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Abstract
Aim: This study investigated the effect of brain-derived neurotrophic factor (BDNF) Val66Met 
polymorphism on post-stroke outcomes, including quality of life, physical fitness, cognitive function, 
depression, and overall disability.
Methods: The difference between Met carriers and non-Met carriers was analyzed for the entire sample 
and in pair-matched analysis, using age, sex, time since stroke, and race.
Results: We evaluated 89 stroke participants (mean age, 57 ± 10 years; 58% male; 54% White, and 49% 
Hispanic). Twelve participants (13%) had one copy of the BDNF Val66Met (Val/Met heterozygotes) and 
none had two copies (Met/Met homozygotes). Comparing Met (n = 12) and non-Met carriers (n = 77), no 
significant differences were observed in demographics or clinical characteristics, including motor or 
cognitive outcomes. In pair-matched analysis, a significant difference was observed for the Center for 
Epidemiological Studies Depression (CES-D) scale, where Met carriers had significantly greater CES-D 
scores than non-Met carriers (24 ± 16 vs. 9 ± 9, p = 0.011). Regardless of the chosen CES-D cut-off scores (≥ 
16 vs. ≥ 20), more cases of depressive symptomatology were observed among those with the BDNF 
Val66Met polymorphism than those without it (p values < 0.05).
Conclusions: The BDNF Val66Met polymorphism may be associated with post-stroke depression but not 
motor or cognitive recovery.
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Introduction
Stroke represents the leading cause of long-term disability in the United States [1]. In the last few decades, 
our understanding of stroke pathophysiology, treatments, and long-term survival has profoundly improved, 
but stroke outcomes may still be less than optimal. Up to two-thirds of stroke survivors have residual 
physical or cognitive disabilities that can prevent them from living independently and vastly affect their 
quality of life [2]. Thus, a primary concern immediately after a stroke event is the evaluation of the 
individual’s prospect for functional recovery. The capacity to recover after stroke, however, can be highly 
variable, in part due to different stroke subtypes and their impact on the distribution of risk factors, stroke 
severity, and outcomes. All of this highlights the need to elucidate the responsible mechanisms and develop 
more effective and individualized rehabilitation strategies for stroke treatment [3].

Recent findings have indicated an underlying deleterious effect of a brain-derived neurotrophic factor 
(BDNF) genetic polymorphism on outcomes and prognosis after stroke [4–6]. BDNF itself is the most 
abundant neurotropin in the nervous system, involved in neurogenesis and neuroplasticity of the brain [7]. 
Single-nucleotide polymorphisms (SNPs) in the BDNF gene naturally occur in the form of Val66Met, in 
which methionine (Met) is substituted for valine (Val) at position 66 of the amino chain [8]. This altered 
pro-domain structure has been associated with a reduction of cerebral BDNF levels [8] and, accordingly, 
impaired brain structure and function [9].

Mechanistically, it is assumed that the Met allele results in a BDNF deficiency through the disruption of 
BDNF protein-protein interactions, protein stability, intracellular trafficking, and receptor binding affinities 
[6]. The BDNF Val66Met polymorphism has been associated with smaller hippocampal volume [10], greater 
susceptibility to migraines [11], psychiatric disorders (i.e., schizophrenia, major depression, anxiety [12, 
13]), neurodegenerative disorders (i.e., Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease [14]
), and even fasting glucose in healthy adolescents [15]. Sex, age, ethnicity, and environmental factors may 
contribute to the discrepancy in the findings of BDNF Val66Met genetic studies [16]. Genetic studies have 
indicated that Val66Met is associated with a worse prognosis after stroke and an impaired response to 
rehabilitation therapies, independent of baseline deficits and traditional vascular risk factors [6, 17]. 
However, the role of the Val66Met polymorphism may diminish throughout the recovery process as other 
factors, such as the level of physical impairment, age, and depression, become more important [18]. In 
addition to potential functional deficits after stroke, the Val66Met polymorphism has been associated with 
poorer language outcome in the acute and chronic stages [19] and higher rates of depression in the acute 
stage of stroke [20].

Rates of BDNF Val66Met polymorphism vary by geographical region. In European populations, the 
prevalence of the BDNF Val66Met polymorphism ranges from 13% to 30% and among Asian populations 
from 39% to 46%. The overall prevalence of the Val66Met polymorphism in the United States ranges from 
18% to 28%, suggesting that the Met allele—if associated with worse stroke outcomes—may affect a 
significant proportion of stroke survivors [21].

The aim of this pilot study was to investigate the effect of the Val66Met polymorphism on post-stroke 
outcomes, including quality of life, physical fitness, cognitive function, depression, and overall disability.

Materials and methods
Study participants

We included stroke participants enrolled in the Randomized Trial of Combined Aerobic, Resistance, and 
Cognitive Training who underwent a three-month exercise and cognitive training program. Details on the 
ascertainment of subjects, extensive assessments (including baseline), and exercise and cognitive training 
used in this clinical trial were described previously [22]. Briefly, inclusion criteria were a) ≥ 18 years old, b) 
stroke within one year, c) modified Rankin Scale (mRS) ≤ 3, and d) less than ideal physical activity (defined 
as < 75 minutes of vigorous or < 150 minutes of moderate activity per week) for at least three months 
before enrollment. We excluded subjects with neurodegenerative diseases and those with unstable medical 
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and psychiatric conditions, which would preclude engaging in physical activity. Of 131 participants enrolled 
in the main trial, 89 participants (68%) had data available on the BDNF Val66Met polymorphism. The 
assessment of the Val66Met polymorphism was an ancillary study, which enrolled 89 consecutive patients, 
from the time the funding for this ancillary study was awarded until the completion of the main trial. Both 
main and ancillary studies were approved by the Institutional Review Board at the University of Miami 
Miller School of Medicine (IRB# 20140203), which ensures compliance with federal, state, and institutional 
regulations, based on ethical principles found in the Declaration of Helsinki (2013). All participants 
provided informed consent to participate in the study. The study was registered in the ClinicalTrials.gov 
(Unique Identifier: NCT02272426).

Baseline assessment

The outcomes assessed included an extensive evaluation of socio-economic status, vascular risk profile 
(e.g., self-reported presence of hypertension, diabetes mellitus, and dyslipidemia, or use of medications for 
those conditions), stroke characteristics, and relevant treatments (e.g., type of stroke, date of onset, and NIH 
stroke scale). Stroke-specific quality of life was evaluated with the Stroke Impact Scale (SIS). Functional 
status was assessed with the mRS, and motor impairment with the Motricity Index. Symptoms of 
depression were evaluated with the Center for Epidemiological Studies Depression (CES-D). A 
comprehensive neuropsychological evaluation included a global screening for mild cognitive impairment 
[Montreal Cognitive Assessment (MoCA)], and assessment of working memory (Digit Span Backwards and 
Letter-Number Sequencing), cognitive/motor processing speed (Digit Symbol Substitution Test and 
Grooved Pegboard), and executive function (Trail Making Test Part B and the Stroop Color Word 
Interference Test). Physical and functional fitness evaluation included gait performance [Timed Up and Go 
(TUG) and 15-Meter Walking Test], strength (Hand Grip and 30-Second Chair Stand), and endurance (6-
Minute Walking Test).

The biomarkers included serum fasting glucose and BDNF levels, as well as the Val66Met 
polymorphism. Approximately 20 mL of blood was collected in three Sodium Citrate Vacutainer tubes for 
the BDNF sample, and one Sodium Fluoride or Na2EDTA Vacutainer tube for the glucose. Blood samples 
were delivered on ice within two hours of collection, centrifuged, and stored at –80°C until processing. One 
aliquot of whole blood was then used for the BDNF Val66Met analysis using Applied Biosystems™ TaqMan™ 
5'-nuclease assay chemistry. Each Applied Biosystems™ TaqMan™ SNP Genotyping Assay includes two 
allele-specific Applied Biosystems™ TaqMan™ MGB probes containing distinct fluorescent dyes and a PCR 
primer pair to detect specific SNP targets. These TaqMan probe and primer sets (assays) uniquely align 
with the genome to provide unmatched specificity for the allele of interest. Specifically, 10 ng of genomic 
DNA, extracted from whole blood, according to established protocols, was used in the amplification 
reaction. Cycling was performed on GeneAmp PCR Systems 9700 thermocyclers, with conditions 
recommended by Applied Biosystems. End-point fluorescence was measured on the QuantStudio™ 12K Flex 
Real-Time PCR System. Genotype discrimination of experimental results was then conducted using the 
QuantStudio™ 12K Flex Software. To ensure genotyping accuracy, 32 quality control samples per 384-well 
plate (8 per 96-well plate), matching within and across plates, were performed.

Statistical analysis

Met allele carriers vs. non-Met allele carriers were examined in relation to the outcomes of interest. 
Continuous variables were expressed as mean values ± SD, and categorical variables as counts and 
percentages. Normally distributed continuous variables were compared with mean and SD using 
independent sample t-tests, and non-normally distributed continuous variables with median and 
interquartile range using Wilcoxon signed-rank sum tests. Cohen’s d (or “r” effect size for the Wilcoxon 
signed rank test) was used to estimate the standardized mean difference of an effect size with 95% 
confidence intervals. Categorical variables were assessed using chi-squared or Fisher’s Exact tests.

A secondary confirmatory analysis was performed by matching the non-Met allele carriers with the 
carriers of one copy (Val/Met) of the BDNF polymorphism. The participants were matched by age (± 5), sex, 
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time since stroke (categorized as less than 3 months, 3–6 months, and 6–12 months after a stroke), and 
race (categorized as White, Black, or other/unknown race). One Asian female Met carrier could not be sex- 
and race-matched to a non-Met carrier and was therefore excluded. Seven out of 11 pairs were matched 
within 2 years, the rest within 3 to 5 years. The pair matching was performed by an independent 
investigator blinded to non-matching outcomes. Independent t-tests were performed to compare 
differences between matching groups. Our post-hoc analysis included the cut-off for depression using two 
CES-D scores: ≥ 16 and ≥ 20. Since this was an exploratory analysis, values of p < 0.05 were considered 
statistically significant without correction for multiple testing. A formal power analysis was not conducted 
for this study due to constraints on the available research funding, which limited the sample size to 89.

All statistical analyses were conducted using SPSS Statistics 25 (IBM Inc., Armonk, NY). Study data 
were collected and managed using REDCap electronic data capture tools.

Results
Of the total sample (n = 89), the mean age was 57 ± 10 years, 58% were male, 54% White, 39% African 
American, and 49% Hispanic. The average body mass index was 30 ± 5 kg/m2. The prevalence of self-
reported medication use for lipid disorders was 79%, for hypertension 74%, and for diabetes mellitus 29%. 
The prevalence of self-reported past smoking was 34% and current smoking was 12%. Time from stroke 
onset to study visit among all participants was < 3 months for 26%, 3–6 months for 22%, and > 6 months 
for 52%. Finally, 82% of participants had ischemic strokes and 18% had hemorrhagic strokes.

Overall, 12 participants (13%) had one copy of the BDNF Val66Met (Val/Met heterozygotes) and none 
had two copies (Met/Met homozygotes). Comparing Met and non-Met carriers demonstrated no 
statistically significant differences in any of the demographics or clinical characteristics (Tables 1, 2, and 3). 
Met carriers were less likely to be African American people (p = 0.08; Table 1), had lower National Institute 
of Health Stroke Scale (NIHSS) scores (p = 0.08; Table 1), and greater CES-D scores (p = 0.08; Table 3) than 
non-Met carriers.

Table 1. Socio-demographics, stroke characteristics, and clinical risk factors of non-Met and Met carriers.

Outcomes Non-Met carriers (n = 77) Met carriers (n = 12) P values

Socio-demographics
Age, mean (SD) 57.1 (9.7) 55.8 (15.1) 0.69
Women, n (%) 31 (40) 6 (50) 0.52
Race, n (%)
    African American 32 (42) 3 (25)
    Caucasian 40 (52) 8 (67)
    Other/not reported 5 (6) 1 (8)

0.08

Ethnicity, n (%)
    Hispanic or Latino 38 (49) 6 (50)
    Not Hispanic or Latino 38 (49) 5 (42)
    Other/not reported 1 (1) 1 (8)

0.30

Number of persons living within household, mean (SD) 2 (2) 2 (2) 0.26
Years of education, mean (SD) 13.2 (3.5) 12.7 (3.8) 0.62
Stroke characteristics
NIHSS, mean (SD) 2.9 (2.2) 1.6 (1.3) 0.08
mRS, mean (SD) 2.1 (0.8) 2.0 (0.8) 0.58
SIS, mean (SD) 62.5 (12.5) 64.1 (11) 0.68
Time since stroke (< 3 months), n (%) 17 (22) 6 (50) 0.15
Clinical risk factors (yes)
Past tobacco use, n (%) 27 (35) 3 (25) 0.41
Current tobacco use, n (%) 10 (13) 1 (8) 0.63
Hypertension, n (%) 57 (74) 9 (75) 0.94
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Table 1. Socio-demographics, stroke characteristics, and clinical risk factors of non-Met and Met carriers. (continued)

Outcomes Non-Met carriers (n = 77) Met carriers (n = 12) P values

Diabetes, n (%) 22 (29) 4 (33) 0.74
High cholesterol, n (%) 61 (79) 9 (75) 0.74
SBP (mmHg), mean (SD) 142.7 (23.8) 134.5 (17.3) 0.28
DBP (mmHg), mean (SD) 83.9 (12.7) 82.3 (14.7) 0.70
BMI (kg/m2), mean (SD) 30.5 (4.5) 28.5 (5.1) 0.17
NIHSS: National Institute of Health Stroke Scale; mRS: modified Rankin Scale; SIS: Stroke Impact Scale; SBP: systolic blood 
pressure; DBP: diastolic blood pressure; BMI: body mass index.

Table 2. Functional fitness and biomarkers of non-Met and Met carriers.

Outcomes Non-Met carriers (n = 77), mean (SD) Met carriers (n = 12), mean (SD) P values

Functional fitness
Motricity U 99.4 (1.8) 99.7 (1.1) 0.58
Motricity A 85.2 (19.2) 91.3 (20.0) 0.31
Hand Grip U 31.9 (9.4) 29.2 (11.6) 0.39
Hand Grip A 16.8 (12.2) 20.4 (11.9) 0.36
6-Minute Walking (feet) 1,129.5 (495.1) 1,171.0 (701.9) 0.85
30-Second Chair Stand (sec) 8.6 (4.8) 9.9 (6.1) 0.42
TUG (sec) 21.9 (20.3) 18.1 (8.4) 0.55
15-Meter Walking Test (sec) 17.4 (15.1) 16.6 (9.9) 0.55
Biomarkers
BDNF serum (pg/mL) 638.1 (844.8) 772.6 (851.1) 0.61
Glucose (mg/dL) 110.9 (37.6) 103.8 (19.7) 0.52
U: unaffected side; A: affected side; TUG: Timed Up and Go; BDNF: brain-derived neurotrophic factor; pg/mL: 
picograms/milliliter; mg/dL: milligram/deciliter.

Table 3. Depression and cognition of non-Met and Met carriers.

Outcomes Non-Met carriers (n = 77), mean (SD) Met carriers (n = 12), mean (SD) P values

Depression
CES-D 16.9 (12.6) 24.2 (14.8) 0.08
Cognition
MoCA 20.7 (5.2) 19.8 (7.5) 0.60
HVLT (verbal learning and memory)
Total recall 19.9 (5.9) 18.2 (5.5) 0.38
Delayed 6.5 (3.4) 5.1 (3.5) 0.22
Retention % 75.2 (26.7) 61.6 (32.9) 0.15
WAIS-R digit (processing speed) 35.7 (16.4) 30.7 (21.3) 0.39
D-KEFS (executive function)
    Color naming
    Time 40.2 (17.2) 52.1 (17.4) 0.28
    Uncorrected 0.7 (1.7) 3.2 (6.4) 0.23
    Self-corrected 0.9 (1.2) 1.6 (1.8) 0.29
    Word reading
    Time 34.6 (16.8) 43.2 (20.5) 0.12
    Uncorrected 0.2 (0.9) 0.9 (2.8) 0.43
    Self-corrected 0.3 (0.7) 0.5 (1.0) 0.40
    Inhibition
    Time 90.4 (39.8) 101.6 (45.9) 0.41
    Uncorrected 3.3 (6.0) 4.5 (5.8) 0.54
    Self-corrected 2.3 (2.5) 2.4 (3.7) 0.90
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Table 3. Depression and cognition of non-Met and Met carriers. (continued)

Outcomes Non-Met carriers (n = 77), mean (SD) Met carriers (n = 12), mean (SD) P values

    Inhibition switching
    Time 104.1 (40.5) 113.7 (55.3) 0.52
    Uncorrected 5.7 (6.6) 5.0 (7.0) 0.76
    Self-corrected 1.6 (1.6) 2.6 (3.5) 0.46
CES-D: Center for Epidemiological Studies Depression; MoCA: Montreal Cognitive Assessment; HVLT: Hopkins Verbal 
Learning Test; WAIS-R: Wechsler Adult Intelligence Scale; D-KEFS: Delis-Kaplan Executive Function Test.

Using the pair-matched analysis with the BDNF Val66Met polymorphism and controls, the average age 
for 11 Met carriers and 11 non-Met carriers was the same (58 ± 14 years). The only significant difference 
was observed for CES-D scores. Met carriers had significantly greater CES-D scores than non-carriers (24 ± 
16 vs. 9 ± 9, p = 0.011).

When analyzing the entire sample and proportion of participants with CES-D scores above the 
standard cut-off ≥ 16 [23], 67% of Met carriers (n = 8; mean ± SD = 30 ± 11) were classified as having 
depressive symptoms, compared to 40% of non-Met carriers (n = 31; mean ± SD = 29 ± 10), which was 
significant [χ2 (1, N = 89) = 3.7, p < 0.05].

When analyzing the entire sample and proportion of participants with a more conservative cut-off ≥ 20 
[24], 63% of Met carriers and 32% of non-Met carriers were classified as having depressive symptoms, and 
the difference between carriers and non-carriers remained statistically significant (p = 0.04).

Discussion
In this racially and ethnically diverse sample of stroke survivors, the BDNF Val66Met polymorphism was 
not associated with motor and cognitive outcomes and was associated with worse depressive symptoms up 
to one year after stroke.

Depression is a common complication after stroke [25] and is associated with worse functional 
outcomes [26] and higher mortality [27]. A systematic review of observational studies [28] found that one-
third of all stroke survivors experience depression up to five years after stroke. In the present study, one-
third of the participants had depressive symptoms, which is comparable to the systematic review (36%) 
when also using a CES-D cut-off of ≥ 20, as an accepted threshold score with high sensitivity and specificity 
in the general [24] and stroke populations [29].

Previous stroke and non-stroke studies have shown an inconsistent association between the BDNF 
Val66Met polymorphism and depression spectrum. A significant association between the polymorphism 
and post-stroke depression (PSD) was found in a South Korean study (n = 286) one year post-stroke [20], 
where depression was diagnosed using the Mini International Neuropsychiatric Interview and applying 
DSM-IV criteria two weeks after stroke. Similar findings were observed in a Chinese stroke cohort (n = 254) 
[30], indicating that a cluster of polymorphisms, including BDNF Val66Met, may play a central role in 
regulating the underlying mechanisms of PSD. The same authors concluded that PSD may be caused by 
many collaborative polymorphisms and that each polymorphism had a weak or moderate risk for the 
occurrence of PSD—in this study assessed by the 17-item Hamilton Depression rating scale, an instrument 
designed not to diagnose but to monitor depression.

In the non-stroke literature, a meta-analysis of case-controlled studies [31] revealed that the BDNF 
Val66Met polymorphism was not significantly associated with major depressive disorder, but was present 
in a sex-stratified analysis, where the same association was significant for men and not women. The BNDF 
Val66Met polymorphism was independently associated with depression in type 2 diabetes after adjusting 
for gender, hemoglobin A1C, and BMI [32]. The same polymorphism was the only SNP (rs6265; the other 
two common ones are rs7103411 and rs71224442) associated with the severity of depressive symptoms 
on the CES-D scale in older adults [33].
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No association between the BDNF Val66Met polymorphism and depression was found in several other 
studies [34, 35], and no major effect was found when the same polymorphism was analyzed as a moderator 
between physical activity [36] or antidepressant treatment response [37] and depression.

In the current study, we observed significant differences in depressive symptomatology rates based on 
polymorphism status. Regardless of the chosen CES-D cut-off score (≥ 16 vs. ≥ 20), 27% more cases of 
depressive symptomatology were observed among those with the BDNF Val66Met polymorphism than 
those without it. In the matching analysis, that difference was even greater, and slightly over 40%. Also in 
the matching analysis, those with the polymorphism—and worse depression scores—had 42% greater 
BDNF serum levels than those without the polymorphism. The same trend contradicts the theory that low 
serum BDNF is a state of abnormality and that patients with the clinical diagnosis of depression have 
significantly lower levels of BDNF than non-depressed patients [38]. This paradoxical effect, observed in 
our study, may be explained in several ways. Elevated BDNF in preclinical models, associated with 
improved learning, may at the same time have pro-depressive effects [39]. The underlying theory is that 
elevated BDNF levels have dichotomous effects on parts of the mesolimbic reward circuit: negative effects 
on the ventral tegmental area and nucleus accumbens pathway, and positive effects on hippocampal 
circuits [39, 40]. Furthermore, the Met variant has been hypothesized to decrease the activity of BDNF [41], 
so it is possible to have elevated BDNF levels but with reduced activity with the Val/Met genotype 
compared to the Val/Val genotype [42]. Individuals with depression may also have elevated BDNF levels 
because of higher use of pharmacological antidepressant treatment (not assessed in our study), which has 
been shown to restore and elevate BDNF levels [43]. Lastly, an inverse association between BDNF levels 
and inattentive problems and executive function has been documented, suggesting that brain damage can 
induce an increase in BDNF to promote neuronal survival and reverse brain damage [44].

We found no differences in gait speed as a marker of functional mobility between Met carriers and non-
Met carriers. Prior studies of stroke survivors [18, 45] similarly found no association between the presence 
of the same Val66Met BDNF polymorphism and gait speed. It has been suggested that Met carriers do not 
have worse recovery than Val carriers but may recover through different mechanisms, relying more on 
subcortical rather than intracortical plasticity [46]. Conversely, more than 800 patients with the first 
ischemic stroke had worse disability, assessed with the mRS, in the presence of the Met allele [17]. A recent 
systematic review and meta-analysis suggested that the Val66Met polymorphism may be associated with 
worse functional outcomes after stroke [47]. In our analysis, we did not observe any significant differences 
in various stroke-specific scales, including the mRS, between Met carriers and non-Met carriers.

Our study did not observe significant differences between the two BDNF genotypes on tests of 
cognition. These findings conflict with another study [48] reporting that Met allele carrier status was 
associated with worse cognitive outcomes after stroke. It should be noted, however, that this study used the 
cognitive subscale from the Functional Independence Measure instrument—primarily a measure of 
disability—whereas our study utilized a broader and more sensitive neuropsychological battery.

Lastly, the prevalence of the BDNF Val66Met polymorphism (Met/Met and Val/Met genotypes) in our 
study cohort was 13%. This rate is lower than previously reported among the American, European, and 
Asian cohorts of healthy individuals, where the rates ranged from 18% to 28% for studies from the United 
States [8, 49] to 39% to 46% for those from Asia [50, 51].

Strengths of the current study include the extensive assessment of demographics, physical 
characteristics, and physical and cognitive status of the study participants. Our limitations are a small 
sample size and a cross-sectional design that precludes the determination of causality between risk factors 
and the outcomes of interest. It needs to be mentioned that the CES-D is a self-reported measure rather 
than a clinically administered diagnostic tool that may not only report depressive symptoms but also 
general psychological distress. We did not collect outpatient rehabilitation information, where different 
rates and types of rehabilitation programs between the groups could have existed and affected the 
outcomes. We also did not collect the use of the recombinant form of tissue plasminogen activator, which, 
potentially by increasing BDNF expression, could play a role in stroke recovery [52]. Besides assessing the 
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number of people our stroke participants lived with in their household (not significantly different between 
the groups) and matching for sex, our study did not assess other depression-specific risk factors, such as 
the extent of perceived social support, family and personal history of depression, and anti-depression 
treatments. Due to the small sample size, our matching approach was limited; for example, our participants 
were age-matched for up to five years vs. the traditional one to two years. A small sample size also 
precluded us from running a subgroup analysis to examine sex- and age-dependent effects of the BDNF 
Val66Met polymorphism on stroke outcomes.

This study suggests that the BDNF Val66Met polymorphism may be associated with PSD but not motor 
or cognitive recovery. Future prospective studies with larger sample sizes, with the capacity to account for 
potential confounding variables observed in this study, should continue to explore the role of the BDNF 
Val66Met polymorphism in stroke recovery. In relation to depression outcomes, future research should 
incorporate clinical diagnostic assessment. Lastly, future studies could build upon our work by examining 
the differences in the same outcomes between stroke subtypes, such as lacunar and non-lacunar ischemic 
strokes [53].
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