. membranaceus has been found to contain over 52 different flavonoid components, including flavones, 
isoflavones, flavanones, flavonols, chalcones, and anthocyanidins [22]. With a total of over 20,000, 
triterpenes and their saponins are the second largest secondary metabolites found in nature. They are 
found in fungi, pteridophytes, higher plants, dicotyledons, monocotyledons, and marine organisms [23], 
while A. membranaceus frequently contains tetracyclic and pentacyclic triterpenoids, which are triterpene 
saponins. Important tetracyclic triterpenoids, astragalosides, have significant pharmacological effects in 
addition to a variety of biological activity [24]. Astragaloside and calycosin-7-O-β-D-glucoside (CG) are 
frequently utilized as “marker components” in the Chinese Pharmacopoeia [25] and are thought to be the 
most significant bioactive components that belong to the triterpene saponins and flavonoids in A. 
membranaceus, respectively. Generally, flavonoids are classified as chrysin, kaempferol, luteolin, myricetin, 
taxifolin, apigenin, eriodictyol, hesperetin, naringenin, genistein; isoflavones are classified as genistein, 
daidzein, equol, coumestrol, formononetin, calycosin as shown in Figure 1. To date, various studies revealed 
that A. membranaceus possesses different types of therapeutic effects, especially neuroprotection [26–30]. 
The plant A. membranaceus and the Chinese medicinal herb red clover (Trifolium pratense) are the sources 
of the phytoestrogen known as formononetin. It may have hepatoprotective, neuroprotective, and anti-
neoplastic effects, according to evidence [31]. The red clover plant extract contains biochanin A, 
formononetin (biochanin B), genistein, and daidzein. Formononetin [7-hydroxy-3-(4-methoxyphenyl)-4H-
1-benzopyran-4-one], one of the primary bioactive substances isolated from red clover, has been identified 
as the primary compound responsible for the extract’s medicinal actions. It is only found in the Fabaceae 
family and is taken from the roots of Glycyrrhiza glabra, A. membranaceus, and T. pratense [32]. 
Recuperation from stroke-induced neurodegeneration has also been demonstrated to be aided by the 
mitigation of oxidative stress and apoptosis in brain tissue after ischemia injury [33]. Studies on 
neurological disorders have revealed that formononetin may have neuroprotective benefits, such as 
reducing inflammation and inhibiting the production of ROS, which may help treat AD and cerebral 
ischemic stroke [34]. Hence, formononetin molecule which is an isoflavone extracted from A. 
membranaceus also shows neuroprotective effect.

Pharmacokinetic and safety profile of formononetin
In certain publications, toxicity investigations of formononetin and its derivatives have been conducted. An 
acute toxicity investigation of sodium formononetin-3-sulphonate in rats was conducted by Li et al. [35]. 
Results show that a sodium formononetin-3-sulphonate dosage of 2,000 mg/kg did not cause significant 
changes in body weight, obvious toxic effects, or death in rats [35]. Research on the acute and subacute 
toxicity of formononetin was recently conducted by another team. There was no discernible effect on 
behavior after 14 days of intraperitoneal formononetin treatment at various doses—5 mg/kg, 50 mg/kg, 
100 mg/kg, 150 mg/kg, 200 mg/kg, and 300 mg/kg. Formononetin’s LD50 value was determined to be 
103.6 mg/kg of body weight, while at 50 mg/kg of body weight, no observed adverse effect level (NOAEL) 
was detected. There were no signs of side effects or death in the subacute trial. Additionally, hematological 
and biochemical measurements, as well as body weight, food, and water intake, did not change [36]. Singh 
et al. [33] investigated the permeability of formononetin using the parallel artificial membrane 
permeability assay (PAMPA) methodology. According to the PAMPA study, formononetin’s permeability [Pe 
106 (cm/sec)] was greater at pH 4 (11.30) and pH 7 (16.50).

Singh et al. [33] also used the plasma ultra-filtration technology to investigate formononetin’s binding 
to plasma proteins. The results revealed that the plasma levels were 93.61 ± 0.44% and 96.14 ± 0.15% 
protein binding at two different concentrations, that is 50 ng/mL and 150 ng/mL, respectively [37]. 
Additionally, the work by Luo et al. [38] shed light on the pharmacokinetic properties of formononetin 
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Figure 1. Diagramatically representation of various extracts from radius Astragalus membranaceus

when it was given to rats orally and intravenously. When formononetin was dissolved in 0.5% CMC-Na, its 
bioavailability was found to be 21.8%, and it was absorbed in several gastrointestinal tract regions with 
differing permeability levels. Furthermore, formononetin was shown to be modestly absorbed by passive 
diffusion using the Caco-2 cell monolayer model [38]. The pharmacokinetic analyses of three formononetin 
formulations—that is, formononetin dissolved in 1% hydroxypropyl methylcellulose, co-crystal form, and 
solid dispersion form—were recently carried out by Kim et al. [39] in male Sprague Dawley rats at a dosage 
of 20 mg/kg. The results showed that there was no significant difference between the co-crystal 
formulation’s Cmax (58.34 ± 10.98 nmol/L) and AUCinf (278.47 ± 34.40 h × nmol/L) and the 1% 
hydroxypropyl methylcellulose (Cmax: 110.03 ± 158.20 nmol/L). In contrast to the 1% hydroxypropyl 
methylcellulose group, the solid dispersion formulation demonstrated a considerable increase in the Cmax 
(1,343.06 ± 876.85 nmol/L) and AUCinf (2,267.55 ± 904.88 h × nmol/L), or 12 and 3 times, respectively 
[39].

Formononetin modulates the Aβ/RAGE mediated pro-inflammatory 
cytokines to ameliorate the Alzheimer’s disease
Several pieces of evidence suggest that increased Aβ level in the brain increases the RAGE. RAGE serve as 
the receptor for Aβ. Interaction with Aβ/RAGE confers to increased pro-inflammatory cytokines such as 
tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-18 by increasing ROS and oxidative stress [40]. To 
date, numerous in vitro and in vivo activities revealed that formononetin ameliorates AD as shown in 
Table 1.
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Table 1. Various in vitro and in vivo studies of formononetin might ameliorate Alzheimer’s disease

Sr. 
no

Model Dose Effect Reference

1. HBEMC cell model 1–20 µM Decreased the VCAM and ICAM

Decreased the percentage of NF-κB
Increased the Nrf-2 level

Ameliorated the adhesion of THP-1 protein

[20]

2. APP/PS1 mouse 
model

10 mg/kg Increased swimming length

Decreased latency and APP synthesis

Increased the production of Aβ
Increased LRP1 and ApoJ levels

Decreased RAGE and NF-κB p65
Increased IL-6 and TNF-α level

Decreased mRNA and protein levels

[21]

3. Cell culture model 0.1–100 
µM

Increased living cell
Decreased the cell death rate, LDH release, and caspase-3 activity

Increased cell viability in the cell culture and the level of sAβPPα
Increased α-secretase

Increased levels of ADAM10 in cells

N2a-AβPP cells were treated and increased both ADAM10 and mRNA 
level

[22]

VCAM: vascular cell adhesion molecule; ICAM: intercellular adhesion molecule; NF-κB: nuclear factor kappa B; Nrf-2: nuclear 
factor erythroid 2-related factor 2; APP: amyloid precursor protein; Aβ: amyloid-beta; RAGE: receptor for advanced glycation 
end products; IL: interleukin; TNF: tumor necrosis factor

By Using APP/PS1 mouse model, Fei et al. [21] documented that formononetin significantly increased 
swimming length and decreased latency. It also reduced Aβ burden by decreasing APP synthesis in the 
brain of mice. Moreover, significantly there is an increase in the production of Aβ in familial AD. Western 
blot analysis revealed that it also increased LRP1 and ApoJ levels. Additionally, it also significantly 
decreased the protein expressions of RAGE, NF-κB p65, oxidative stress injury, inflammatory response, and 
neuronal cell death. Furthermore, it also increased IL-6 and TNF-α levels in the brains of mice. Moreover, it 
also reduced protein levels and also decreased mRNA expressions [21]. Using HBMEC cell model, Fan et al. 
[20] documented that formononetin (1–20 µM) significantly decreased the VCAM-1 and ICAM-1 levels in 
cells [20]. Moreover, it decreased the percentage of nuclear p65 protein level, localization of NF-κB (p65) in 
the nucleus of HBMECs and nuclear p65 levels in NC siRNA-transfected HBMECs. Furthermore, it also 
ameliorated the adhesion of THP-1 protein to cells [20]. Furthermore, it also reduced the caspase-3 activity 
and increased the cell viability in the cell culture. It also increased the level of sAβPPα. The increase in 
sAβPPα was conducted by shifting AβPP processing to the non-amyloid cleavage pathway. It also showed a 
threefold increase of α-secretase as compared to the hypoxia group. In addition to this, it also increased the 
levels of both premature and mature ADAM10 in cells. In the normoxia condition, the N2a-AβPP cells were 
treated with it and the total protein level of ADAM10 and mRNA level were both increased as shown in 
Figure 2 [22].

Formononetin modulates the Nrf-2 signaling pathway to potentiate the 
anti-Alzheimer’s activity
Several pieces of evidence suggest that increased oxidative stress confer to inactivate the Keap1 leading to 
the phosphorylation of Nrf-2. Generally, Nrf-2 plays a crucial role in the regulation of anti-oxidant defense 
within the basic leucine zipper transcription factor family [40]. Using HBMEC cell model, author 
demonstrated that formononetin (1–20 µM) significantly increased the Nrf-2 protein levels. Moreover, Nrf-
2 undergoes ubiquitination with Keap1 protein. Western blots revealed that it significantly reduced the 
interaction of Nrf-2 with Keap1. Generally, Nrf-2 transcriptional pathway plays a pivotal role in the 
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Figure 2. Mechanistic interplay of formononetin by various pathways to confer protection against Alzheimer’s disease 
(AD). Formononetin might inhibit the amyloid-beta (Aβ)/receptor for advanced glycation end products (RAGE) interaction which 
further inactivates the activity of extracellular signal regulated kinase (ERK), Janus kinase (JNK), P38 that results in the 
reduction of nuclear translocation of nuclear factor kappa B (NF-κB) and also reduces the cytokines level to ameliorate AD. It 
might inhibit the intercellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and THP-1 proteins. It 
inhibited the oxidative stress that activates Aβ/RAGE which generally increase neuroinflammation. It also increased the nuclear 
factor erythroid 2-related factor 2 (Nrf-2) factor that leads to neuroprotection. TNF: tumor necrosis factor; IL: interleukin

detoxification and removal of ROS [40, 41]. Using a cell culture model, Sun et al. [22] documented that 
formononetin (0.1 µM, 1 µM, 10 µM, 20 µM, 50 µM, and 100 µM) significantly reduced cell viability under 
hypoxia conditions, however, formononetin also increased living cell number and decreased the cell death 
rate. It also reduced the hypoxia-mediated LDH released by nearly 40% [42].

Conclusions
AD dementia describes specific neuropathology along with an age-related start and progression of cognitive 
and functional impairment. Formononetin provides neuroprotection by modifying a number of endogenous 
mediators. By reducing the amount of ROS and pro-inflammatory cytokines, it inhibits RAGE activation, 
which in turn inhibits neuronal damage. Formononetin might inhibit the Aβ/RAGE interaction which 
further inactivates the activity of extracellular signal regulated kinase (ERK), Janus kinase (JNK), P38 that 
results in the reduction of nuclear translocation of NF-κB and also reduces the cytokines level to ameliorate 
AD. It might inhibit the ICAM, VCAM, and THP-1 proteins. Formononetin might activate Nrf-2 signaling 
pathway that activates the anti-oxidant mechanism that leads to the increased levels of GSH, SOD, CAT to 
potentiate the anti-Alzheimer’s activity. Formononetin also possesses anti-bacterial, anti-inflammatory, 
anti-cancer, anti-oxidant, and estrogenic activity. Additionally, exploring the potential synergistic effects of 
formononetin in neuroprotection possesses novel therapeutic interventions for neurodegenerative 
diseases. The lack of clinical studies and pharmacokinetic profiling of metabolites of formononetin are the 
major hindrances to its development as a therapeutic agent. In the future, by conducting preclinical and 
clinical studies to validate their efficacy, potential as therapeutic agents for neurodegenerative disorders 
could be increased.
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Limitation and challenges

The primary obstacle to developing formononetin as a therapeutic agent is the absence of clinical studies 
and a pharmacokinetic profile of its metabolites. Therefore, more research is necessary to understand the 
detailed pharmacokinetic profile of formononetin, along with conducting clinical trials. However, it is 
crucial to recognize that translating laboratory findings to clinical applications can be intricate and 
challenging. Another challenge is that these metabolites can show different levels of bioactivity and unique 
pharmacokinetic characteristics, which can significantly impact the overall pharmacological outcomes.
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