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Abstract
Despite decades of intensive research, effective treatment and prevention strategies for neurodegenerative 
diseases (NDDs) remain elusive. This review focuses on Alzheimer’s and Parkinson’s diseases and acquired 
epilepsy suggesting that in their early phase, these progressive pathologies share common or interacting 
molecular pathways. Indeed, oxidative stress associated with disrupted glucose metabolism is the expected 
end state of most, if not all, risk factors preceding the onset of major NDDs. This review proposes that the 
initial oxidative stress in the brain resulting specifically from the hyperactivation of nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase (NOX) causes a decline in glucose utilization and is the primary 
initiating factor of major NDDs. The existing clinical and experimental evidence points to NOX as the 
primary initiating mechanism shared within the major NDDs. During early oxidative stress, NOX activation 
is triggered in variable brain cells via multiple pathways, from beta-amyloid to alpha-synuclein, fibrin to 
glutamate and seizures. Therefore, the treatment strategy should have targeted the activation of NOX, 
wouldn’t there be a lack of clinically approved selective NOX antagonists? On the other hand, there are 
promising metabolism-altering approaches via dietary means able to switch energy intake from glucose 
to ketones, which influences both oxidative stress and glucose utilization and could ameliorate disease 
progression. The regimen of time-restricted eating appears to be the most feasible, nutritious, and palatable 
one providing the essential benefits of a ketogenic diet without adverse effects.
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Neurodegenerative diseases
Neurodegenerative diseases (NDDs) represent the exceptional therapeutic challenge of our time. Despite 
decades of intensive research, effective treatment and prevention strategies remain elusive. Understanding 
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the primary initiating factors of sporadic NDDs is crucial in searching for a cure. While major NDDs vary 
greatly in affected brain areas and etiology, they share one common characteristic: all are characterized 
by energy (glucose) hypometabolism and oxidative stress. Numerous clinical and animal model studies 
have shown brain hypometabolism associated with oxidative stress to be an early (in some cases, the 
earliest) biomarker for most NDDs [1–4]. It is precisely this pathological combination that is likely the 
main initiating cause of the subsequent disease-associated detrimental cascades, and stopping it could 
finally prove to be an effective preventative strategy. The critical question here is, what is the exact 
trigger and source of this early pathology? This review proposes that the initiating oxidative stress 
(iOS) in the brain resulting specifically from the hyperactivation of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase (NOX) is the primary initiating factor of major NDDs [3, 5–7].

Risk factors for NDDs
The risk factors for most NDDs overlap and lead to oxidative stress and energy deficiency [8–10]. Analysis 
of the preceding disease determinants reveals that disrupted glucose metabolism associated with oxidative 
stress and neuroinflammation is the expected end state of most, if not all, risk factors before the NDDs 
initiation [3]. As the result of analogous risk factors [8], major sporadic NDDs reveal similar detrimental 
hallmarks in the early stages, suggesting that these pathologies share common pathways initially. It is 
reasonable to propose therefore that uncovering the primary cause of these abnormalities might give a clue 
to efficient disease prevention.

Glucose hypometabolism
Normally, glucose is the primary fuel source in brain cells and the major substrate for endogenous antioxidant 
defense systems [11]. The underlying cause of glucose hypometabolism has been unclear until recently. 
Accumulating evidence renders oxidative stress a primary reason for glycolysis inhibition. Indeed, oxidative 
stress, which is defined as an imbalance between the cellular production of reactive oxygen species (ROS) and 
the cellular antioxidant system’s ability to neutralize them readily, may cause deleterious modifications as it 
can change DNA structure, resulting in modification of proteins and lipids, activation of several stress-induced 
transcription factors, and production of proinflammatory and anti-inflammatory cytokines [12–14]. In 
particular, it is known that ROS can suppress glycolysis by inhibiting multiple glycolytic enzymes, including 
pyruvate kinase, phosphofructokinase, and glyceraldehyde-3-phosphate dehydrogenase [15–17]. Notably, 
methylglyoxal is a component of glycolytic reactions [18, 19] and may be cytotoxic due to its ability to 
generate advanced glycation end products (AGEs) which increase oxidative stress and have been implicated 
in stroke, diabetes, and NDDs such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) [20–25].

Oxidative stress associated with deficient glucose metabolism may trigger acquired epilepsy, sporadic AD 
and PD [3]. Butterfield and Halliwell [16] presumed that beta-amyloid 42 (Aβ42) oligomer-induced oxidative 
stress impairs glucose metabolism ultimately causing mild cognitive impairment (MCI) and AD. Our animal 
experiments showed that: 1) exogenous hydrogen peroxide (H2O2) inhibits glucose consumption [26]; 
2) oxidative stress triggers seizures, while its prevention results in attenuation of epileptiform activity in 
vivo [27]; 3) Aβ1-42-induced oxidative stress causes brain glucose hypometabolism and network dysfunction [7].

ROS overproduction
Strong experimental evidence indicates a significant role of oxidative stress in the initiation of glucose 
hypometabolism. The essential question is the origin of this oxidative stress. Indeed, if ROS overproduction is 
due to mitochondrial dysfunction, as often postulated in the literature, prevention of ROS generation would 
be highly problematic. At least 11 sites of ROS production have been identified in mitochondria [28, 29]. 
Though it was reasonably proposed that oxidative damage in neurodegeneration should be prevented via 
the direct inhibition of ROS production from specific sources, rather than via scavengers [30], such a goal in 
mitochondria is very tough to reach. In support of this notion, mitochondrially targeted antioxidants failed 
in clinical trials [1, 30–37]. We also demonstrated in brain slices that potent exogenous antioxidants failed 
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to impede fast ROS release during network activity [26]. Notwithstanding, accumulating evidence indicates 
the major role of NOX activity in iOS during NDD onset.

Mitochondrial dysfunction
It is very important to identify the principal source of oxidative stress in the onset of disease and find out 
whether mitochondrial dysfunction parallels the decrease in glucose consumption, or whether the glycolysis 
impairment induced by some specific source of oxidative stress precedes mitochondrial dysfunction. It is 
generally accepted that under physiological conditions mitochondria are the major source of ROS production 
(up to 90%) in the brain cells [38, 39], which imposed the conclusion of mitochondria-biased oxidative stress 
in many reports. However, although the brain is presumed to have a weak antioxidant defense [36, 40–42], 
this conclusion is not valid for mitochondria which possess a highly efficient system for antioxidant defense 
(consisting of several detoxifying enzymes such as glutathione, catalase, and others) [43–45], which normally 
neutralizes ROS as soon as they are generated. ROS are produced at various sites in mitochondria. Still, most 
of them are generated as by-products [superoxide anion (O2

–)] of the electron transport chain during the 
oxidative phosphorylation process following the dismutation of O2

– to H2O2 by copper and zinc superoxide 
dismutases in the intermembrane space and manganese superoxide dismutase in the matrix [30, 46, 47]. 
H2O2 removal can be two to three times faster than H2O2 production in rodent brain mitochondria [44, 45]. 
Therefore, the physiological emission of ROS from mitochondria is negligible considering oxidative stress [44], 
while may implement a signaling function [48, 49]. Moreover, due to its powerful scavenging potentials, 
mitochondria can neutralize penetrating cytoplasmic ROS and serve as their sink [28, 38, 44].

During pathology onset, deteriorated glycolysis would eventually lead to mitochondrial impairment, 
overproduction of ROS, and an increase in their emission to the cytoplasm in the subsequent stages of the 
disease, as has been shown in multiple studies [31, 34, 41, 50]. In addition, shifting the redox state balance 
towards oxidative stress may impair several mitochondrial proteins leading to dysfunction in the production of 
ATP and energy starvation [30, 47]. Indeed, it is generally accepted that the primary reason for mitochondrial 
dysfunction during NDDs is oxidative stress. It is highly unlikely, however, that the origin of such oxidative 
stress is mitochondria themself due to their potent antioxidant protection and high intrinsic resistance 
to oxidative stress [28, 51, 52]. More likely is the involvement of extra-mitochondrial ROS accumulation 
via the activity of other sources, e.g., NOX. This iOS may lead to damage/dysfunction of mitochondria, 
but its primary target would be cytoplasmic processes such as glycolysis.

Mitochondrial dysfunction occurs in all significant sporadic NDDs [53, 54], however, it is currently unknown 
whether oxidative mitochondrial damage occurs early in disease progression or is caused by secondary 
manifestations of the disease pathophysiology. Many authors agree that reduced energy metabolism and 
oxidative damage are at the center of NDD pathogenesis [1–4, 13, 55, 56]. Interestingly, although impaired 
glucose metabolism is one of the earliest features of the AD brain, the previous studies reported that early in 
AD, the cerebral metabolic rate of oxygen was not altered or was changed disproportionally to the prominent 
decrease in glucose utilization [57–59]. It was hypothesized that unaltered oxygen utilization and normal carbon 
dioxide (CO2) production may indicate undisturbed substrate oxidation in mitochondria [57]. Moreover, other 
early studies that used the arterio-venous difference method showed that brain ketone uptake is still normal 
in moderately advanced AD [60, 61], while ketone catabolism is entirely mitochondrial. Recent studies using 
positron emission tomography (PET) ketone tracer, carbon-11-labeled acetoacetate (11C-acetoacetate), reported 
that brain metabolism of ketones is unchanged in MCI and early AD [57, 62–66] supporting the previous 
assumption that oxidative phosphorylation may still be normal in the AD onset. This suggests that brain 
hypometabolism in prodromal AD may be specific to glucose and the primary site of metabolic abnormalities 
is glycolysis [63] but does not include dysfunctional mitochondrial oxidative phosphorylation. Indeed, it 
is highly problematic to explain the normal brain ketone metabolism unless suggesting that the enzymes 
of mitochondrial oxidative phosphorylation continue to function relatively normally, at least early in AD.

In animal experiments, mitochondria were reported not to be the main source of ROS overproduction 
in AD models [30, 52] and during seizure activity [67, 68]. We also did not observe the change in oxygen 
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consumption either during epileptiform network hyperactivity [26] or under the application of Aβ1-42 [7, 69] 
suggesting maintained mitochondrial functioning, while a significant reduction in glucose utilization was 
detected in all cases.

Finally, supporting the proposition of minor mitochondria contribution to the iOS triggering major 
central nervous system diseases, mitochondrially targeted antioxidant therapies have been tested 
in clinical trials but failed to reveal evident benefits [1, 30–37].

Contribution of NOX to iOS
NOXs have been known for a long time to be responsible for the respiratory burst in phagocytes [70]. This 
unique enzyme family has the only biological function of ROS generation. The extensive expression of NOX 
isoforms has been discovered rather recently in a variety of brain cells [71] with NOX2 and NOX4 being the 
most prominent isoforms detected in neurons, microglia, and astrocytes [72, 73].

NOXs are multi-subunit enzymes, comprising membrane subunits and cytosolic subunits. Under the resting 
condition, NOX is normally dormant and the cytosolic components remain dispersed in the cytosol. Still, upon 
activation, which requires specific agonists, e.g., in neurons, NOX activation requires N-methyl-D-aspartate 
receptor stimulation [74], cytosolic components translocate to the membrane and assemble to the functioning 
complex [75]. Interestingly, NOX-generated ROS appeared as a major source of oxidative stress in NDDs, including 
AD, PD, and amyotrophic lateral sclerosis (ALS) [5, 76–78], as well as in acquired epilepsy and stroke [68, 79–81].

In animal experiments, we demonstrated that spontaneous seizure-like events in brain slices were 
initiated by NOX activation, while NOX inhibition prevented their generation [27]. Moreover, inhibition of 
NOX in vivo suppressed epileptiform activity in several seizure models [27]. In addition, Aβ1-42 was found to be 
an agonist of NOX [5, 82, 83] and we demonstrated both in slices and in vivo that Aβ-NOX-induced oxidative 
stress resulted in prominent glucose hypometabolism [7, 84]. Importantly, recent studies suggested 
alpha-synuclein-induced activation of NOX [83]. Several recent reviews summarized current progress 
regarding the crucial role of NOX enzymes in NDDs like PD, AD, Huntington’s disease, multiple sclerosis, and 
ALS, and in acute neurological disorders such as stroke, spinal cord injury, traumatic brain injury, and related 
cerebrovascular diseases [5, 73, 76, 83, 85].

How to counteract iOS induced by NOX in humans
The activated NOXs generate superoxide in phagocytes providing a major role in the human immune 
response [70]. This fact justifies the obvious conclusion that non-selective inhibition of NOXs is not a suitable 
option in developing NOX-targeting treatment. Therefore, only a selective inhibition of NOX family members 
may be considered to avoid harmful side effects. Targeting NOX activity without any off-target effects was 
recently impossible because of the lack of isoform-specific inhibitors. About thirty NOX inhibitors have 
been analyzed in recent comprehensive reviews [6, 86, 87], but only a few selective antagonists have been 
synthesized, specifically for NOX2 and NOX4 isoforms, at present, and only one (GKT137831, a specific 
inhibitor of NOX1 and NOX4) is in human clinical trials (phase 2) for pulmonary fibrosis and cirrhosis [6]. 
Several other promising inhibitors have been recently developed, such as NOS31 for NOX1, CPP11G/CPP11H 
and GSK2795039 for NOX2, and GLX7013114 for NOX4. Altogether, as NOX isoforms are well identified 
and studied, the elaboration of efficient selective inhibitors is hopefully a question of the nearest future.

Perspective
Therefore, the disorders mentioned above differ markedly in their etiology but they share common 
pathologies in brain function—oxidative stress and glucose hypometabolism, which principally define 
the disease onset and pathogenesis. This knowledge provides a potential opportunity to elaborate on a 
treatment counteracting oxidative stress and glucose hypometabolism and thus be efficient in curing/
preventing the diseases. Unfortunately, at present, there is a lack of clinically available pharmaceuticals able 
to counteract the disease-initiating pathologies. On the other hand, lifestyle interventions have emerged in the 
spotlight and an increasing body of evidence suggests that dietary means can influence pathophysiological 
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features of NDDs and therefore could alter the course of disease neurological conditions. To tackle this 
problem, various nutrition interventions have been suggested including dietary supplements and dietary 
restrictions. Former regiments supposed the intake of specific nutrients, while the latter restricted particular 
nutrient(s) (e.g., carbohydrates) or time-restricted eating patterns, which can result in marked long-term 
changes in brain metabolism and functions such as neurogenesis and synaptic plasticity, oxidative stress 
and inflammation or epigenetic regulations as well as gut microbiota changes [9, 88–93].

Based on the assumption that the efficient diet has to counteract both brain oxidative stress and glucose 
hypometabolism, which presumably trigger the onset of NDDs, the only available strategy which satisfies these 
requirements is based upon a metabolic shifting from carbohydrates to fat utilization resulting in ketosis and 
a substantial increase of ketones level in the blood. The classical example of this approach is the ketogenic diet 
(KD), the only widely clinically accepted metabolic treatment for epilepsy [94]. The KD provides an alternative 
fuel substrate for mitochondria and thus supports brain energy production especially when glucose metabolism 
is impaired as in the case of NDDs. The clinical KD incorporates a 4:1 ratio of fat to protein plus carbohydrate 
that results in an increase in ketone blood level from < 100 μmol/L (typically observed in diets with unrestricted 
carbohydrate utilization) up to > 3 mmol/L [95]. In the brain, ketones bypass the glycolytic pathway directly 
entering mitochondria, thus constituting an even more efficient energy source than glucose and promoting 
mitochondrial oxidative metabolism [96–98]. Importantly, as mentioned above, the brain mitochondrial 
metabolism of ketones is unchanged in the prodromal stage of AD [57, 62–66] despite significantly impaired 
glucose utilization, indicating that ketones are able indeed to substitute glucose in energy production at least 
early in the disease. In addition, to avoid oxidative stress, brain cells possess a cytoplasmic antioxidant system 
utilizing the glucose pentose-phosphate-pathway [99] where enzymes of the glutathione system are used for the 
neutralization of H2O2 [99–101]. The cellular redox state is also controlled by specific gene transcription factors 
[e.g., nuclear factor erythroid 2-related factor 2 (Nrf2)] which regulate more than 200 genes including those 
containing an antioxidant response element (ARE) in their promoter and activation of the Nrf2-ARE signaling 
enhances the expression of enzymes involved in antioxidant defense in pentose-phosphate-pathway [102]. 
However, during acute oxidative stress, the glutathione system activation occurs in seconds while the onset of 
transcriptional responses takes hours [99, 103]. The pentose-phosphate-pathway has a large reserve capacity 
for upregulation and when amplified by oxidative stress it may reach up to 30% of glucose utilization compared 
to 3–7% in physiological conditions [99, 100, 103]. Therefore, the efficiency of this cytoplasmic antioxidant 
system depends directly on glucose availability and the glucose-sparing effect of the KD may be crucial for the 
operation of cellular antioxidant defense during NDDs [11, 84]. Moreover, it has been reported that KD induces 
initially mild oxidative stress and is related to the systemic activation of the Nrf2 pathway [95, 104].

The clinical KD settings are presumably the most efficient, however, due to severe nutrition restrictions, 
the diet possesses long-term adverse effects such as uric acidemia, hypocitraturia, hypercalciuria, aciduria, 
decreased bone mineral density, anemia, neuropathy, and also includes frequent gastrointestinal disturbances 
such as constipation, abdominal pain, emesis, and gastroesophageal reflux disease [98]. In addition, clinical 
studies show that maintaining the KD can be challenging for adult patients due to poor tolerance and lack of 
motivation [92]. Therefore, a reasonable diet for adults has to integrate the main benefits of the KD but be free of 
its disturbing pitfalls.

It is worth mentioning a popular dietary regimen, caloric restriction, which reduces food intake without 
incurring malnutrition. In fact, both the KD and caloric restriction diets are thought to act primarily through 
the same mechanisms as both diets result in an overall reduction in caloric intake and an increased level of 
circulating ketone bodies [93, 105, 106]. Indeed, the caloric restriction regimen represents a specific case 
of intermittent fasting, which is discussed below. Moreover, the diet characteristics largely intertwine, e.g., 
intermittent fasting results in intermittent ketosis, known for its appetite suppression, which results in turn 
in voluntary calorie reduction. Meanwhile, intermittent fasting has more metabolic benefits than permanent 
calorie-restriction [93, 106].
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Fasting: the first known treatment of neurological diseases
The ability to survive the seasonal and diurnal periods of fasting is evolutionarily acquired and thus is supported 
by appropriate homeostatic mechanisms. As a result, an altered metabolic state occurs—ketosis. Fasting 
as a treatment for epilepsy was first reported in 1910 [107]. In both animals and humans, fasting prevents 
and treats metabolic syndrome, a major risk factor for many neurological diseases. Fasting improves 
cognition, stalls age-related cognitive decline, slows neurodegeneration, reduces brain damage, enhances 
recovery after stroke, and mitigates the pathological and clinical features of epilepsy and multiple sclerosis 
in animal models [108]. The КD appeared as a metabolic imitation of fasting [109] (which was considered 
hard to implement) since both conditions induce ketosis [92]. However, adherence to the KD has 
also often been reported as difficult with noticeable side effects [98].

The neuro- and metabo-protective effects of ketogenic regimens are of great practical importance given 
the epidemics of metabolic and NDDs, particularly, in protecting the brain from hypometabolism [9, 110, 111]. 
On the other hand, there is recent evidence of a number of exclusive functions of glucose that must be kept in 
mind in the regiments seriously restricting carbohydrate content: the synthesis of glycogen and nucleotides, 
antioxidant protection, rapid generation of ATP, and the production of pyruvate [11].

Long-term fasting (from many days to weeks) is hard to implement and is not free of severe adverse 
effects [110]. A convenient form of the fast regimen, intermittent fasting, includes eating patterns in which 
individuals follow recurrently the prolonged time periods (16–48 h) with no food intake, while normal 
food intake between these periods. Intermittent fasting evokes evolutionarily conserved, adaptive cellular 
responses that are integrated into the body in a manner that improves glucose management, increases 
stress resistance, and suppresses inflammation [106]. Several clinical trials are underway to test the effects, 
efficacy, and safety of intermittent fasting in patients with NDDs [112, 113]. Indeed, the neuroprotective 
effects of intermittent fasting observed in preclinical studies and clinical trials suggest that this regimen 
has broad-spectrum benefits for many health conditions and could represent a promising treatment 
option, especially in the earliest stages of the disease [106, 114].

As mentioned above, in the fed state in humans, the blood levels of ketone bodies are low but rise 
within 8–12 h after the onset of fasting, reaching levels above 2 mmol/L by 24 h [115, 116]. During the 
intermittent fasting regimen, repeated exposure to fasting periods prompts cells to the lasting adaptive 
stress responses resulting in increased antioxidant defense and down-regulation of inflammation [106]. 
Interestingly, following the administration of individuals with “ketogenic drinks” containing medium-chain 
triglycerides, the blood concentration of ketones increased rapidly but returned to the low basal level during a 
few hours [117, 118]. An analogous situation occurred at one-week intermittent fasting when blood ketone 
levels markedly increased during two fasting days but the next day returned back to the baseline [119]. In 
contrast, during the recurrent intermittent fasting procedure, the baseline ketone levels were significantly 
increased [120, 121] suggesting that fundamental adaptive metabolic systemic alterations occurred including 
ketone production in the liver. This is in support of the proposition reported previously [106] that “periodic 
flipping of the metabolic switch not only provides the ketones that are necessary to fuel cells during the 
fasting period but also elicits highly orchestrated systemic and cellular responses that carry over into the 
fed state to bolster mental and physical performance, as well as disease resistance”.

Time-restricted eating is the most convenient protocol
Regimens of intermittent fasting include 16–48 h periods with no food intake repeatedly [122], however, it 
has been noted that some people are unable or unwilling to adhere to a scheme with infrequent but longer 
fasting periods [110, 123] and it is not recommended to AD and PD patients with a risk of malnutrition [111]. 
Therefore, a type of intermittent fasting, time-restricted eating (or feeding in animal experiments), which 
leads to the benefits of total fasting without obligatory reduction of nutrient intake appears to be the most 
convenient protocol [124].

In humans, the timing of meals is adjusted to the light-darkness cycle rather than to genetically 
determined metabolic cycles, thus the prolongation of the light phase due to artificial illumination makes the 
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calorie-restriction protocols challenging to comply with [125]. In experiments with free-running circadian 
rhythms in isolated environments, the sleep-wake cycle governed the meal timing, and the duration 
of both increased due to the exclusion of culturally determined [113, 126].

Time-restricted eating is a dietary regime that gathers all calorie intake independent from their 
macronutrient composition into 6–10 h during the active phase of the day [127]. Excluding the use of 
nutritional supplements, this is the only feasible way of compensation for nutritional deficiencies, unavoidable 
in any restrictive regime [127]. Intermittent ketosis protocol allows one balanced meal daily, complemented 
by 1–2 ketogenic meals [128]. Intermittent fasting protocols include alternate-day fasting and fasting for 
two days per week [129]. Time-restricted eating achieved by consistently reducing daily meal counts is more 
feasible than intermittent fasting. Time-restricted eating improves glucose control and insulin sensitivity 
and reduces oxidative stress [130–132]. It includes a direct antiepileptic calorie-restriction effect since 
it results in a voluntary reduction in energy intake and exerts long-term neuroprotective effects [124, 133].

There is an additional option to make the time-restricted eating regimen more feasible and palatable. 
Indeed, both chronic and periodic carbohydrate restriction in high-fat diets metabolically wise mimics 
fasting [134–140]. By the same token, a high-fat/low-carbohydrate breakfast mimics the metabolic features of 
time-restricted eating. Indeed, eating a very high-fat breakfast improved cognition [106, 141–144] supposedly 
by prolonging the overnight fast effects since Freemantle et al. [145] showed that a ketogenic breakfast 
does not interrupt overnight ketosis. Consequently, both the “ham and egg” ketogenic breakfast [146] and 
skipping breakfast results in a metabolic condition that can be termed intermittent ketosis. In terms of meal 
timing, skipping breakfast represents a type of intermittent fasting [138, 147, 148] leading to intermittent 
ketosis known for its appetite suppression effect [149] resulting in voluntary calorie reduction (e.g., [150]). 
Breakfast skipping and exclusion of late eating results in a reduction of voluntary calorie intake [151, 152], 
which is important since calorie-restriction has been shown to have profound metabolic benefits including 
neuroprotective, anti-ageing, and anti-inflammatory [110, 153]. Furthermore, Mattson et al. [154] suggested 
intermittent fasting has more metabolic benefits than permanent calorie-restriction. Thus, skipping breakfast 
may be more beneficial than traditional restrictive dieting.

Various supplementary nutrients (unsaturated fatty acids, complex sugars, fibers, etc.) positively 
affecting brain functions have been described in the literature (see e.g., [88, 91, 155]). We would like 
to mention pyruvate specifically since it’s a unique array of neuroprotective properties and its ability 
to restore substantially glucose metabolism impaired by oxidative stress [26, 84, 156].

Conclusions
Fasting is the first known treatment of NDDs in history. The neurodegenerative processes trigger the four 
major pathologies: 1) oxidative stress; 2) hypometabolism of glucose leading to energy deficiency; 3) 
neuroinflammation; and 4) insulin resistance. Intermittent ketosis and its metabolic equivalents are efficient 
in preventing all of them excluding impaired glycolysis. Supplementation by oral pyruvate can be the missing part 
of the equation. Nowadays ketosis is considered a metabolic analogue of fasting [157, 158], it is well-known 
that the ketogenic regimen can reproduce the effects of fasting, and that ketogenic meals mimic the fasting 
period in time-restricted protocols. On the other hand, both chronic and periodic carbohydrate restrictions also 
produce effects characteristic of fasting. This unifying phenomenon can be termed “guided metabolic timing”. 
It can include skipping and eating ketogenic breakfast since they both result in intermittent ketosis. These 
regiments cause a reduction of voluntary calorie intake thus they are metabolically favorable. Thus, pyruvate 
and intermittent ketosis combined might counteract all four major neurodegenerative pathologies and provide 
a core for efficient disease treatment.
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