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Abstract
Recent progress in translational neuroscience has significantly advanced our understanding of neurological 
diseases. Research progress closely went in line with innovations in research methods, which have 
expanded our insights considerably beyond previous limits. However, despite the development of disease-
modifying treatments, therapeutic options in brain diseases still lag behind fundamental discoveries in 
basic neuroscience. This perspective examines the factors that hinder clinical progress in translational 
neuroscience and provides solutions on how to overcome them. Editorial board members of Exploration of 
Neuroscience were interrogated about the most prominent challenges they see in translational 
neuroscience and about possible ways to overcome these issues. Key challenges were seen at the interface 
between experimental research and clinical studies by several members, both from the basic and applied 
neuroscience fields, which include the selection of appropriate study readouts and endpoints. The 
establishment of refined study endpoints, combined with biomarkers capable of predicting treatment 
responses in human patients, will be crucial for the successful clinical implementation of new therapies. 
Further obstacles were found in the standardization of experimental models, interventions, and 
assessments both in animals and humans, as well as in the development of personalized treatment 
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strategies. These challenges can be addressed through more clearly defined experimental procedures that 
closely match clinical conditions and precision-based approaches that ensure efficient therapeutic 
responses. As a great opportunity, treatment options targeting pathophysiological processes in multiple 
brain diseases and disease processes in different organ systems were noted. Significant barriers remain in 
the funding of investigator-driven clinical trials through public research programs, as well as the education 
of translational and clinician scientists dedicated to clinical translation. Enhanced communication between 
experimental neuroscientists and clinicians, with a shared understanding and common language, will be 
essential for the success of future research endeavors.

Keywords
Clinical endpoint, translation bottleneck, experimental models, neurological therapy, pharmacological 
therapy, translation concept

Recent developments in the treatment of brain diseases
Treatment options have made significant advances in numerous brain diseases in recent years. As a result, 
many conditions that previously lacked causative, disease-modifying therapies are now amenable to such 
treatments. In ischemic stroke, for example, reperfusion therapies meanwhile allow enabling the 
recanalization of occluded arteries. Mechanical thrombectomy and the extension of the boundaries of 
intravenous thrombolysis have greatly improved patient management, with a major impact on brain 
damage, neurological outcome, and stroke survival [1, 2]. In multiple sclerosis, immunomodulatory 
treatments that dampen brain inflammatory responses were shown to reduce disease relapses and disease 
progression, with beneficial consequences for the accrual of disability [3–5]. In Alzheimer’s disease, a 
devastating neurodegenerative condition, immune therapies targeting β-amyloid (Aβ) have recently been 
found to slow down cognitive decline and enhance daily life activities, although still to a moderate extent [6, 
7]. Despite the progress made, significant neurological deficits persist in the vast majority of stroke patients 
[8], while neurodegenerative diseases still continue to progress in the long run [9] and problems with 
disability progression in multiple sclerosis remain [10].

Given these persisting clinical problems, the editorial board members of Exploration of Neuroscience 
were interrogated by the editorial office about the most prominent challenges they see in translational 
neuroscience and about possible ways to overcome them. Responses were collected. Text passages 
provided by various editorial board members were integrated into this paper, which was again circulated 
among them. Editorial board members subsequently vividly provided text amendments and changes, which 
were integrated into the presented manuscript that was again circulated for approval. Considering the 
broad composition of the group bringing together both basic and clinical neuroscientists, as well as clinical 
neurologists and psychiatrists, this paper provides a unique perspective on how to orient research in the 
translational neuroscience field.

Research methods and technologies as drivers of translational 
neuroscience advances
Clinical progress has been facilitated by significant advances in both basic and translational neuroscience, 
as the group members noted. The evolution of experimental research over the past decades has not 
followed a linear trajectory, but has followed quantum leaps paralleled by the enormous development of 
research methods, most notably in the neuroimaging and molecular biology fields [11]. The spatial 
resolution of biological processes was, for a long time, restricted by the resolution limits of light 
microscopy. These limits were overcome by superresolution microscopy (including expansion microscopy) 
[12] and cryo-electron microscopy [13], allowing spatial resolution at molecular and even up to atomic 
levels. The analysis of physiological processes was greatly facilitated by intravital microscopy (e.g., 
multiphoton microscopy [14, 15]) and in humans by magnetic resonance imaging (MRI) and positron 
emission tomography (PET) [16].
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Breakthroughs in genetics have profoundly reshaped our understanding of several neurodegenerative 
and neuromuscular diseases, not only enabling earlier and more accurate diagnoses, but also paving the 
way for targeted therapeutic strategies. Landmark examples include antisense oligonucleotide therapies 
and gene replacement approaches, such as those successfully developed for spinal muscular atrophy (SMA) 
[17] and metachromatic leukodystrophy [18]. Gene cloning by CRISPR/Cas9, chemogenetic and optogenetic 
tools meanwhile allow manipulating defined neuronal cell types and pathways with high precision [19, 20]. 
More recently, advances in transcriptomics and proteomics facilitated our understanding of cellular 
signaling networks [21, 22]. Metabolomics help elucidating structure-function relationships [23], while 
information from different imaging modalities (e.g., multilabel fluorescence microscopy and spatial 
proteomics) can be co-registered by multiplex imaging [24]. The processing of research data is substantially 
enhanced by artificial intelligence (AI; e.g., deep learning) strategies, allowing the extraction of features 
from large data sets that hitherto escaped the attention of scientists [25]. AI will greatly simplify and 
improve the diagnosis of brain diseases in expert systems in the future. Its clinical success will greatly 
depend on human capacities to train AI algorithms and of AI experts and clinical doctors to interpret AI 
findings. The possibility to share entire multiomics datasets and to perform multiple analyses by different 
groups further boosted research in a collaborative manner. The use of advanced multiomics approaches 
(NULISAseq, OLINK, Somascan) for biomarker assessments advanced our knowledge, yet without being 
translated into clinics until now.

Challenges in clinical translation
Considering the significant advances in experimental research, progress in clinical medicine still lags 
behind, the group members found. Have we truly grasped the nature of brain diseases in the animal models 
we use in experimental neuroscience, which in many aspects do not fully replicate human disease 
conditions? In the ischemic stroke and Alzheimer’s disease fields, recent progress in clinical patient 
management was preceded by a myriad of randomized controlled phase II and III study failures. In ischemic 
stroke, several studies aimed at establishing neuroprotective drugs [26, 27]. Aspects of treatment timing, 
drug delivery across the blood-brain barrier, which efficiently prevents the brain accumulation of drugs, 
and dose selection are likely responsible for a large number of study failures [28, 29]. In Alzheimer’s 
disease, the majority of studies focused on the prevention of Aβ aggregation or plaque formation [9, 30], 
which is thought to represent a central component of disease pathogenesis. Yet, it actually turns out that 
the etiology of Alzheimer’s disease is still not entirely understood. Experimental findings meanwhile 
challenged the Aβ cascade hypothesis of Alzheimer’s disease (see section “Modeling of brain diseases in a 
clinically relevant way” in Table 1). New pathophysiological concepts have recently been explored, some of 
which focus on the cerebral microvasculature [31–33], inflammation [34–36] and chronic infection [37–39] 
as disease mechanisms. Further technological advancements in human imaging—not only through the 
development of higher-resolution CT and MRI machines and novel techniques such as photon-counting, but 
also through the integration of automated and advanced image-analysis tools—represent a powerful means 
to deepen pathophysiological insights into complex brain diseases, such as Alzheimer’s disease. These 
innovations also enable more effective patient stratification, helping to distinguish responders from non-
responders across a wide range of therapeutic approaches.

Modeling of brain diseases in a clinically relevant way
A particularly important limitation of animal research is the genetic and environmental homogeneity of 
animal models, in particular mouse models, which contrasts with the diversity found in human populations 
and can limit the translational relevance of findings (section “Modeling of brain diseases in a clinically 
relevant way” in Table 1). Homogeneity refers to the use of genetically inbred mice of the same sex and age 
(mostly young male mice), exposed to highly standardized nutritional (i.e., standardized chow), hygiene 
(i.e., specific pathogen free, SPF) and social (i.e., small uniform cages with few play items) environments 
with highly controlled temperature and light cycles. This homogeneity is designed to reduce variability in 
experiments and increase statistical power. Furthermore, animal models often represent monogenic 
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Table 1. Prominent challenges in translational neuroscience and strategic solutions

Translation aspect Challenges Solutions

Modeling of brain diseases in a 
clinically relevant way

Prevailing disease concepts (e.g., Aβ cascade hypothesis of 
Alzheimer’s disease [6, 7]) impede focus of additional disease 
pathomechanisms, which remain understudied but might represent 
more promising therapeutic targets

•

Uniform and monogenic disease models do not reflect multifactorial 
and polygenetic nature of human diseases (e.g., transient 
intraluminal middle cerebral artery occlusion for ischemic stroke, 
transgenic Alzheimer’s models)

•

Homogeneity of laboratory animals, which are typically inbred, 
young, male and otherwise healthy. Homogeneity contrasts human 
genetic diversity, age and risk factors, and comorbidities of human 
patients

•

Animal genetics does not predispose to human disease processes•
Animal models do not mimic life habits, nutritional, hygiene and 
social environments of humans

•

Lack of standardization of animal models between research 
laboratories

•

Elucidate additional pathomechanisms and their utility as treatment targets (e.g., 
role of microvasculature [31–33] and inflammation [34–36] in Alzheimer’s 
disease)

•

Use more complex disease models (e.g., thromboembolic model of ischemic 
stroke, Alzheimer’s models that involve vascular pathology)

•

Use of outbred animals, aged animals, animals of both sexes, animals with risk 
factors and comorbidities [45, 64], animals from diverse genetic reference 
panels (e.g., Collaborative Cross) [42, 43]

•

Use of human organoids, iPSC-derived neurons, patient-derived grafts or 
humanized animals as research objects

•

Model environmental factors in animals (e.g., enriched environments), consider 
so-called exposomes [40, 41] in data analysis

•

Standardized procedures, joint training in workshops [44]•

Selecting meaningful clinical 
readouts in animals

Observer-based symptom-oriented clinical (neurological/psychiatric) 
scales/tests in animals do not mimic patient-centered disability 
endpoints in humans; daily-life relevance mostly unclear

•

Animal studies frequently based on small or biased cohorts that are 
insufficiently powered

•

Lack of standardization of animal behavioral testing procedures 
between laboratories

•

Disparity cannot easily be resolved [48], tests in animals should as closely as 
possible evaluate daily-life relevant contents

•

Adequately powered cohorts, stringent randomization and blinding•
Standardized procedures, joint training in workshops•

Selecting meaningful clinical 
endpoints in humans

Clinical scores do not appropriately measure disease stage (e.g., 
UPDRS) or are liable to bias by chance (e.g., EDSS) or memory 
errors (e.g., CDR), which limits data reliability/validity

•

Use of grossly granulated scales unable to reveal fine improvements 
(e.g., mRS)

•

Randomized controlled trials often postulating optimistic effect sizes 
of treatments

•

Refine scales or develop patient-centered tools, for which reliability/validity is 
thoroughly tested

•

Develop more finely granulated scales in interaction with drug authorities (i.e., 
FDA, EMA)

•

More realistic effect size assessments, which require larger studies•

Classical histochemical and molecular biological tools face limitations 
in spatial resolution and temporal sensitivity

• In vivo imaging (e.g., multiphoton microscopy [14, 15], PET [16]) enables time-
resolved assessments, superresolution microscopy [12] and cryo-electron 
microscopy [13] exceeds spatial resolution limits

•Characterizing structural and 
functional tissue responses
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Table 1. Prominent challenges in translational neuroscience and strategic solutions (continued)

Translation aspect Challenges Solutions

Classical histochemical and molecular biological tools unable to 
capture cellular heterogeneity

•

Brain tissue assessments neglect systemic disease processes•
Brain tissue assessments frequently neglect undesirable side effects•

Single cell multiomics allows deep tissue phenotyping, linking cell phenotypes 
and functional states [21, 22]; need of conceptual data integration framework

•

Characterize systemic immune involvement and remote organ interactions (e.g., 
brain-heart axis, brain-gut axis)

•

Refined concepts to detect safety risks and side effects•
Bridging experimental and clinical 
studies by biomarkers

Frequent lack of brain biomarkers in humans capable to validate 
pathophysiological concepts in phase IIa studies before large scale 
efficacy trials

• Reinforce biomarker development, search for non-invasive biomarkers, replace 
brain biomarkers by CSF or blood biomarkers where adequate, select promising 
treatments for clinical translation based on suitable biomarker existence

•

Challenges associated with 
research findings from single 
laboratories or single clinical 
departments

Single center research findings carry risk of lack of replication in 
other places due to lab-specific model or center-specific patient 
characteristics

•

Single center studies restricted regarding animal or patient numbers 
recruited, data sets of moderate size providing gross efficacy 
assessments only

•

Highly heterogeneous brain diseases or patient populations 
underrepresented in clinical trials, particularly in single center studies

•

Funding of multicenter studies recently saw significant cuts in some 
countries due to political developments, which put at risk 
collaborative research activities

•

Collaborative multicenter consortia able to validate concepts across models or 
populations

•

Multicenter studies allow identifying hidden patterns in large data sets, enabling 
refined efficacy assessments

•

Multicenter, including community-based, studies can ensure that diverse 
populations are included, improving research generalizability. Adaptive trial 
designs allow treatment tailoring

•

Continuation of multicenter and collaborative research funding•

Development of personalized 
treatment concepts

Heterogeneity of diseases, which precludes “one-size-fits-all” 
approaches, poses therapeutic challenges

•

Immediate effects observed in single patients not always translate 
into sustained clinical improvements

•

Widespread translation of treatments into clinical practice often 
limited [92], need for specialized equipment and trained personnel 
posing challenges [93]

•

Advanced neuroimaging (e.g., fMRI) and neurophysiological assessments (e.g., 
high-density EEG) can help identifying therapeutic targets amenable for 
personalized therapy [83, 84]

•

Chronicity of disorder, age and sex differences, compensatory mechanisms, 
interaction with other treatments, and treatment timing need to be taken into 
account; combination with other therapeutic modalities (e.g., pharmacotherapy, 
psychotherapy, cognitive training) may allow sustained responses

•

Evidence-based guidelines and standardized protocols, rigorous cost-
effectiveness analyses, user-friendly training programs

•

Disease-overarching biological 
principles or therapeutic activities 
as opportunity for treatment 
development

Highly subdivided therapeutic landscape impedes larger scale 
progress in translational neuroscience

•

Targeting the brain insufficient in diseases with strong systemic 
pathophysiology or diseases exhibiting strong remote organ (e.g., 
brain-heart) interactions

•

Choose shared disease mechanisms that are common to a wide range of brain 
diseases as therapeutic target (e.g., proinflammatory responses associated with 
neurodegenerative processes)

•

Treat systemic disease process that underlies the brain pathology (e.g., cardiac 
dysfunction, macroangiopathy or microangiopathy in stroke)

•
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conditions (e.g., in Alzheimer’s disease or amyotrophic lateral sclerosis, ALS). However, neurological 
diseases in humans are mostly polygenic and multifactorial in origin. Single-gene models or chemically 
induced disease states rarely capture the full complexity. Humans have a large genetic diversity including 
racial/ ethnic variety. Disease processes in humans manifest and progress differently across sexes, ages, 
and ethnic groups and are modified and conditioned by a large number of environmental factors, life habits, 
nutrition, behavioral influences, and by comorbid diseases, which predispose to neurological disease 
development. None of these factors is reflected in uniform animal models. Several neurological diseases 
primarily affect elderly human subjects that suffer from age-related risk factors or comorbid diseases. 
Experimental studies in young, otherwise healthy rodents, which are often exclusively male, poorly reflect 
these disease conditions. On the other hand, they are still better than transgenic models, where pathology is 
artificially and unnaturally forced. It is therefore not surprising that experimental disease models 
insufficiently mimic human disease conditions and may foster the focus on less relevant pathophysiological 
concepts. Greater attention is needed in animal research to age and sex differences, as well as the role of 
risk factors and comorbidities. In human research focusing on disease prevention, large-scale longitudinal 
cohort designs are widely used. Similar designs in animals would require the use of outbred instead of 
inbred animal strains. Studies in outbred strains are rarely performed in animals due to the larger data 
variability that would be associated with larger sample size and high resource use. To account for multiple 
influence factors, specifically of environmental influences, so-called exposomes have been proposed for 
facilitating our understanding of several neurological diseases [40, 41]. Exposomes represent the totality of 
environmental exposures that people experience throughout their lives, and how those exposures relate to 
their health. The gene-time-environment hypothesis posits that disease onset occurs through an interaction 
of genes with environmental exposures during ageing, while the multistep model suggests that several hits, 
at least some of which could be environmental, are required to trigger disease onset, even in the presence 
of highly penetrant mutations of genetically inherited diseases [40].

In experimental research, human-derived in vitro systems like brain organoids, induced pluripotent 
stem cell (iPSC)-derived neurons, patient-derived xenografts or humanized animals recently allowed for 
patient-specific disease modeling and move the research toward more complex models. Using outbred 
animal populations, diverse genetic reference panels such as like the Collaborative Cross in mice [42, 43], 
incorporation of both sexes and different age cohorts coupled with varied environments into experimental 
design can be decisive factors in translational research. Advanced imaging and biomarker development can 
provide non-invasive tools to validate disease mechanisms and longitudinally track disease progression in 
humans. Computational neuroscience and AI-based modeling can help integrate data across species to 
identify conserved mechanisms that are more likely to translate. The use of human disease models in a dish, 
on the other hand, poses ethical questions, which still require collective resolution by the scientific 
community. There is a lack of standardization of experimental models (ensuring reproducibility and data 
comparability) between different laboratories in translational neuroscience. This lack impedes the transfer 
of findings between labs. Standard procedures and joint training in workshops allow increasing the 
consistency of experimental model systems [44]. Experimental studies in animals should rigorously 
consider the nature of exploratory versus confirmative assessments in preclinical studies to rule out that 
treatment strategies are translated into clinics based on preliminary findings, findings obtained in model 
system with low external validity, or studies prone to type II statistical errors (i.e., mistakenly rejecting the 
null hypothesis). Studies should be performed in at least two species from, if possible, at least two 
laboratories, and where available at least two animal models should be used for mimicking complementary 
aspects of disease pathology [45]. The impact of relevant comorbidities should be considered in 
confirmative and translational studies [29, 46].

An important shortcoming of animal models is the inability to reliably mirror adverse drug reactions. 
One prominent example of an opportunistic central nervous system (CNS)-infection occurring under 
different immunotherapies in multiple sclerosis is progressive multifocal leukencephalopathy (PML) [47]. 
This rare, but severe side effect was not forecast in mechanistic studies in animal models, and likewise thus 
far there is a lack of a reliable animal model of PML. Similar examples exist in other disease areas.
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Selecting meaningful clinical readouts in animals
The demonstration of therapeutic efficacy critically depends on well-defined clinical scales and tests with 
proven reliability and validity (section “Selecting meaningful clinical readouts in animals” in Table 1). In 
experimental studies, observer-based scales and tests are generally used for evaluating the therapeutic 
activity of treatments. Of note, the improvement of clinical symptoms is not sufficient for demonstrating 
therapeutic efficacy in human patients. Instead, treatments must bring meaningful daily-life improvements 
that outweigh possible treatment side effects to be acceptable for clinical use. For this reason, drug 
authorities usually request patient-centered disability endpoints [48]. There are finely tuned scores and 
tests available in animals able to discriminate disease severities with high confidence. Yet, the nature of 
evidence of these readouts fundamentally differs from human endpoints. Since these tests are symptom-
oriented, not disability-oriented, a fundamental disparity exists between preclinical and clinical measures, 
complicating translation efforts [48]. Several group members pointed out that there is a lack of 
standardization in behavioral testing procedures in translational neuroscience, results not rarely being 
based on small or biased samples with limited reliability or validity. This lack impedes the transfer of 
research findings between laboratories. Standardized procedures and joint training may again enhance 
consistencies [44].

Selecting meaningful clinical endpoints in humans
Not only the selection of experimental readouts, but also that of clinical endpoints in humans poses 
unresolved challenges (section “Selecting meaningful clinical endpoints in humans” in Table 1), the group 
members noted. While some outcome measures—such as survival in ALS—are undoubtedly objective, they 
are poorly compatible with the practical constraints of clinical trials, which require shorter observation 
periods and cost containment. Conversely, commonly used clinical scales often fail to meet fundamental 
validity and reliability standards, as highlighted, for instance, by the ALS Functional Rating Scale-Revised 
(ALSFRS-R) [49] or the expanded disability status scale (EDSS) [50]. A weakness of some scores is that they 
do not appropriately measure disease stage (e.g., unified Parkinson’s disease rating scale, UPDRS, in 
Parkinson’s disease [51]) or when they try to approximate it, they are liable to bias by chance (e.g., EDSS) or 
memory errors (e.g., “sum-of-boxes” in clinical dementia rating scale, CDR). Yet they continue to be widely 
adopted in the recent past.

Pharmacological trials in humans often use grossly granulated disability scales as primary endpoint 
[48]. A frequently used global disability scale is the modified Rankin scale (mRS), which has low granularity 
(score ranges from 0–6). Although the mRS was established for revealing therapeutic improvements when 
treating large vessel occlusion stroke, its few categories do not allow for detecting smaller yet highly 
relevant stroke outcome changes [52]. It also neglects mental health aspects in stroke outcome, for 
instance, fatigue or cognitive impairment. Large patient numbers are required to demonstrate statistically 
significant differences in disease outcome based on mRS scores [48]. Statistical sample size assessments in 
clinical trials are often optimistic regarding expected effect sizes. To validate drug actions, the European 
Medicines Agency (EMA) has a preference for binary outcomes (i.e., good versus poor recovery) over 
ordinal outcomes (i.e., absolute scores) (https://www.ema.europa.eu/en/documents/scientific-guideline/
points-consider-clinical-investigation-medicinal-products-treatment-acute-stroke_en.pdf). The Food and 
Drug Administration (FDA), on the other hand, encourages patient-reported assessments, which weigh 
benefits based on patient judgments (https://www.fda.gov/media/77832/download). Binary endpoints 
are highly arbitrary in their cutoff definition. They reduce biological information and increase the study’s 
sample size. Both strategies cannot easily be reconciled in single clinical trials, since choices must be taken 
regarding the primary endpoint used.

Meaningful clinical endpoints should match as closely as possible to preclinical findings, evaluate 
benefits that are functionally meaningful in daily life, measure abilities that are tightly linked to 
neurological impairments and sufficiently grade results for reflecting treatment success in the target 
population, which clearly argues against gross scales [48]. The group members identified a major need for 

https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-clinical-investigation-medicinal-products-treatment-acute-stroke_en.pdf
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https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-clinical-investigation-medicinal-products-treatment-acute-stroke_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-clinical-investigation-medicinal-products-treatment-acute-stroke_en.pdf
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refined endpoints in future pharmacological trials. Patient-reported outcomes are so far underdeveloped in 
many neurological and psychiatric fields. They should carefully consider social aspects and aspects of 
quality of life. The development of refined clinical endpoints will crucially depend on deepened 
communication between study investigators and drug agencies. The latter should bring up the courage to 
go new ways. In human studies, endpoints should include ratings by clinicians, patients, and caregivers, 
which is done in few disease areas at present. An exception are epilepsy trials, in which patient and 
caregiver diaries noting seizure type and frequency are traditionally used as clinical endpoints for FDA 
approval. In the epilepsy field, electronic devices and longterm video-EEGs are meanwhile considered more 
objective and reliable in drug evaluation [53]. In certain clinical pathologies, such as tinnitus, the 
determination of clinical endpoints is particularly challenging, since these pathologies are associated with 
purely subjective symptoms for which there are still no objectively measurable correlates. Even though 
more difficult to evaluate, study endpoints should also include open response formats so that they are not 
restricted to predefined assumptions.

Characterizing structural and functional tissue responses
Classical histochemical and molecular biological tools have provided valuable insights into tissue 
responses, treatment efficacy, and underlying mechanisms, particularly through measures such as tissue 
volume in ischemic stroke and neurodegeneration studies. However, these approaches face limitations in 
spatial resolution, temporal sensitivity, and the ability to capture cellular heterogeneity (section 
“Characterizing structural and functional tissue responses” in Table 1).

The advent of advanced in vivo imaging modalities like multiphoton microscopy, MRI, and PET has 
begun to address some of these limitations by enabling time-resolved analysis of disease progression and 
therapy response. Yet, these techniques are constrained by tissue penetration depth and spatial resolution, 
restricting their insights to specific brain regions and cellular environments. Modern hybrid imaging 
approaches may help to overcome this situation [54].

Recent breakthroughs in multi-omics approaches—including transcriptomics and proteomics—at the 
single-cell level have transformed our capacity for deep tissue phenotyping. These methodologies unveil 
cellular heterogeneity previously obscured in bulk analyses, exposing distinct cellular states, functional 
modules, and subtle differences in cellular behaviour that are critical for understanding complex tissue 
responses [21, 22]. Applying single-cell analyses in tissues allows us to identify and characterize previously 
neglected heterogeneities, such as distinct immune cell subsets, degenerated neurons, or regenerative 
cellular niches [21, 31]. These insights are crucial for making precise correlations between cellular states—
such as activation, quiescence, or apoptosis—and tissue features like inflammation, degeneration, and 
regeneration. This granular understanding enhances the ability to link cellular phenotypes directly to 
functional tissue outcomes and disease processes. The integration of single-cell transcriptomics and 
proteomics within disease models opens new avenues for extracting novel information on disease 
mechanisms and therapeutic targets. It facilitates the identification of cellular functional modules 
associated with specific pathological features, enabling the development of more precise, mechanism-based 
interventions. Single cell multiomics allow dissecting cell biological processes with unprecedented 
precision and information depth, and have the potential to become a standard research language in 
neuroscience [21]. At the same time, this will require the development of conceptual frameworks and a 
solid understanding of how to integrate data in a meaningful way for clinical applications, as the group 
members also stated.

Of note, neurological diseases in many cases are not purely CNS disorders, but have underlying 
systemic, multi-organ mechanisms that contribute to disease development. Examples include the role of 
immune responses in ischemic stroke, neuroinflammatory and neurodegenerative diseases, which turned 
out to be promising targets for immunomodulatory treatments in the recent past [55]. Remote organ 
interactions (e.g., brain-heart axis, brain-gut axis, brain-liver axis) were found to modulate disease recovery 
processes as well as the brain’s responses to drugs [56, 57]. Immune mechanisms, extracellular vesicle-
mediated processes, and sympathetic/parasympathetic nerve systems are key drivers of remote organ 
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interactions [56]. In the gastrointestinal system, the microbiome was found to have a crucial impact on 
immune responses, which critically influences enteric nervous system (ENS) function [58] and CNS disease 
[59]. There is a lack of standardized methods to reliably assess remote organ interactions (e.g., with the 
heart or gastrointestinal system) in brain disease models. Future studies will have to define toolboxes 
enabling a proper classification of organ networks providing a framework for meaningful translation 
studies.

As a shortcoming with particularly serious consequences for translation success, there is a lack of 
biological readouts enabling the assessment of possible adverse drug actions in translational neuroscience. 
Some side effects (e.g., brain hemorrhages after ischemic stroke) are difficult to assess in small animal 
models or require dedicated focus to detect them [60]. Also, subtle evidence needs to be taken seriously, 
since it may have significant implications for patients [60]. In many cases, side effects that initially seemed 
minor later resulted in devastating disease outcomes of clinical trials [61], outcomes that could have been 
anticipated based on prior animal studies [62]. Possible interactions with drugs, including drugs 
administered for other medical conditions, need to be considered carefully. An example is laxatives, which 
have multiple interactions with other drugs [63]. The scientific community will have to develop more 
refined concepts to detect safety risks and side effects of new treatments. For ensuring the rigidity of data, 
publication media should ensure that research adheres to established guidelines (e.g., STAIR, STEPS, 
RIGOR) [45, 64] via upload of checklists along with publications.

Bridging experimental and clinical studies by biomarkers
In the translation of research findings from the bench to the bedside, biomarkers are a powerful tool to 
evaluate the successful transfer of a therapeutic concept from one species to another, and from animals to 
patients, informing about the biological effects of an intervention. A major advantage of biomarker-
centered phase IIa clinical studies is that they typically require much smaller patient cohorts than phase IIb 
and phase III efficacy trials, which are also significantly more expensive, longer in duration and complex. 
Phase IIa studies are particularly suitable for linking experimental and clinical studies. A good example is 
phase IIa trials in multiple sclerosis based on MRI outcome parameters. Another example is 
photoparoxysmal EEG responses as outcome in phase IIa epilepsy trials [65]. Successful phase IIa 
biomarker studies, however, do not exclude that treatments successful in biomarker studies subsequently 
fail in phase III clinical endpoint trials [66]. In translational neuroscience, the lack of biomarkers that bridge 
preclinical and clinical studies is a major bottleneck that hampers research progress (section “Bridging 
experimental and clinical studies by biomarkers” in Table 1), as group members noted. In many 
neurological conditions, we lack direct access to the brain, making it difficult to validate pathomechanistic 
hypotheses derived from animal models in small-sized human studies. As a result, large, expensive phase 
IIb and phase III studies are then required to assess clinical efficacy in the absence of intermediary 
biomarkers. Surrogate markers in the cerebrospinal fluid (CSF) or blood may help overcoming existing 
limitations related to the unavailability of brain tissue sampling. Among these, immune and protein-based 
biomarkers in the CSF and blood show great promise in bridging the gap between experimental and clinical 
studies and testing the validity of therapeutic concepts [67, 68]. Besides clinically established markers such 
as CSF Aβ and tau protein [6, 67, 69], neurofilaments, specifically neurofilament light chain (NfL) levels, are 
emerging as robust biomarkers of neurodegeneration with a growing role in both patient stratification, 
disease progression, and therapeutic response monitoring [70–72]. miRNAs have also been studied, mostly 
in experimental and recently also in disease contexts [73]. Their clinical value still remains to be shown. In 
addition to CSF and blood biomarkers, MRI (e.g., chemical exchange saturation transfer MRI, CEST-MRI [74, 
75]) and PET (e.g., Aβ or tau PET [76]) techniques allow providing non-invasive information about brain 
disease processes, including brain metabolism (e.g., CEST-MRI) or molecular pathologies (e.g., Aβ or tau 
PET), which can replace direct brain tissue measurements and can be used as patient stratification 
biomarkers. While Aβ and tau PET are already clinically established in Alzheimer’s disease management 
[76], the predictive value of several other imaging biomarkers remains to be scrutinized.
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A huge obstacle in brain diseases that impedes the successful implementation of treatment concepts is 
the exceedingly long time required to move from a promising research finding to a clinical therapeutic or 
drug. Considering advances of patient management, this long time span carries the risk of obsolescence in 
fast-evolving research fields. In case of rare diseases, the variability of disease outcomes and low 
reproducibility of treatment actions impose clinical translation challenges. Patient post-approval registries 
are the procedure of choice to overcome shortcomings of statistical power in such clinical settings.

Challenges associated with research findings from single laboratories or 
single clinical departments
A serious pitfall in translational research is study bias attributed to research findings in single laboratories 
or clinical environments, which cannot be replicated in other places (section “Challenges associated with 
research findings from single laboratories or single clinical departments” in Table 1), the group members 
furthermore found. Promoting collaborative consortia in experimental research (e.g., bicenter or 
multicenter preclinical studies, studies involving more than one species and animal model) and clinical 
research (e.g., NIH BRAIN Initiative, Human Connectome Project, ENIGMA Consortium) helps to validate 
treatments across different models and populations. The availability of large datasets is another driver for 
neuroscience evidence validation and replication (e.g., UK Biobank, ADNI, ABIDE). Precision medicine 
approaches using genomics, transcriptomics, and neuroimaging to stratify patients into biologically 
relevant subgroups will be the way of the future. Big data and machine learning will be a tool to identify 
hidden patterns across patient data that can inform new diagnostic or therapeutic targets. However, such 
data analysis should not neglect the nature and quality of the underlying data source. This can be an issue in 
neuroepidemiology, where large sets of poorly characterized data carry the risk that data are not up to the 
task [77]. Data quality issues can significantly distort scientific outcomes in neuroepidemiology, as has been 
demonstrated [78, 79], which may yield wrong leads for clinical testing. A novel way on how to conduct 
clinical trials is the development of adaptive clinical trial designs that allow treatments to be tailored or 
adjusted based on individual patient responses. This strategy allows the involvement of highly 
heterogeneous brain diseases or patient populations that have seen insufficient involvement in clinical 
research in the past. Multicenter or community-based research can ensure that underrepresented and 
diverse populations are included, improving research generalizability.

Scientific networks as clue to the successful implementation of new 
research concepts
Unfortunately, due to recent political developments, research funding in some countries (e.g., U.S.A.) has 
seen significant cuts or, in some cases, has been completely cancelled, which a number of group members 
identified to represent a major challenge in their field (section “Challenges associated with research 
findings from single laboratories or single clinical departments” in Table 1). The NIH BRAIN Initiative, for 
example, had already experienced substantial reductions of funding in the recent past and now again faces 
significant cuts. The Human Brain Cell Atlas of the NIH BRAIN Initiative is designed to understand the 
complexity and heterogeneity of human brain cell types to improve disease modeling and therapeutic 
targeting. The NIH BRAIN Initiative has funded a comprehensive project to map the diversity of human 
brain cells, resulting in a detailed atlas that identifies many cell types across various brain regions. This 
atlas enhances our understanding of the cellular composition of the human brain and its relation to 
neurological disorders. Since the atlas serves as a critical tool for researchers aiming to develop precise 
interventions for brain diseases, which facilitate the translation of basic research into clinical applications, 
the atlas is another means to address and overcome challenges in translational neuroscience. It would be a 
major damage to the scientific community if such activities could not be continued in the longer run.

Collaborative projects require larger scale research funding. The German Research Council (Deutsche 
Forschungsgemeinschaft, DFG), for example, supports Collaborative Research Centers (CRC) or Research 
Groups involving researchers across the country that support both basic and translational neuroscience 



Explor Neurosci. 2025;4:1006106 | https://doi.org/10.37349/en.2025.1006106 Page 12

projects over time-windows of up to 12 and 8 years, respectively. This type of funding enables larger scale 
research endeavors in defined research fields. An example is the CRC TRR332 “Neutrophils: Origin, fate and 
function” (www.neutrophils.de),  which comprises research activities in the polymorphonuclear neutrophil 
field that bridge basic and translational research including neuroscience using advanced multiomics tools 
combined with clinically relevant disease models and functional assays. By generating research synergies, 
collaborative research projects of different universities can create particular dynamic research 
environments. One example to address problems in translational neuroscience is the NeuroTech Harbor 
Howard – Johns Hopkins partnership. NeuroTech Harbor (https://neurotechharbor.org/) is a collaborative 
technology accelerator between Howard University (Washington, D.C.) and Johns Hopkins University 
(Baltimore, MD) funded by NIH through the Blueprint MedTech program. It aims to expedite the 
development of medical devices for diagnosing and treating neurological disorders such as Alzheimer’s 
disease, Parkinson’s disease, stroke, and addiction. The initiative emphasizes inclusivity by supporting 
underrepresented innovators and ensuring that developed technologies are accessible to diverse 
communities. It would matter significantly, if such programs had to be stopped due to discontinuation of 
research funding.

Development of personalized treatment concepts
Customized personalized treatments employing precision medicine approaches are the strategy of choice in 
heterogeneous therapeutic areas, in which “one-size-fits-all” approaches are not feasible or unlikely to be 
effective. A typical example of a therapy which is widely administered in such areas is non-invasive brain 
stimulation (NIBS) [80–82]. The heterogeneity of diseases poses therapeutic challenges (section 
“Development of personalized treatment concepts” in Table 1). Herein, advanced neuroimaging (e.g., fMRI, 
voxel-based lesion analyses) and neurophysiological assessments (e.g., high-density EEG) can be used to 
identify specific neural circuit dysfunctions in individual patients as a basis for personalized therapy [83, 
84]. Computational modeling can help defining stimulation parameters (e.g., target location, intensity, 
frequency, duration) to optimally modulate these circuits. In this complex but fascinating scenario, any 
biomarker able to predict treatment responses will also help in selecting the most appropriate NIBS 
protocol for each patient. Of note, the targeted stimulation of certain, narrowly defined brain structures is 
often possible only to a limited extent. Even if there are strong hypotheses for a potential mode of action, 
technical barriers not rarely impede the clinical implementation of NIBS strategies.

While invasive deep brain stimulation is meanwhile well established in conditions like Parkinson’s 
disease [85, 86], establishing reliable and long-lasting therapeutic effects is often challenging in NIBS, and 
immediate effects of stimulation may not always translate into sustained clinical improvements (section 
“Development of personalized treatment concepts” in Table 1). Factors such as the chronicity or duration of 
the disorder, age- and sex-related differences, the occurrence of compensatory mechanisms within the 
brain, the interaction with other treatments (both pharmacological and non-pharmacological), as well as 
the timing of stimulation can influence the impact and duration of NIBS effects [87, 88]. A solution to these 
challenges might be the combination of NIBS with other therapeutic modalities, such as pharmacological 
therapy, psychotherapy, cognitive training, virtual reality [89] or augmented reality [90], which enhance 
and prolong its effects or which shift disease processes from disease chronification to resolution. 
Importantly, in the case of NIBS, treatment protocols may have to be optimized for frequency, intensity, 
duration, and number of sessions depending on target sites, based on a deeper understanding of 
neuroplasticity mechanisms. Exploring any maintenance stimulation strategy or designing “booster” 
sessions is also essential to ensure more sustained treatment benefits [91].

Clinically, despite growing evidence for the efficacy of NIBS in some neurological (e.g., stroke) and 
psychiatric conditions (e.g., major depression), the widespread translation of research findings into daily 
clinical practice is still limited [92]. Challenges include the heterogeneity of clinical conditions, the lack of 
standardized treatment protocols, and the need for specialized equipment and trained personnel [93]. Once 
established in clinical trials, evidence-based clinical guidelines and protocols are needed in specific 
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diseases, as well as rigorous cost-effectiveness analyses demonstrating the long-term benefits of 
therapeutic strategies (thus also providing support for reimbursement by healthcare providers). Training 
programs for clinicians are also required to promote the user-friendly access of clinicians to such 
treatments.

Disease-overarching biological principles or therapeutic activities as 
opportunity for treatment development
As an important overarching theme in brain diseases, the group members identified shared disease 
mechanisms that are common to a wide range of disease groups (section “Disease-overarching biological 
principles or therapeutic activities as opportunity for treatment development” in Table 1). An aspect, for 
example, which bridges neurodegenerative diseases and major depressive disorder, is subtle 
neuroinflammation [94, 95], while in ischemic stroke and traumatic brain injury, proinflammatory 
responses are a major driver of evolving brain injury [55, 96]. Moreover, inflammation-associated 
remodeling of the brain’s extracellular matrix represents a crucial, yet underexplored component of the 
pathophysiology of ischemic stroke, Huntington’s disease, and Alzheimer’s disease [97]. Proinflammatory 
responses exacerbate injury severity in a wide range of cells and tissues. Thus, the immune system gets 
locked in a prolonged defensive state, unable to resolve chronic inflammation [98]. Remarkably, strikingly 
similar proinflammatory responses have been noted in hereditary brain diseases and acquired 
neurodegenerative diseases. In all settings, neuroinflammatory processes drive disease progression and 
outcome. One aim of cell-based therapies is to resolve proinflammatory responses, helping to shift the 
immune system into a regulatory state [96]. In several diseases, such as stroke, Alzheimer’s disease and 
multiple sclerosis, this shift is essential for enabling neuroplasticity responses and brain repair [55, 98]. 
Intriguingly, the underlying cell biological principles that control immunity are conserved across species: 
Basic principles can already be found in Drosophila melanogaster [99, 100]. At first glance, these cross-
disease similarities may seem surprising. However, with a deeper look into developmental biology, it gets 
apparent that biological systems reuse core signaling pathways and molecular decision-makers to prime 
tissues for recovery [56].

Shared mechanisms may not only underlie different brain diseases, but also extend to other organs that 
exhibit diseases with very similar disease mechanisms. Of note, highly prevalent diseases, such as ischemic 
stroke, myocardial infarction, heart failure, and chronic kidney disease (CKD), are complex disorders, which 
have multiple etiologies that are shared by these different disease entities [56]. Several disease processes 
are linked to underlying macroangiopathy or microangiopathy. There are shared cell signaling pathways 
jointly activated in these disease conditions. By targeting these signaling pathways, several pharmacological 
treatments have recently been identified (e.g., SGLT2 inhibitors, such as dapagliflozin and empagliflozin; 
GLP-1 agonists, such as semaglutide), which have impressive activity in several disease states, enhancing 
long-term disease outcomes [56]. Besides the cardiovascular system, the gastrointestinal system, including 
the ENS, reveals a large number of organ interactions that profoundly modify CNS disease processes [101, 
102]. Disease overarching pathophysiological principles have great potential for the development of new 
therapies, as the experience gathered in one disease area can be translated to another one. The successful 
implementation of new therapies requires the communication of clinical neuroscientists with colleagues in 
other medical areas, such as cardiology or nephrology. Not rarely, this mutual communication opens the 
way for the repurposing of drugs, which can now be evaluated in additional disease contexts.

Getting well-designed proof-of-concept studies going
Having said this the authors agreed that it is now up to applied neuroscientists, clinician scientists, 
neurologists, and psychiatrists to initiate well-designed proof-of-concept studies that bridge the gap in the 
translational neuroscience field. The need of multicenter studies necessitates robust research financing, 
without which the successful translation of research concepts becomes unattainable. There was consensus 
in the group that the need of cost-saving in translational neuroscience should not be realized at the expense 
of collaborative multicenter studies, which are able to provide strong evidence for ultimately promising 
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treatment targets. Disease-overarching biological principles or therapeutic activities particularly strongly 
argue in favor of the clinical implementation of a given treatment concept, since observations made in one 
clinical condition may instruct concepts in related ones. There is a lack of adequate funding for larger scale 
animal preclinical randomized controlled trials (RCTs) in translational neuroscience, and motivating young 
investigators to conduct these trials, which offer limited scientific merits, turns out challenging. Due to the 
inability to recruit patients during the COVID-19 pandemic, several clinical RCTs were unable to be 
completed, leading to current hesitancy in the venture capital sector to fund clinical proof-of-concept trials, 
which is currently a huge challenge. Translational neuroscience is still considered very challenging by the 
pharmaceutical and biotech industries, which are still mindful of the previous failed studies, e.g., in stroke 
and Alzheimer’s disease. Part of this pessimism stems from the challenges imposed by the blood-brain 
barrier that impedes the brain entry of blood-borne factors, including intravenously administered drugs. 
Luckily, with recent success in the implementation of new therapies, e.g., in stroke [1, 2] and Alzheimer’s 
disease [6, 7], these previous failures have been overcome at least to some extent.

Additional relevant aspects relate to scientific integrity and research publishing. Central data bases 
should make available data sets from experimental and clinical studies to other scientists for subsequent 
analyses. Platforms like Open Science Framework should be used more systematically to facilitate 
translational collaborations in designing, analyzing, evaluating, and publishing research. Open-access 
publications should include raw data, so that data can be merged more easily into meta-analyses or can be 
efficiently reused for other research questions. This research strategy is highly cost-effective. Scientific 
integrity has recently been challenged by predatory journals. With the implementation of open access 
publishing in scientific journals, there have been tremendous increases of publication costs in many 
scientific journals in recent years, which by far exceed the actual costs of publishing. Research bodies 
should provide support for open access publishing with stringent peer review and quality criteria, but at 
the same time insist that publishers do not impose out-of-scale prices, which undermine the possibilities of 
lower income countries to get their research published. It is the firm belief of the authors that worldwide 
interaction and collaboration, which includes developed and developing countries, will be a major driver 
that fosters translational research success to the benefit of all patients around the globe.
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