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Abstract
Neuroinflammation plays a key role in the pathogenesis of post-cardiac arrest (CA) brain injury. Innate 
immune cells sense a variety of danger signals through pattern-recognition receptors and evoke rapidly after 
ischemic challenge, triggering inflammatory responses and amplifying brain damage. A programmed cell 
death (PCD) pathway is activated after ischemic and/or inflammatory stimuli, leading to the elimination of 
the damaged cells. However, PCD also regulates inflammatory responses flexibly. The present review aimed 
to summarize the mechanisms of inflammatory responses, including the biology of immune cells, the innate 
immune recognition that initiates the inflammation, and the immunomodulatory effects of PCD following CA. 
Promising therapeutic approaches of targeting inflammatory responses to alleviate brain injury and improve 
neurological outcomes after CA are also reviewed.
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Introduction
Cardiac arrest (CA) represents one of the most devastating medical emergencies and is a leading cause of 
mortality and morbidity in China and worldwide [1]. Based on the 2020 CA Registry to Enhance Survival 
(CARES) registry, the incidence of emergency medical services (EMS)-treated out-of-hospital CA (OHCA) in 
people of any age is 88.8 individuals per 100,000 population [2]. Despite advancements in the “chain of survival” by 
health staff and EMS, as well as increased awareness of cardiopulmonary resuscitation (CPR), just 24.0% of 
patients who have an OHCA survive until hospital admission, and 9.0% survive to hospital discharge [2]. Even 
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if the return of spontaneous circulation (ROSC) is achieved, the post-CA syndrome is associated with a high 
mortality rate after hospitalization [3, 4]. Post-CA syndrome is characterized by hypoxic-ischemic brain injury, 
systemic ischemia-reperfusion injury, myocardial dysfunction, and persistent precipitating pathology [4]. 
Hypoxic-ischemic brain injury after resuscitation is the principal cause of death and poor neurological 
outcomes in the OHCA population [5, 6], taking on the character of delayed neuronal death. Previous studies 
have shown that most neurons lose function over time [4], but the mechanisms are not fully understood. The 
“two-hit” model was proposed to describe the pathophysiology of post-CA brain injury, which is defined by 
primary (ischemic) injury caused by the immediate cessation of cerebral blood flow during CA and secondary 
(reperfusion) injury caused after resuscitation [7]. Secondary injury, in which neuroinflammation has been 
widely recognized as playing an essential role, further amplifies the primary brain injury, causing delayed 
neuronal death and poor neurological outcomes [6].

Neuroinflammation is characterized by multiple pathological processes. Glial cells are activated during 
neuroinflammation, accompanied by the infiltration of peripheral immune cells as well as the release of 
pro-inflammatory mediators, including cytokines and adhesion molecules [8]. Specifically, the activation of 
the innate immune system has been shown to play a critical role in all phases of post-CA brain injury. Innate 
immune cells, such as microglia/macrophages, elicit and release cytotoxic substances [9, 10], which initiate 
inflammatory responses after ischemia [8]. Active innate immune responses and the subsequent release 
of pro-inflammatory mediators activate programmed cell death (PCD). PCD not only is the outcome of the 
cells suffering the inflammatory injury but also fuels the inflammatory responses via pro-inflammatory 
intracellular contents released in lytic types of PCD such as pyroptosis [11] and necroptosis [12], inducing 
a vicious cycle leading to excessive inflammation. Here, existing evidence on the immune and inflammatory 
mechanisms underlying post-CA brain injury are described and emerging pharmacological interventions 
focused on anti-inflammation will also be introduced.

Pathophysiology of post-CA brain injury
Post-CA brain injury occurs in stages. Primary injury is rapidly triggered by cessation of cerebral blood flow 
within minutes to hours after CA, leading to oxygen, glucose, and ATP depletion, causing the dysfunction of 
Na+/K+ adenosine triphosphatase (ATPase), resulting in a massive influx of sodium and water and intracellular 
cytotoxic edema. Loss of plasma membrane potential due to the dysfunction of Na+/K+ ATPase triggers the 
opening of voltage-gated ion channels, causing intracellular calcium overload [6, 7]. During resuscitation, 
the restoration of oxygen oxidative phosphorylation limits ongoing hypoxic damage, but also promotes the 
generation of reactive oxygen species (ROS), which damages DNA, proteins, and lipids, further aggravating 
intracellular damage [6, 13]. Secondary injury after the restoration of cerebral blood flow generally occurs 
over hours to days after resuscitation, microglia/macrophages are activated and circulating leukocytes 
migrate into the central nervous system (CNS), amplifying brain damage through the production of ROS, 
matrix metalloproteinases (MMPs), and cytokines/chemokines, further leading to blood-brain barrier (BBB) 
breakdown [14], brain edema, and neuronal death. Consistent with the course of secondary injury, clinical 
data also showed that brain injury following CA is often devastating beyond 72 h post-arrest, indicating the 
essential role of secondary injury in the pathogenesis of post-CA brain injury [15].

Synopsis of the biology of immune cells after CA
Following the restoration of blood flow, innate and/or adaptive immunity components are activated, and 
neuroinflammatory responses are induced. Microglia, the resident macrophages in the CNS, play an initiative 
role in these inflammatory cascades. Activated microglia further recruit peripheral immune cells into the 
brain, including peripheral myeloid cells and lymphocytes.

Microglia
Microglia, the resident innate immune cells in the brain, are activated rapidly after CA. Activated microglia 
polarize between a classically activated (M1, pro-inflammatory) phenotype or an alternatively activated 
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(M2, anti-inflammatory) phenotype [16–18]. Microglia change dynamically and temporally into different 
phenotypes in different phases of injury, contributing to either tissue damage or repair in various brain 
diseases [19–21]. Pro-inflammatory cytokines and components, including interleukin-1β (IL-1β), IL-6, IL-12, 
MMP-9, and tumor necrosis factor-α (TNF-α), are secreted by activated M1 microglia [22]. M1 microglia 
also release chemokines like C-C motif chemokine ligand 5 (CCL5) [23] and C-X-C motif chemokine ligand 
10 (CXCL10) [24] to recruit peripheral immune cells [25]. Hence, they are deeply involved in cytotoxicity, 
acute inflammatory responses, and BBB permeabilization. M2 microglia were considered to play a beneficial 
role in neuroinflammation, expressing IL-4, IL-10, IL-13, brain-derived neurotrophic factor (BDNF), and 
transforming growth factor-β (TGF-β) and participating in wound healing, anti-inflammatory responses, 
phagocytosis of debris, and extracellular matrix (ECM) protection [25, 26]. In a murine model of CA and 
CPR, the M1 microglia marker, CD16/32, and inducible nitric oxide synthase (iNOS) dramatically elevated 
after CA/CPR in brains [27]. The expression of M2 microglia markers TGF-β, arginase1 (Arg1), and IL-10 also 
increased in the acute phase after CA/CPR [27]. Previous studies demonstrated that activated microglia with 
an M2 phenotype improve neuronal survival and outcomes in a model of CA/CPR [28, 29].

However, emerging evidence has shown that microglia/macrophages act in multivariate responses which 
let us hard to define them as simply “M1” and “M2” [30]. These two rigid activation states are only observed 
in vitro [17]. Recent single-cell transcriptomics data showed that microglia often co-express M1 and M2 
markers [31]. Thus, M1/M2 classification might be an outdated concept that fails to fully address microglia’s 
function [31–33]. Microglia express a highly plastic phenotype and function, displaying multivariate states in 
the CNS [30]. Integrative analyses of single-cell transcriptome and multi-omics data have identified different 
microglial states [34], including disease-associated microglia (DAM) [35], microglial neurodegenerative 
phenotype (MGnD) [36], and proliferative-region-associated microglia (PAM) [37]. In future studies, using as 
many layers of complexity as possible to describe different states of microglia in post-CA brain injury should 
be considered.

Peripheral myeloid cells
Individuals suffering from a systemic inflammatory response after OHCA represent a significant increase of 
pro-inflammatory cytokines in blood [38]. Peripheral myeloid cells are activated by danger/damage-associated 
molecular patterns (DAMPs) and pro-inflammatory cytokines from systemic circulation. Several studies 
have shown that peripheral myeloid cells invade the CNS parenchyma after CA in murine models [39, 40]. 
Chemokines suchCCL2 [41] or CCL5 [23] released by microglia, BBB leakage [39], and DAMPs released 
from injured brain regions may all contribute to the infiltration of peripheral myeloid cells in the brain. 
However, the roles played by peripheral myeloid cells in post-CA brain injury are still indeterminate. 
Recent studies have reported that the crosstalk between peripheral inflammation and neuroinflammation 
in ischemic stroke via triggering receptor expressed on myeloid cells 1 (TREM1), an inflammatory type I 
membrane receptor expressed on myeloid lineage cells, leads to detrimental brain infiltration [42, 43]. In 
experimental models of various diseases, TREM1 magnifies the pro-inflammatory responses by synergizing 
with classical pattern-recognition receptors (PRRs) [44–46]. Clinical data also show that plasma levels of 
TREM1 increase after CA [47], indicating that the peripheral TREM1 expressed by peripheral myeloid cells 
might involve in the pathogenesis of post-CA neuroinflammation, although the underlying mechanisms are 
incompletely understood.

Lymphocytes
Following ROSC, CD4+ and CD8+ T lymphocytes accumulate in the brain [39, 48–50]. In a mouse model of 
CA/CPR, lymphocytes infiltrated the CNS within 3 h after resuscitation and maintained for at least 72 h [48]. 
Most infiltrating lymphocytes are pro-inflammatory CD4+ T cells, producing pro-inflammatory cytokines, 
including TNF-α and interferon-γ (IFN-γ) [48]. Functional T cell deletion via T cell receptor α (TCRα) 
knockout significantly attenuated brain injury following CA/CPR [48]. Lymphocyte biology in post-CA 
neuroinflammation is worthy of further investigation.
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Innate immune recognition ignites neuroinflammation after CA
As the resident innate immune cells in the brain, microglia use multiple PRRs to sense a variety of host-derived 
DAMPs and pathogen-associated molecular patterns (PAMPs) (Figure 1) [51–53]. There is growing evidence 
to indicate that innate immune recognition results in developing or accelerating inflammation in the CNS 
after CA.

Figure 1. Innate immune recognition after CA. The toll-like receptor (TLR) pathway is activated after binding with DAMPs 
[e.g., high mobility group box-1 (HMGB1)], leading to the expression of pro-inflammatory cytokines and nucleotide-binding 
and oligomerization domain (NOD)-like receptor (NLR) family pyrin domain (PYD) containing 3 (NLRP3) via activating nuclear 
factor-κB (NF-κB) signaling [54]. Accompanied by cellular perturbations (e.g., icon flux, mitochondrial damage, lysosomal damage, 
and metabolism), NLRP3, apoptosis-associated speck-like protein (ASC), and pro-caspase-1 assemble to form the NLRP3 
inflammasome. The generation of double-stranded DNA (dsDNA) by DNA damage after an ischemic insult can also activate the 
absent in melanoma 2 (AIM2) inflammasome [55, 56]. Pro-caspase-1 undergoes self-cleavage and becomes its active form. 
Active caspase-1 further activates pro-inflammatory cytokines [57–59]. Active caspase-1 also cleaves gasdermin-D (GSDMD), 
unmasking the N-terminal domain, which forms pores in the plasma membrane, leading to cell swelling and pyroptosis, enabling 
the release of pro-inflammatory cytokines and other intracellular contents that act as DAMPs in the extracellular environment [60]

TLRs signaling
TLRs are members of the toll/IL-1 receptor (TIR) family. To date, 10 human functional TLRs and 13 
murine TLRs have been identified [55, 61]. Microglia express a wide range of TLRs that respond to various 
CNS-damaging insults via PRR-mediated signaling [62, 63]. TLR4 is the first TLR discovered in humans and 
the most studied member of the TLR family [64]. TLR4 activation leads to the expression of cytokines such 
as IL-1β, TNF-α, cyclooxygenase 2 (COX-2), and iNOS via activating NF-κB signaling [65, 66]. A significant 
increase level of HMGB1, a key ignition molecule for TLR4, had been reported in both resuscitated patients 
and animals [54, 67]. HMGB1 is a non-histone DNA-binding protein that localizes at the nucleus [68]. In 
extreme pathogenic, immunoinflammatory, and environmental danger conditions, HMGB1 is released to the 
extracellular milieu and triggers inflammatory responses through binding to TLR4 [69]. Previous studies 
showed that the inhibition of the TLR4 signal restored BBB integrity, downregulated the expression of 
inflammatory cytokines, and protected the brain in models of spontaneously hypertensive [70], intracerebral 
hemorrhage [71], and ischemic stroke [72]. In a CA/CPR model, blocking the HMGB1/TLR4/NF-κB 
pathway with an HMGB1 blocking peptide significantly attenuated dendritic damage and neuronal death 
in the hippocampal CA1 while reducing neuroinflammation [54]. At present, the inhibition of TLR4 can be a 
promising therapeutic strategy for post-CA brain injury.

NLR signaling
NLRs, a subgroup of PRRs located in the cytosolic compartment of cells [73], are classified into four 
subfamilies according to their characteristic N-terminal domains, among them the NLRP family has been 
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identified to play a critical role in innate immune and inflammatory responses and [74], to cope with the 
presence of noxious stimuli in the cytosol, NLRs and other proteins assembled a high-molecular-weight 
multiprotein complex [75, 76]. The most well-characterized inflammasome is the NLRP3 inflammasome. 
NLPR3 is expressed and induced after cerebral ischemia, mainly in microglia [77]. Upon activation, NLRP3 
generally complexes with ASC, the adaptor protein, via PYD-PYD interaction. The caspase recruitment domain 
(CARD) at the C-terminal of ASC further recruited pro-caspase-1, resulting in self-cleavage and activation 
of caspase-1. Consequently, active caspase-1 activates pro-inflammatory cytokines, including IL-1β and 
IL-18 [57–59]. Diverse cellular perturbations trigger NLRP3 activation, including icon flux, mitochondrial 
damage, lysosomal damage, and metabolism [78].

NLRP3 inflammasome activated in the brain after CA [40]. Depending on different causes of CA, NLRP3 
was induced at different time courses after resuscitation. In the asphyxia-induced and electric-induced 
CA model, the protein level of NLRP3 was significantly up-regulated within 6 h after resuscitation in 
microglia [40, 79], while 72 h in potassium-induced CA [80]. It has been suggested that high extracellular K+ 
can block the activation of NLRP3 [81]. Different extracellular K+ levels may be conducive to explaining the 
diversity of NLRP3 biology in different models. Co-immunoprecipitation assay has revealed the interactions 
among NLRP3, ASC, and caspase-1 at 12 h after asphyxia-induced CA, which implied that CA activates the 
assembly of NLRP3 inflammasome [40].

MCC950, a potent and specific NLRP3 inflammasome inhibitor [82], has shown its efficacy in the CA 
murine model. MCC950 treatment attenuated inflammatory responses, suppressing the pro-inflammatory 
cytokine release [40, 80]. The improvement of neurologic function and survival rate was observed after 
MCC950 treatment in both the asphyxia-induced and the potassium-induced models [40, 80]. Interestingly, 
the neuroprotective effect of some neuroprotective therapies is dependent on the inhibition of NLRP3 
inflammasome. Glibenclamide, a sulfonylurea that was generally considered to improve neurological outcomes 
via reducing brain edema in animal and preclinical studies [41], has been recognized that its neuroprotective 
effect is independent on preventing brain edema, while through the inhibition of K+ efflux, which activated 
NLRP3 inflammasome [83]. It emphasizes that exploring the underlying mechanism of NLRP3 inflammasome 
activation may advance our identification of putative targets for intervention after CA.

AIM2-like receptor signaling
AIM2 is a member of the augmenter of liver regeneration (ALR) protein family, characterized by an N-terminal 
PYD [pyrin and hematopoietic expression, IFN-inducible nature, and nuclear localization (HIN) domain 
(PYHIN)] domain and a C-terminal HIN domain [84]. Generally, AIM2 is activated by cytoplasmic dsDNA to 
defend against the infection of DNA viruses and intracellular bacterial pathogens [85], while it can also sense 
self-DNA released from dying cells after CNS injury [55, 56]. Once dsDNA binds to the HIN domain of AIM2, 
the PYD domain can recruit the adapter protein ASC during inflammasome assembly [86]. Like the assembly 
of NLRP3 inflammasome complexes, the AIM2-ASC complex recruits the effector protein, caspase-1, resulting 
in self-cleavage and activating pro-inflammatory cytokines [86].

The messenger RNA (mRNA) and protein level of AIM2 is elevated and synchronizes with the upregulation 
of inflammatory factors in the cortex after CA in a rat model [87]. It indicates that AIM2 inflammasome may 
be involved in the pathogenesis of post-CA brain injury, although there is no direct evidence about AIM2 
inflammasome assembly. Interestingly, compared with NLRP3, AIM2 is mainly expressed in neurons rather 
than microglia [87]. Although the differential expression of AIM2 is associated with sterile inflammatory 
responses in the brain, the roles of AIM2 in post-CA neuroinflammation remain largely unknown.

PCD module inflammatory responses
PCD was generally considered as the end point event of CNS injury. However, PCD also module inflammatory 
responses via various signal pathways. In response to pathogenic, immunoinflammatory, and environmental 
danger, PCD pathways are activated to eliminate the damaged cells, including neurons, which are traditionally 
considered unrenewable. Based on the integrity of the plasma membrane, PCD pathways can be divided into 
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lytic or non-lytic cell death [88]. Lytic types of PCD ultimately result in the rupture of the cell. The typical forms 
of lytic PCD are pyroptosis and necroptosis. Intracellular content released from lytic cells acts as DAMPs in 
the extracellular space. DAMPs trigger inflammatory responses via stimulating PRRs, while non-lytic forms of 
PCD, such as apoptosis, represent the coordinated disintegration of dying cells and are generally considered 
immunologically silent [88]. The complicated interactions between inflammatory responses and PCD make 
investigating the mechanism underlying neuroinflammation more challenging.

Apoptosis
Apoptosis is considered to be a typical, caspase-dependent PCD. Apoptosis can be triggered by extrinsic 
pathways, such as the activation of the death receptor, or intrinsic pathways, such as the B cell lymphoma-2 
(BCL-2)-regulated apoptotic pathway [89]. Consequently, the initiator caspase-8 and 9 were proteolytically 
activated. Then activated caspase-8 and 9 cleave the effector caspase-3 and 7. The effector caspases cleave 
hundreds of cellular proteins, including polyadenosine-diphosphate-ribose polymerase (PARP), leading to 
the fragmentation of DNA and the exposure of phosphatidylserine (PtdSer) on the outer layer of the cell 
membrane of a dying cell [88].

After an ischemia insult induced by CA, apoptotic neuronal death occurs within 24 h [41, 90]. However, the 
pharmacological intervention focused on hindering the apoptosis pathway has failed to improve neurological 
outcomes and neuronal cell death after CA [91].

In the past few years, the clearance of apoptotic cells, also known as efferocytosis, was recognized to play 
an important role in maintaining routine tissue homeostasis [92]. Surface-exposed PtdSer on apoptotic cells 
is recognized by either direct PtdSer receptors, which bind PtdSer directly, or indirect PtdSer receptors that 
cannot engage PtdSer directly but use bridging molecules [for example, milk fat globule epidermal growth 
factor 8 (MFG-E8)] that bind PtdSer (Figure 2) [92]. During acute tissue injury, apoptotic cells accumulate 
beyond the normal rate, leading to the insufficiency of apoptotic cell clearance. Apoptotic cells undergo 
secondary necrosis while failing to be clean at the early stages of death, fueling inflammation by releasing 
intracellular contents [88, 92].

Figure 2. The clearance of apoptotic cells module inflammatory responses after CA. Phagocytes recognize surface-exposed 
PtdSer on apoptotic cells [92]. Then the apoptotic cells are removed, and anti-inflammatory responses are activated. While after 
CA, the number of apoptotic cells increases beyond the normal rate, leading to the insufficiency of apoptotic cell clearance. This 
can lead to secondary necrosis, which results in the release of DAMPs and activating pro-inflammatory responses [88, 92]

After CA, the accumulation of extensive cellular debris and cell corpses conducing to overwhelming 
neuroinflammation and the enlargement of secondary injury. Promoting clearance function toward damaged 
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cells and cellular debris may be indispensable for timely eliminating the source of inflammation. In an 
animal study of CA/CPR, flufenamic acid treatment significantly optimizes the phagocytic capacity of 
microglia/macrophages, accompanied by the reduced accumulation of damaged cells in the brain and better 
outcomes [27]. This suggests that the clearance of apoptotic cells is likely critical in designing apoptotic 
cell-based therapies for post-CA brain injury.

Pyroptosis
Pyroptosis is a lytic form of cell death induced by the activation of inflammasome [40, 93]. Pyroptosis is 
inherently inflammatory due to the release of pro-inflammatory intracellular contents such as IL-1β and 
IL-18 [11]. As previously mentioned, inflammasome assembling results in pro-caspase-1 self-cleavage and 
activation [73, 74]. Activated caspase-1 cleaves GSDMD, the terminal executioner of pyroptosis, into an 
N-terminal and a C-terminal fragment. The N-terminal GSDMD fragments then oligomerize in the plasma 
membrane, leading to rapid plasma membrane rupture. Caspase-11 in murine and caspase-4 and 5 in humans 
can also cleave GSDMD and activate pyroptosis [87].

The increased protein levels of cleaved caspase-1 and cleaved GSDMD were reported in the brain after 
resuscitation, while no significant change in the protein levels of cleaved caspase-11 [40]. The assembly of 
NLRP3 inflammasome was observed at 12 h after CA through co-immunoprecipitation. NLRP3 and caspase-1 
were mainly co-localized in microglia instead of other types of cells after CA [40]. Inhibiting activated 
caspase-1 by acetyl-tyrosyl-valyl- alanyl-aspartyl-chloromethylketone (Ac-YVAD-cmk) or NLRP3 by MCC950 
prevents microglial pyroptosis and neuroinflammation and ameliorates neurological injury after CA [40]. 
These findings suggest that microglia pyroptosis aggravates sterile inflammation after CA in the brain.

Necroptosis
Necroptosis is a lytic, inherently inflammatory, caspase-independent PCD. Necroptosis can be induced by 
multiple innate immune signaling pathways, including death receptors, Z-DNA-binding protein 1 (ZBP1), 
and TLRs [94]. TNF receptor activation is the most well-recognized type of programmed necrosis [94]. Once 
the necroptosis pathway is activated, the receptor-interacting protein (RIP) homotypic interaction motif 
(RHIM)-containing proteins, including RIP kinase 1 (RIPK1), TIR-domain-containing adapter-inducing 
IFN-β (TRIF), and ZBP1, form functional amyloid with RIPK3, leading to the oligomerization, 
autophosphorylation, and activation of RIPK3. Consequently, phosphor-RIPK3 phosphorylates the 
pseudokinase domain of mixed lineage kinase domain-like protein (MLKL). Phosphor-MLKL oligomerize and 
is trafficked to the plasma membrane, resulting in loss of membrane integrity [94, 95], and releasing DAMPs 
into the cellular surroundings.

Studies have reported necroptosis occurs in the brain after CA [96–98]. In a rat model, the expressions 
of RIPK1, RIPK3, and phosphor-MLKL proteins were up-regulated after 24 h of resuscitation [96]. In the 
swine model of CA, the phosphorylated MLKL expression level in brain tissues increases significantly [97]. 
Interestingly, targeted temperature management (TTM), the only therapy that has shown a profit in clinical 
trials [98], inhibits phosphorylated MLKL expression [97], indicating its multiple targets protectivity.

Ferroptosis
Some other types of PCD pathways also involve in neuroinflammation after CA. Ferroptosis, an iron-dependent 
cell death characterized by accumulation of free iron, lipid peroxidation, and plasma membrane 
damage [99], occurs in the brain after CA. Ferroptosis-related proteins [e.g., glutathione peroxidase 4 (GPX4) 
and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4)] increased after resuscitation [100], 
accompanied by elevated ROS production [101]. The inhibition of ferroptosis via baicalein treatment 
relieved brain injury after ROSC [101]. Ferroptosis causes the release of DAMPs, which alert immune cells [99]. 
As the research on the involvement of ferroptosis in the inflammatory response after resuscitation is still 
insufficient, more evidence is needed to prove the link between ferroptosis and post-CA neuroinflammation.
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Anti-inflammatory strategies for post-CA brain injury: preclinical studies 
and clinical translation
At present times, some developing therapies that prevent excessive inflammatory responses after CA 
emerged, including glibenclamide, minocycline, MCC950, and propofol.

Glibenclamide
Glibenclamide treatment is a potential pharmacological therapy that successfully achieved improved 
functional outcomes after CA in preclinical studies [102–104]. Glibenclamide regulates microglia activation 
and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling [102], improving 
early electrophysiologic recovery, coma recovery, arousal, and brainstem function after CA with decreased 
number of ischemic neurons [103]. Emerging evidence showed that glibenclamide directly prevents 
neuroinflammation by inhibition of K+ efflux which activates the NLRP3 inflammasome [81]. The comparable 
efficacy between glibenclamide treatment and TTM alone has been reported, suggesting that glibenclamide 
treatment is an alternative approach for post-CA brain injury [41, 104]. When given along with TTM, 
glibenclamide treatment substantially attenuates histological injury [41]. These preclinical results suggest 
that glibenclamide treatment can be a well-promising pharmacological therapy, and further exploration 
is needed.

Minocycline
Minocycline, a broad-spectrum tetracycline family antibiotic, is highly lipophilic with excellent penetration 
into cerebral tissues [105, 106]. It selectively inhibits activated microglia polarization to a pro-inflammatory 
(M1) state [107] and exerts anti-inflammatory functions. The preclinical studies show that even low doses of 
minocycline have significant anti-inflammatory effects [108], but the treatment time is important because of 
the nature of delayed secondary neurodegeneration and neuroinflammation nature. Only early minocycline 
administration shows efficacy in stroke models [107–109]. The efficacy of minocycline in post-CA brain 
injury remains controversial. In rat models of CA/CPR, minocycline fails to improve neurological and 
histological outcomes [110, 111]. However, minocycline attenuates microglial response in a mouse model 
and reduces neuronal death after CA [112]. Further experiments are required to clarify the safety and efficacy 
of minocycline treatment after CA.

MCC950
MCC950, a potent and selective NLRP3 inflammasome inhibitor targeting NLRP3 [80], significantly 
prevents microglial apoptosis, alleviating brain damage after CA [40]. In mouse models of CA/CPR, 
MCC950 treatment improves neuro-functional recovery (or neurological deficits score) and the survival 
rate [78, 113]. It also decreases the plasma concentrations of IL-1β (by suppressing IL-1β mRNA levels) [113] 
and neuron-specific enolase [113].

However, a phase II clinical trial for rheumatoid arthritis shows a concerning metabolism and toxicity 
of MCC950, which increases serum liver enzyme levels [114], while no evidence was found in vitro. MCC950 
has more therapeutic results in animal models of autoimmune diseases, cardiovascular diseases, metabolic 
diseases, and other diseases [114], but its functions in brain injury after CA still have potential. Inhibition of 
NLRP3 inflammasome with MCC950 could be a promising therapy to improve outcomes after CA/CPR.

Propofol
Evidence from in vitro [115] and in vivo [116] studies indicate that propofol can modulate microglial activation 
and has potential anti-inflammatory functions. Propofol induces the anti-inflammatory treatment by 
suppressing microglial activation after CA and TNF-α and IL-1β release, likely via the purinergic ligand-gated 
ion channel 7 receptor (P2X7R)/phosphor-p38 (p-p38) pathway [117]. Another study shows propofol 
might reduce microglia activation and neurotoxicity by inhibiting extracellular vesicle release [118]. These 
shreds of evidence suggest that propofol may be a new treatment for neuroinflammation after CA.
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Conclusions
In summary, significant progress has been made in understanding the inflammatory responses in the 
CNS after CA. Recent work [19, 38–41] has begun to clarify the complex roles of different immune cells in 
neuroinflammation, while the crosstalk between immune cells and nonimmune cells, neuroinflammation, 
and peripheral inflammation remains to be determined. Regarding the immunomodulatory effects of different 
PCD pathways, there are still several unresolved questions, such as how innate immune recognition interacts 
with PCD pathways, how PCD pathways affect the prognosis of post-CA brain injury, and how different immune 
cell subpopulations sense PCD and then amplify or attenuate the subsequent inflammatory responses. The 
investigation of associations among immune cells, innate immune recognition, and PCD in neuroinflammation 
after CA will be helpful in applying the theoretical framework to the diagnosis and therapy.
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