Exploration of Neuroscience

Open Access Original Article

The association of brain-derived neurotrophic factor Val66Met polymorphism with stroke outcomes: a cross-sectional pilot study

Eduard Tiozzo^{1*}, Gary J. Farkas¹, Lauren T. Shapiro¹, Liz J. Caldera¹, Sebastian Koch², Clinton B. Wright³, David Lowenstein⁴, Tatjana Rundek²

*Correspondence: Eduard Tiozzo, Department of Physical Medicine and Rehabilitation, Christine E. Lynn Rehabilitation Center for The Miami Project to Cure Paralysis at UHealth/Jackson Memorial, University of Miami Miller School of Medicine, Miami, FL 33136, USA. etiozzo@med.miami.edu

Academic Editor: Janine Gronewold, University Hospital Essen, Germany

Received: August 19, 2025 Accepted: October 21, 2025 Published: November 11, 2025

Cite this article: Tiozzo E, Farkas GJ, Shapiro LT, Caldera LJ, Koch S, Wright CB, et al. The association of brain-derived neurotrophic factor Val66Met polymorphism with stroke outcomes: a cross-sectional pilot study. Explor Neurosci. 2025;4:1006115. https://doi.org/10.37349/en.2025.1006115

Abstract

Aim: This study investigated the effect of brain-derived neurotrophic factor (*BDNF*) Val66Met polymorphism on post-stroke outcomes, including quality of life, physical fitness, cognitive function, depression, and overall disability.

Methods: The difference between Met carriers and non-Met carriers was analyzed for the entire sample and in pair-matched analysis, using age, sex, time since stroke, and race.

Results: We evaluated 89 stroke participants (mean age, 57 ± 10 years; 58% male; 54% White, and 49% Hispanic). Twelve participants (13%) had one copy of the *BDNF* Val66Met (Val/Met heterozygotes) and none had two copies (Met/Met homozygotes). Comparing Met (n = 12) and non-Met carriers (n = 77), no significant differences were observed in demographics or clinical characteristics, including motor or cognitive outcomes. In pair-matched analysis, a significant difference was observed for the Center for Epidemiological Studies Depression (CES-D) scale, where Met carriers had significantly greater CES-D scores than non-Met carriers (24 ± 16 vs. 9 ± 9 , p = 0.011). Regardless of the chosen CES-D cut-off scores (≥ 16 vs. ≥ 20), more cases of depressive symptomatology were observed among those with the *BDNF* Val66Met polymorphism than those without it (p values < 0.05).

Conclusions: The *BDNF* Val66Met polymorphism may be associated with post-stroke depression but not motor or cognitive recovery.

Keywords

stroke, recovery, genetic, polymorphism, BDNF

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

¹Department of Physical Medicine and Rehabilitation, Christine E. Lynn Rehabilitation Center for The Miami Project to Cure Paralysis at UHealth/Jackson Memorial, University of Miami Miller School of Medicine, Miami, FL 33136, USA

²Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA

³Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA

⁴Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA

Introduction

Stroke represents the leading cause of long-term disability in the United States [1]. In the last few decades, our understanding of stroke pathophysiology, treatments, and long-term survival has profoundly improved, but stroke outcomes may still be less than optimal. Up to two-thirds of stroke survivors have residual physical or cognitive disabilities that can prevent them from living independently and vastly affect their quality of life [2]. Thus, a primary concern immediately after a stroke event is the evaluation of the individual's prospect for functional recovery. The capacity to recover after stroke, however, can be highly variable, in part due to different stroke subtypes and their impact on the distribution of risk factors, stroke severity, and outcomes. All of this highlights the need to elucidate the responsible mechanisms and develop more effective and individualized rehabilitation strategies for stroke treatment [3].

Recent findings have indicated an underlying deleterious effect of a brain-derived neurotrophic factor (BDNF) genetic polymorphism on outcomes and prognosis after stroke [4–6]. BDNF itself is the most abundant neurotropin in the nervous system, involved in neurogenesis and neuroplasticity of the brain [7]. Single-nucleotide polymorphisms (SNPs) in the BDNF gene naturally occur in the form of Val66Met, in which methionine (Met) is substituted for valine (Val) at position 66 of the amino chain [8]. This altered pro-domain structure has been associated with a reduction of cerebral BDNF levels [8] and, accordingly, impaired brain structure and function [9].

Mechanistically, it is assumed that the Met allele results in a BDNF deficiency through the disruption of BDNF protein-protein interactions, protein stability, intracellular trafficking, and receptor binding affinities [6]. The *BDNF* Val66Met polymorphism has been associated with smaller hippocampal volume [10], greater susceptibility to migraines [11], psychiatric disorders (i.e., schizophrenia, major depression, anxiety [12, 13]), neurodegenerative disorders (i.e., Alzheimer's disease, multiple sclerosis, and Parkinson's disease [14]), and even fasting glucose in healthy adolescents [15]. Sex, age, ethnicity, and environmental factors may contribute to the discrepancy in the findings of *BDNF* Val66Met genetic studies [16]. Genetic studies have indicated that Val66Met is associated with a worse prognosis after stroke and an impaired response to rehabilitation therapies, independent of baseline deficits and traditional vascular risk factors [6, 17]. However, the role of the Val66Met polymorphism may diminish throughout the recovery process as other factors, such as the level of physical impairment, age, and depression, become more important [18]. In addition to potential functional deficits after stroke, the Val66Met polymorphism has been associated with poorer language outcome in the acute and chronic stages [19] and higher rates of depression in the acute stage of stroke [20].

Rates of *BDNF* Val66Met polymorphism vary by geographical region. In European populations, the prevalence of the *BDNF* Val66Met polymorphism ranges from 13% to 30% and among Asian populations from 39% to 46%. The overall prevalence of the Val66Met polymorphism in the United States ranges from 18% to 28%, suggesting that the Met allele—if associated with worse stroke outcomes—may affect a significant proportion of stroke survivors [21].

The aim of this pilot study was to investigate the effect of the Val66Met polymorphism on post-stroke outcomes, including quality of life, physical fitness, cognitive function, depression, and overall disability.

Materials and methods

Study participants

We included stroke participants enrolled in the Randomized Trial of Combined Aerobic, Resistance, and Cognitive Training who underwent a three-month exercise and cognitive training program. Details on the ascertainment of subjects, extensive assessments (including baseline), and exercise and cognitive training used in this clinical trial were described previously [22]. Briefly, inclusion criteria were a) \geq 18 years old, b) stroke within one year, c) modified Rankin Scale (mRS) \leq 3, and d) less than ideal physical activity (defined as < 75 minutes of vigorous or < 150 minutes of moderate activity per week) for at least three months before enrollment. We excluded subjects with neurodegenerative diseases and those with unstable medical

and psychiatric conditions, which would preclude engaging in physical activity. Of 131 participants enrolled in the main trial, 89 participants (68%) had data available on the *BDNF* Val66Met polymorphism. The assessment of the Val66Met polymorphism was an ancillary study, which enrolled 89 consecutive patients, from the time the funding for this ancillary study was awarded until the completion of the main trial. Both main and ancillary studies were approved by the Institutional Review Board at the University of Miami Miller School of Medicine (IRB# 20140203), which ensures compliance with federal, state, and institutional regulations, based on ethical principles found in the Declaration of Helsinki (2013). All participants provided informed consent to participate in the study. The study was registered in the ClinicalTrials.gov (Unique Identifier: NCT02272426).

Baseline assessment

The outcomes assessed included an extensive evaluation of socio-economic status, vascular risk profile (e.g., self-reported presence of hypertension, diabetes mellitus, and dyslipidemia, or use of medications for those conditions), stroke characteristics, and relevant treatments (e.g., type of stroke, date of onset, and NIH stroke scale). Stroke-specific quality of life was evaluated with the Stroke Impact Scale (SIS). Functional status was assessed with the mRS, and motor impairment with the Motricity Index. Symptoms of depression were evaluated with the Center for Epidemiological Studies Depression (CES-D). A comprehensive neuropsychological evaluation included a global screening for mild cognitive impairment [Montreal Cognitive Assessment (MoCA)], and assessment of working memory (Digit Span Backwards and Letter-Number Sequencing), cognitive/motor processing speed (Digit Symbol Substitution Test and Grooved Pegboard), and executive function (Trail Making Test Part B and the Stroop Color Word Interference Test). Physical and functional fitness evaluation included gait performance [Timed Up and Go (TUG) and 15-Meter Walking Test], strength (Hand Grip and 30-Second Chair Stand), and endurance (6-Minute Walking Test).

The biomarkers included serum fasting glucose and BDNF levels, as well as the Val66Met polymorphism. Approximately 20 mL of blood was collected in three Sodium Citrate Vacutainer tubes for the BDNF sample, and one Sodium Fluoride or Na₂EDTA Vacutainer tube for the glucose. Blood samples were delivered on ice within two hours of collection, centrifuged, and stored at −80°C until processing. One aliquot of whole blood was then used for the BDNF Val66Met analysis using Applied Biosystems™ TaqMan™ 5′-nuclease assay chemistry. Each Applied Biosystems™ TaqMan™ SNP Genotyping Assay includes two allele-specific Applied Biosystems™ TaqMan™ MGB probes containing distinct fluorescent dyes and a PCR primer pair to detect specific SNP targets. These TaqMan probe and primer sets (assays) uniquely align with the genome to provide unmatched specificity for the allele of interest. Specifically, 10 ng of genomic DNA, extracted from whole blood, according to established protocols, was used in the amplification reaction. Cycling was performed on GeneAmp PCR Systems 9700 thermocyclers, with conditions recommended by Applied Biosystems. End-point fluorescence was measured on the QuantStudio™ 12K Flex Real-Time PCR System. Genotype discrimination of experimental results was then conducted using the QuantStudio™ 12K Flex Software. To ensure genotyping accuracy, 32 quality control samples per 384-well plate (8 per 96-well plate), matching within and across plates, were performed.

Statistical analysis

Met allele carriers vs. non-Met allele carriers were examined in relation to the outcomes of interest. Continuous variables were expressed as mean values ± SD, and categorical variables as counts and percentages. Normally distributed continuous variables were compared with mean and SD using independent sample *t*-tests, and non-normally distributed continuous variables with median and interquartile range using Wilcoxon signed-rank sum tests. Cohen's d (or "r" effect size for the Wilcoxon signed rank test) was used to estimate the standardized mean difference of an effect size with 95% confidence intervals. Categorical variables were assessed using chi-squared or Fisher's Exact tests.

A secondary confirmatory analysis was performed by matching the non-Met allele carriers with the carriers of one copy (Val/Met) of the *BDNF* polymorphism. The participants were matched by age (± 5), sex,

time since stroke (categorized as less than 3 months, 3–6 months, and 6–12 months after a stroke), and race (categorized as White, Black, or other/unknown race). One Asian female Met carrier could not be sexand race-matched to a non-Met carrier and was therefore excluded. Seven out of 11 pairs were matched within 2 years, the rest within 3 to 5 years. The pair matching was performed by an independent investigator blinded to non-matching outcomes. Independent t-tests were performed to compare differences between matching groups. Our post-hoc analysis included the cut-off for depression using two CES-D scores: ≥ 16 and ≥ 20 . Since this was an exploratory analysis, values of p < 0.05 were considered statistically significant without correction for multiple testing. A formal power analysis was not conducted for this study due to constraints on the available research funding, which limited the sample size to 89.

All statistical analyses were conducted using SPSS Statistics 25 (IBM Inc., Armonk, NY). Study data were collected and managed using REDCap electronic data capture tools.

Results

Of the total sample (n = 89), the mean age was 57 ± 10 years, 58% were male, 54% White, 39% African American, and 49% Hispanic. The average body mass index was 30 ± 5 kg/m². The prevalence of self-reported medication use for lipid disorders was 79%, for hypertension 74%, and for diabetes mellitus 29%. The prevalence of self-reported past smoking was 34% and current smoking was 12%. Time from stroke onset to study visit among all participants was < 3 months for 26%, 3–6 months for 22%, and > 6 months for 52%. Finally, 82% of participants had ischemic strokes and 18% had hemorrhagic strokes.

Overall, 12 participants (13%) had one copy of the *BDNF* Val66Met (Val/Met heterozygotes) and none had two copies (Met/Met homozygotes). Comparing Met and non-Met carriers demonstrated no statistically significant differences in any of the demographics or clinical characteristics (Tables 1, 2, and 3). Met carriers were less likely to be African American people (p = 0.08; Table 1), had lower National Institute of Health Stroke Scale (NIHSS) scores (p = 0.08; Table 1), and greater CES-D scores (p = 0.08; Table 3) than non-Met carriers.

Table 1. Socio-demographics, stroke characteristics, and clinical risk factors of non-Met and Met carriers.

Outcomes	Non-Met carriers (n = 77)	Met carriers (n = 12)	P values
Socio-demographics			
Age, mean (SD)	57.1 (9.7)	55.8 (15.1)	0.69
Women, <i>n</i> (%)	31 (40)	6 (50)	0.52
Race, n (%)			
African American	32 (42)	3 (25)	0.08
Caucasian	40 (52)	8 (67)	
Other/not reported	5 (6)	1 (8)	
Ethnicity, n (%)			
Hispanic or Latino	38 (49)	6 (50)	0.30
Not Hispanic or Latino	38 (49)	5 (42)	
Other/not reported	1 (1)	1 (8)	
Number of persons living within household, mean (SD)	2 (2)	2 (2)	0.26
Years of education, mean (SD)	13.2 (3.5)	12.7 (3.8)	0.62
Stroke characteristics			
NIHSS, mean (SD)	2.9 (2.2)	1.6 (1.3)	0.08
mRS, mean (SD)	2.1 (0.8)	2.0 (0.8)	0.58
SIS, mean (SD)	62.5 (12.5)	64.1 (11)	0.68
Time since stroke (< 3 months), n (%)	17 (22)	6 (50)	0.15
Clinical risk factors (yes)			
Past tobacco use, n (%)	27 (35)	3 (25)	0.41
Current tobacco use, n (%)	10 (13)	1 (8)	0.63
Hypertension, <i>n</i> (%)	57 (74)	9 (75)	0.94

Table 1. Socio-demographics, stroke characteristics, and clinical risk factors of non-Met and Met carriers. (continued)

Outcomes	Non-Met carriers (n = 77)	Met carriers (n = 12)	P values
Diabetes, n (%)	22 (29)	4 (33)	0.74
High cholesterol, n (%)	61 (79)	9 (75)	0.74
SBP (mmHg), mean (SD)	142.7 (23.8)	134.5 (17.3)	0.28
DBP (mmHg), mean (SD)	83.9 (12.7)	82.3 (14.7)	0.70
BMI (kg/m²), mean (SD)	30.5 (4.5)	28.5 (5.1)	0.17

NIHSS: National Institute of Health Stroke Scale; mRS: modified Rankin Scale; SIS: Stroke Impact Scale; SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index.

Table 2. Functional fitness and biomarkers of non-Met and Met carriers.

Outcomes	Non-Met carriers ($n = 77$), mean (SD)	Met carriers ($n = 12$), mean (SD)	P values
Functional fitness			
Motricity U	99.4 (1.8)	99.7 (1.1)	0.58
Motricity A	85.2 (19.2)	91.3 (20.0)	0.31
Hand Grip U	31.9 (9.4)	29.2 (11.6)	0.39
Hand Grip A	16.8 (12.2)	20.4 (11.9)	0.36
6-Minute Walking (feet)	1,129.5 (495.1)	1,171.0 (701.9)	0.85
30-Second Chair Stand (sec)	8.6 (4.8)	9.9 (6.1)	0.42
TUG (sec)	21.9 (20.3)	18.1 (8.4)	0.55
15-Meter Walking Test (sec)	17.4 (15.1)	16.6 (9.9)	0.55
Biomarkers			
BDNF serum (pg/mL)	638.1 (844.8)	772.6 (851.1)	0.61
Glucose (mg/dL)	110.9 (37.6)	103.8 (19.7)	0.52

U: unaffected side; A: affected side; TUG: Timed Up and Go; BDNF: brain-derived neurotrophic factor; pg/mL: picograms/milliliter; mg/dL: milligram/deciliter.

Table 3. Depression and cognition of non-Met and Met carriers.

Outcomes	Non-Met carriers (n = 77), mean (SD)	Met carriers (n = 12), mean (SD)	P values
Depression			
CES-D	16.9 (12.6)	24.2 (14.8)	0.08
Cognition			
MoCA	20.7 (5.2)	19.8 (7.5)	0.60
HVLT (verbal learning and memory	y)		
Total recall	19.9 (5.9)	18.2 (5.5)	0.38
Delayed	6.5 (3.4)	5.1 (3.5)	0.22
Retention %	75.2 (26.7)	61.6 (32.9)	0.15
WAIS-R digit (processing speed)	35.7 (16.4)	30.7 (21.3)	0.39
D-KEFS (executive function)			
Color naming			
Time	40.2 (17.2)	52.1 (17.4)	0.28
Uncorrected	0.7 (1.7)	3.2 (6.4)	0.23
Self-corrected	0.9 (1.2)	1.6 (1.8)	0.29
Word reading			
Time	34.6 (16.8)	43.2 (20.5)	0.12
Uncorrected	0.2 (0.9)	0.9 (2.8)	0.43
Self-corrected	0.3 (0.7)	0.5 (1.0)	0.40
Inhibition			
Time	90.4 (39.8)	101.6 (45.9)	0.41
Uncorrected	3.3 (6.0)	4.5 (5.8)	0.54
Self-corrected	2.3 (2.5)	2.4 (3.7)	0.90

Table 3. Depression and cognition of non-Met and Met carriers. (continued)

Outcomes	Non-Met carriers (n = 77), mean (SD)	Met carriers (n = 12), mean (SD)	P values
Inhibition switching			
Time	104.1 (40.5)	113.7 (55.3)	0.52
Uncorrected	5.7 (6.6)	5.0 (7.0)	0.76
Self-corrected	1.6 (1.6)	2.6 (3.5)	0.46

CES-D: Center for Epidemiological Studies Depression; MoCA: Montreal Cognitive Assessment; HVLT: Hopkins Verbal Learning Test; WAIS-R: Wechsler Adult Intelligence Scale; D-KEFS: Delis-Kaplan Executive Function Test.

Using the pair-matched analysis with the *BDNF* Val66Met polymorphism and controls, the average age for 11 Met carriers and 11 non-Met carriers was the same (58 \pm 14 years). The only significant difference was observed for CES-D scores. Met carriers had significantly greater CES-D scores than non-carriers (24 \pm 16 vs. 9 \pm 9, p = 0.011).

When analyzing the entire sample and proportion of participants with CES-D scores above the standard cut-off ≥ 16 [23], 67% of Met carriers (n = 8; mean \pm SD = 30 \pm 11) were classified as having depressive symptoms, compared to 40% of non-Met carriers (n = 31; mean \pm SD = 29 \pm 10), which was significant [χ^2 (1, N = 89) = 3.7, p < 0.05].

When analyzing the entire sample and proportion of participants with a more conservative cut-off ≥ 20 [24], 63% of Met carriers and 32% of non-Met carriers were classified as having depressive symptoms, and the difference between carriers and non-carriers remained statistically significant (p = 0.04).

Discussion

In this racially and ethnically diverse sample of stroke survivors, the *BDNF* Val66Met polymorphism was not associated with motor and cognitive outcomes and was associated with worse depressive symptoms up to one year after stroke.

Depression is a common complication after stroke [25] and is associated with worse functional outcomes [26] and higher mortality [27]. A systematic review of observational studies [28] found that one-third of all stroke survivors experience depression up to five years after stroke. In the present study, one-third of the participants had depressive symptoms, which is comparable to the systematic review (36%) when also using a CES-D cut-off of \geq 20, as an accepted threshold score with high sensitivity and specificity in the general [24] and stroke populations [29].

Previous stroke and non-stroke studies have shown an inconsistent association between the *BDNF* Val66Met polymorphism and depression spectrum. A significant association between the polymorphism and post-stroke depression (PSD) was found in a South Korean study (n = 286) one year post-stroke [20], where depression was diagnosed using the Mini International Neuropsychiatric Interview and applying DSM-IV criteria two weeks after stroke. Similar findings were observed in a Chinese stroke cohort (n = 254) [30], indicating that a cluster of polymorphisms, including *BDNF* Val66Met, may play a central role in regulating the underlying mechanisms of PSD. The same authors concluded that PSD may be caused by many collaborative polymorphisms and that each polymorphism had a weak or moderate risk for the occurrence of PSD—in this study assessed by the 17-item Hamilton Depression rating scale, an instrument designed not to diagnose but to monitor depression.

In the non-stroke literature, a meta-analysis of case-controlled studies [31] revealed that the *BDNF* Val66Met polymorphism was not significantly associated with major depressive disorder, but was present in a sex-stratified analysis, where the same association was significant for men and not women. The *BNDF* Val66Met polymorphism was independently associated with depression in type 2 diabetes after adjusting for gender, hemoglobin A1C, and BMI [32]. The same polymorphism was the only SNP (rs6265; the other two common ones are rs7103411 and rs71224442) associated with the severity of depressive symptoms on the CES-D scale in older adults [33].

No association between the *BDNF* Val66Met polymorphism and depression was found in several other studies [34, 35], and no major effect was found when the same polymorphism was analyzed as a moderator between physical activity [36] or antidepressant treatment response [37] and depression.

In the current study, we observed significant differences in depressive symptomatology rates based on polymorphism status. Regardless of the chosen CES-D cut-off score (≥ 16 vs. ≥ 20), 27% more cases of depressive symptomatology were observed among those with the BDNF Val66Met polymorphism than those without it. In the matching analysis, that difference was even greater, and slightly over 40%. Also in the matching analysis, those with the polymorphism—and worse depression scores—had 42% greater BDNF serum levels than those without the polymorphism. The same trend contradicts the theory that low serum BDNF is a state of abnormality and that patients with the clinical diagnosis of depression have significantly lower levels of BDNF than non-depressed patients [38]. This paradoxical effect, observed in our study, may be explained in several ways. Elevated BDNF in preclinical models, associated with improved learning, may at the same time have pro-depressive effects [39]. The underlying theory is that elevated BDNF levels have dichotomous effects on parts of the mesolimbic reward circuit: negative effects on the ventral tegmental area and nucleus accumbens pathway, and positive effects on hippocampal circuits [39, 40]. Furthermore, the Met variant has been hypothesized to decrease the activity of BDNF [41], so it is possible to have elevated BDNF levels but with reduced activity with the Val/Met genotype compared to the Val/Val genotype [42]. Individuals with depression may also have elevated BDNF levels because of higher use of pharmacological antidepressant treatment (not assessed in our study), which has been shown to restore and elevate BDNF levels [43]. Lastly, an inverse association between BDNF levels and inattentive problems and executive function has been documented, suggesting that brain damage can induce an increase in BDNF to promote neuronal survival and reverse brain damage [44].

We found no differences in gait speed as a marker of functional mobility between Met carriers and non-Met carriers. Prior studies of stroke survivors [18, 45] similarly found no association between the presence of the same Val66Met *BDNF* polymorphism and gait speed. It has been suggested that Met carriers do not have worse recovery than Val carriers but may recover through different mechanisms, relying more on subcortical rather than intracortical plasticity [46]. Conversely, more than 800 patients with the first ischemic stroke had worse disability, assessed with the mRS, in the presence of the Met allele [17]. A recent systematic review and meta-analysis suggested that the Val66Met polymorphism may be associated with worse functional outcomes after stroke [47]. In our analysis, we did not observe any significant differences in various stroke-specific scales, including the mRS, between Met carriers and non-Met carriers.

Our study did not observe significant differences between the two *BDNF* genotypes on tests of cognition. These findings conflict with another study [48] reporting that Met allele carrier status was associated with worse cognitive outcomes after stroke. It should be noted, however, that this study used the cognitive subscale from the Functional Independence Measure instrument—primarily a measure of disability—whereas our study utilized a broader and more sensitive neuropsychological battery.

Lastly, the prevalence of the *BDNF* Val66Met polymorphism (Met/Met and Val/Met genotypes) in our study cohort was 13%. This rate is lower than previously reported among the American, European, and Asian cohorts of healthy individuals, where the rates ranged from 18% to 28% for studies from the United States [8, 49] to 39% to 46% for those from Asia [50, 51].

Strengths of the current study include the extensive assessment of demographics, physical characteristics, and physical and cognitive status of the study participants. Our limitations are a small sample size and a cross-sectional design that precludes the determination of causality between risk factors and the outcomes of interest. It needs to be mentioned that the CES-D is a self-reported measure rather than a clinically administered diagnostic tool that may not only report depressive symptoms but also general psychological distress. We did not collect outpatient rehabilitation information, where different rates and types of rehabilitation programs between the groups could have existed and affected the outcomes. We also did not collect the use of the recombinant form of tissue plasminogen activator, which, potentially by increasing BDNF expression, could play a role in stroke recovery [52]. Besides assessing the

number of people our stroke participants lived with in their household (not significantly different between the groups) and matching for sex, our study did not assess other depression-specific risk factors, such as the extent of perceived social support, family and personal history of depression, and anti-depression treatments. Due to the small sample size, our matching approach was limited; for example, our participants were age-matched for up to five years vs. the traditional one to two years. A small sample size also precluded us from running a subgroup analysis to examine sex- and age-dependent effects of the *BDNF* Val66Met polymorphism on stroke outcomes.

This study suggests that the *BDNF* Val66Met polymorphism may be associated with PSD but not motor or cognitive recovery. Future prospective studies with larger sample sizes, with the capacity to account for potential confounding variables observed in this study, should continue to explore the role of the *BDNF* Val66Met polymorphism in stroke recovery. In relation to depression outcomes, future research should incorporate clinical diagnostic assessment. Lastly, future studies could build upon our work by examining the differences in the same outcomes between stroke subtypes, such as lacunar and non-lacunar ischemic strokes [53].

Abbreviations

BDNF: brain-derived neurotrophic factor

CES-D: Center for Epidemiological Studies Depression

Met: methionine

mRS: modified Rankin Scale PSD: post-stroke depression

SNPs: single-nucleotide polymorphisms

Val: valine

Declarations

Acknowledgments

We would like to acknowledge Pauline Portes, a former MD/MPH student at the University of Miami Miller School of Medicine, for her work in the matching analysis.

Author contributions

ET: Conceptualization, Formal analysis, Investigation, Writing—original draft. GJF: Conceptualization, Formal analysis, Investigation, Writing—review & editing. LTS: Methodology, Formal analysis, Investigation, Data curation, Writing—review & editing. LJC: Formal analysis, Investigation, Data curation, Writing—review & editing. SK: Formal analysis, Investigation, Writing—review & editing. CBW: Formal analysis, Investigation, Writing—review & editing. TR: Visualization, Supervision, Project administration, Funding acquisition, Writing—review & editing. All authors read and approved the submitted version.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Both main and ancillary studies were approved by the Institutional Review Board at the University of Miami Miller School of Medicine (IRB# 20140203). The study was registered in the ClinicalTrials.gov (Unique Identifier: NCT02272426).

Consent to participate

All participants provided informed consent to participate in the study.

Consent to publication

Not applicable.

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This work was supported by the American Heart Association/American Stroke Association/Bugher Foundation and the McKnight Brain Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright

© The Author(s) 2025.

Publisher's note

Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.

References

- 1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation. 2020;141:e139–596. [DOI] [PubMed]
- 2. Chen X, Duan L, Han Y, Tian L, Dai Q, Wang S, et al. Predictors for vascular cognitive impairment in stroke patients. BMC Neurol. 2016;16:115. [DOI] [PubMed] [PMC]
- 3. Alawieh A, Zhao J, Feng W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav Brain Res. 2018;340:94–101. [DOI] [PubMed] [PMC]
- 4. Helm EE, Tyrell CM, Pohlig RT, Brady LD, Reisman DS. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke. Exp Brain Res. 2016;234:341–51. [DOI] [PubMed] [PMC]
- 5. Shiner CT, Pierce KD, Thompson-Butel AG, Trinh T, Schofield PR, McNulty PA. BDNF Genotype Interacts with Motor Function to Influence Rehabilitation Responsiveness Poststroke. Front Neurol. 2016;7:69. [DOI] [PubMed] [PMC]
- 6. Stanne TM, Tjärnlund-Wolf A, Olsson S, Jood K, Blomstrand C, Jern C. Genetic variation at the BDNF locus: evidence for association with long-term outcome after ischemic stroke. PLoS One. 2014;9: e114156. [DOI] [PubMed] [PMC]
- 7. Greisen MH, Altar CA, Bolwig TG, Whitehead R, Wörtwein G. Increased adult hippocampal brainderived neurotrophic factor and normal levels of neurogenesis in maternal separation rats. J Neurosci Res. 2005;79:772–8. [DOI] [PubMed]
- 8. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69. [DOI] [PubMed]
- 9. Bath KG, Lee FS. Variant BDNF (Val66Met) impact on brain structure and function. Cogn Affect Behav Neurosci. 2006;6:79–85. [DOI] [PubMed]
- 10. Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci. 2010;30:5368–75. [DOI] [PubMed] [PMC]

- 11. Cai X, Shi X, Zhang X, Zhang A, Zheng M, Fang Y. The association between brain-derived neurotrophic factor gene polymorphism and migraine: a meta-analysis. J Headache Pain. 2017;18:13. [DOI] [PubMed] [PMC]
- 12. Fernandes BS, Berk M, Turck CW, Steiner J, Gonçalves CA. Decreased peripheral brain-derived neurotrophic factor levels are a biomarker of disease activity in major psychiatric disorders: a comparative meta-analysis. Mol Psychiatry. 2014;19:750–1. [DOI] [PubMed]
- 13. Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–18. [DOI] [PubMed]
- 14. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5:311–22. [DOI] [PubMed]
- 15. Vidović V, Maksimović N, Novaković I, Damnjanović T, Jekić B, Vidović S, et al. Association of the Brainderived Neurotrophic Factor Val66Met Polymorphism with Body Mass Index, Fasting Glucose Levels and Lipid Status in Adolescents. Balkan J Med Genet. 2020;23:77–82. [DOI] [PubMed] [PMC]
- 16. Tsai S. Critical Issues in *BDNF* Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci. 2018;11:156. [DOI] [PubMed] [PMC]
- 17. Braun RG, Kittner SJ, Ryan KA, Cole JW. Effects of the BDNF Val66Met polymorphism on functional status and disability in young stroke patients. PLoS One. 2020;15:e0237033. [DOI] [PubMed] [PMC]
- 18. French MA, Morton SM, Pohlig RT, Reisman DS. The relationship between BDNF Val66Met polymorphism and functional mobility in chronic stroke survivors. Top Stroke Rehabil. 2018;25: 276–80. [DOI] [PubMed] [PMC]
- 19. Lee NT, Ahmedy F, Mohamad Hashim N, Yin KN, Chin KL. Brain-Derived Neurotrophic Factor Polymorphism and Aphasia after Stroke. Behav Neurol. 2021;2021:8887012. [DOI] [PubMed] [PMC]
- 20. Kim JM, Stewart R, Kang HJ, Kim SY, Kim SW, Shin IS, et al. A longitudinal study of BDNF promoter methylation and genotype with poststroke depression. J Affect Disord. 2013;149:93–9. [DOI] [PubMed]
- 21. Shen T, You Y, Joseph C, Mirzaei M, Klistorner A, Graham SL, et al. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. Aging Dis. 2018;9:523–36. [DOI] [PubMed] [PMC]
- 22. Koch S, Tiozzo E, Simonetto M, Loewenstein D, Wright CB, Dong C, et al. Randomized Trial of Combined Aerobic, Resistance, and Cognitive Training to Improve Recovery From Stroke: Feasibility and Safety. J Am Heart Assoc. 2020;9:e015377. [DOI] [PubMed] [PMC]
- 23. Shinar D, Gross CR, Price TR, Banko M, Bolduc PL, Robinson RG. Screening for depression in stroke patients: the reliability and validity of the Center for Epidemiologic Studies Depression Scale. Stroke. 1986;17:241–5. [DOI] [PubMed]
- 24. Vilagut G, Forero CG, Barbaglia G, Alonso J. Screening for Depression in the General Population with the Center for Epidemiologic Studies Depression (CES-D): A Systematic Review with Meta-Analysis. PLoS One. 2016;11:e0155431. [DOI] [PubMed] [PMC]
- 25. Towfighi A, Ovbiagele B, El Husseini N, Hackett ML, Jorge RE, Kissela BM, et al.; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research. Poststroke Depression: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017;48:e30–43. [DOI] [PubMed]
- 26. Kutlubaev MA, Hackett ML. Part II: predictors of depression after stroke and impact of depression on stroke outcome: an updated systematic review of observational studies. Int J Stroke. 2014;9:1026–36. [DOI] [PubMed]
- 27. Bartoli F, Lillia N, Lax A, Crocamo C, Mantero V, Carrà G, et al. Depression after stroke and risk of mortality: a systematic review and meta-analysis. Stroke Res Treat. 2013;2013:862978. [DOI] [PubMed] [PMC]

- 28. Hackett ML, Yapa C, Parag V, Anderson CS. Frequency of depression after stroke: a systematic review of observational studies. Stroke. 2005;36:1330–40. [DOI] [PubMed]
- 29. Agrell B, Dehlin O. Comparison of six depression rating scales in geriatric stroke patients. Stroke. 1989;20:1190–4. [DOI] [PubMed]
- 30. Liang J, Yue Y, Jiang H, Geng D, Wang J, Lu J, et al. Genetic variations in the p11/tPA/BDNF pathway are associated with post stroke depression. J Affect Disord. 2018;226:313–25. [DOI] [PubMed]
- 31. Verhagen M, van der Meij A, van Deurzen PA, Janzing JG, Arias-Vásquez A, Buitelaar JK, et al. Metaanalysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. 2010;15:260–71. [DOI] [PubMed]
- 32. Zhou JX, Li HC, Bai XJ, Chang BC, Li CJ, Sun P, et al. Functional Val66Met polymorphism of Brain-derived neurotrophic factor in type 2 diabetes with depression in Han Chinese subjects. Behav Brain Funct. 2013;9:34. [DOI] [PubMed] [PMC]
- 33. Czira ME, Wersching H, Baune BT, Berger K. Brain-derived neurotrophic factor gene polymorphisms, neurotransmitter levels, and depressive symptoms in an elderly population. Age (Dordr). 2012;34: 1529–41. [DOI] [PubMed] [PMC]
- 34. Surtees PG, Wainwright NW, Willis-Owen SA, Sandhu MS, Luben R, Day NE, et al. No association between the BDNF Val66Met polymorphism and mood status in a non-clinical community sample of 7389 older adults. J Psychiatr Res. 2007;41:404–9. [DOI] [PubMed]
- 35. Gyekis JP, Yu W, Dong S, Wang H, Qian J, Kota P, et al. No association of genetic variants in BDNF with major depression: a meta- and gene-based analysis. Am J Med Genet B Neuropsychiatr Genet. 2013; 162B:61–70. [DOI] [PubMed] [PMC]
- 36. Gujral S, Manuck SB, Ferrell RE, Flory JD, Erickson KI. The BDNF Val66Met polymorphism does not moderate the effect of self-reported physical activity on depressive symptoms in midlife. Psychiatry Res. 2014;218:93–7. [DOI] [PubMed] [PMC]
- 37. Domschke K, Lawford B, Laje G, Berger K, Young R, Morris P, et al. Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. Int J Neuropsychopharmacol. 2010;13:93–101. [DOI] [PubMed]
- 38. Mojtabavi H, Shaka Z, Momtazmanesh S, Ajdari A, Rezaei N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J Transl Med. 2022; 20:126. [DOI] [PubMed] [PMC]
- 39. Groves JO. Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry. 2007;12: 1079–88. [DOI] [PubMed]
- 40. Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2011;32:3–11. [DOI] [PubMed] [PMC]
- 41. Tramontina J, Frey BN, Andreazza AC, Zandona M, Santin A, Kapczinski F. Val66met polymorphism and serum brain-derived neurotrophic factor levels in bipolar disorder. Mol Psychiatry. 2007;12: 230–1. [DOI] [PubMed]
- 42. Lang UE, Hellweg R, Sander T, Gallinat J. The Met allele of the BDNF Val66Met polymorphism is associated with increased BDNF serum concentrations. Mol Psychiatry. 2009;14:120–2. [DOI] [PubMed]
- 43. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54:70–5. [DOI] [PubMed]
- 44. Fan J, Chen D, Wang N, Su R, Li H, Ma H, et al. Negative relationship between brain-derived neurotrophic factor (BDNF) and attention: A possible elevation in BDNF level among high-altitude migrants. Front Neurol. 2023;14:1144959. [DOI] [PubMed] [PMC]
- 45. Aljuhni R, Cleland BT, Roth S, Madhavan S. Genetic polymorphisms for BDNF, COMT, and APOE do not affect gait or ankle motor control in chronic stroke: A preliminary cross-sectional study. Top Stroke Rehabil. 2021;28:72–80. [DOI] [PubMed] [PMC]

- 46. Di Pino G, Pellegrino G, Capone F, Assenza G, Florio L, Falato E, et al. Val66Met BDNF Polymorphism Implies a Different Way to Recover From Stroke Rather Than a Worse Overall Recoverability. Neurorehabil Neural Repair. 2016;30:3–8. [DOI] [PubMed]
- 47. Liu X, Fang JC, Zhi XY, Yan QY, Zhu H, Xie J. The Influence of Val66Met Polymorphism in Brain-Derived Neurotrophic Factor on Stroke Recovery Outcome: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair. 2021;35:550–60. [DOI] [PubMed]
- 48. Han Z, Qi L, Xu Q, Xu M, Cai L, Wong J, et al. *BDNF* Met allele Is Associated With Lower Cognitive Function in Poststroke Rehabilitation. Neurorehabil Neural Repair. 2020;34:247–59. [DOI] [PubMed]
- 49. Parsian A, Sinha R, Racette B, Zhao JH, Perlmutter JS. Association of a variation in the promoter region of the brain-derived neurotrophic factor gene with familial Parkinson's disease. Parkinsonism Relat Disord. 2004;10:213–9. [DOI] [PubMed]
- 50. Fukumoto N, Fujii T, Combarros O, Kamboh MI, Tsai SJ, Matsushita S, et al. Sexually dimorphic effect of the Val66Met polymorphism of BDNF on susceptibility to Alzheimer's disease: New data and meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:235–42. [DOI] [PubMed]
- 51. Pivac N, Kim B, Nedić G, Joo YH, Kozarić-Kovacić D, Hong JP, et al. Ethnic differences in brain-derived neurotrophic factor Val66Met polymorphism in Croatian and Korean healthy participants. Croat Med J. 2009;50:43–8. [DOI] [PubMed] [PMC]
- 52. Rodier M, Quirié A, Prigent-Tessier A, Béjot Y, Jacquin A, Mossiat C, et al. Relevance of Post-Stroke Circulating BDNF Levels as a Prognostic Biomarker of Stroke Outcome. Impact of rt-PA Treatment. PLoS One. 2015;10:e0140668. [DOI] [PubMed] [PMC]
- 53. Arboix A. Lacunar infarct and cognitive decline. Expert Rev Neurother. 2011;11:1251–4. [DOI] [PubMed]