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Abstract
Down syndrome (DS), caused by trisomy 21, is strongly associated with an increased risk of early-onset 
Alzheimer’s disease (AD). This work explores the cellular, genetic, epigenetic, and neuropsychological 
mechanisms that underlie the accelerated development of AD in individuals with DS. We review key 
contributors such as amyloid-β accumulation, mitochondrial dysfunction, oxidative stress, tau pathology, 
neuroinflammation, and chromosomal and epigenetic instability in the neuropathology of AD in DS. 
Particular attention is given to genes, microRNAs, and chromatin remodeling factors encoded by human 
chromosome 21 (Hsa21) that regulate these pathological processes. We also highlight the roles of non-
coding RNAs and altered DNA methylation patterns in modulating gene expression and neuronal 
vulnerability. Additionally, the writing evaluates current pharmacological and non-pharmacological 
interventions and addresses the critical need for inclusive, person-centered health services. Integrating 
molecular biology with clinical perspectives, the review emphasizes the importance of early diagnosis and 
coordinated care strategies for individuals with DS at risk for AD.
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Introduction
Down syndrome

Down syndrome (DS) is the most common genetic cause of intellectual disability, affecting approximately 
six million individuals worldwide [1]. It occurs in an estimated one out of every 700 live births, with 
incidence rates ranging from one out of 400 to one out of 1,500 newborns [2, 3]. Karyotype analysis shows 
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that approximately 95% of DS cases result from an extra, complete copy of chromosome 21, a condition 
known as trisomy 21 [4]. Around 4–5% of cases result from a translocation involving chromosomes 21 and 
14 or 22, causing a partial trisomy (the duplication of only a segment of chromosome 21). A smaller 
proportion (1–2%) of cases result from mosaicism, wherein only a subset of cells contains an extra copy of 
chromosome 21 [4]. In addition to karyotype studies, the development of noninvasive methods, such as 
cell-free fetal DNA analysis in maternal blood, has enabled the timely identification of DS [3].

More than 250 distinctive features associated with DS have been identified phenotypically [4, 5]. The 
phenotypic variability observed in individuals with DS is attributed to the combined effects of multiple 
genes located on chromosome 21 and throughout the genome [5]. Although the exact causes of DS 
development remain unclear, advanced maternal age is considered a significant risk factor for trisomy 21 
[6]. Environmental factors such as smokeless chewing tobacco use and oral contraceptive use also increase 
the risk of DS, particularly among younger and older mothers, respectively [7].

The physical and cognitive phenotype of DS

The typical physical features associated with DS include hypotonia, a short neck with excess skin at the 
nape, a flat facial profile, a small head, ears, and mouth, and upslanting eyes with epicanthic folds. Other 
characteristics include Brushfield spots (white spots on the iris), short and broad hands with short fingers, 
midfacial and mandibular recession, congenital heart defects, cerebellar hypoplasia, obstructive sleep 
apnea, recurrent respiratory infections, thyroid dysfunction, alopecia, diabetes, psoriasis, hematologic 
disorders (including leukemia), immune deficiencies, gastrointestinal anomalies, and infertility [4, 5, 8].

DS is also characterized by a distinct behavioral phenotype, including intellectual disability, cognitive 
delays, adaptive functioning difficulties, and early deficits in speech, language production, and auditory 
short-term memory. Additional common features include developmental delays, hearing and vision 
impairments, accelerated aging, as well as neurological or psychiatric conditions such as anxiety, 
depression, conduct disorder, epilepsy, and early-onset Alzheimer’s disease (AD) [5, 9, 10].

Historical background of AD in DS

The relationship between DS and AD was first recognized in the mid-19th century when John Fraser and 
Arthur Mitchell studied 62 individuals with DS who experienced functional decline in adulthood. They 
observed that deaths in this population were often attributed to “general decay” or “premature senility”, 
marking the earliest recognition of early-onset senility in individuals with DS [11]. In 1929, Friedrich 
Struwe furthered this understanding by describing the neuropathological features of AD in individuals with 
DS. Struwe’s work identified isolated and perivascular plaques in the brains of individuals with DS, a 
hallmark of AD. His work significantly contributed to the understanding of the relationship between the 
two diseases [12]. In 1948, George A. Jervis published an article in the American Journal of Psychiatry that 
further elucidated this link, providing critical insights into the pathology of DS and AD [13]. Subsequent 
studies have confirmed the high risk of Alzheimer’s-like neuropathology and dementia in individuals with 
DS, with symptoms often appearing in the third or fourth decade of life [14]. In 1984, George G. Glenner and 
Cai-Wai Wong isolated and purified amyloid protein from the brain of an adult with DS and demonstrated 
its homology to amyloid-β (Aβ), the protein characteristic of AD. This discovery provided the first chemical 
evidence of the relationship between DS and AD, suggesting that DS could serve as a predictive model for 
AD and highlighting that the genetic defect responsible for AD is located on chromosome 21 [11]. Currently, 
DS is recognized as a genetically determined form of AD, similar to autosomal dominant AD [14, 15].

In this review, we explore the primary neuropathological, neuropsychological, and genetic features 
underlying the development of AD in individuals with DS, aiming to better understand the mechanisms of 
neurodegeneration in this high-risk population.

Relationship between DS and AD

DS has been found to be strongly associated with AD, with virtually all individuals with DS developing AD-
related neuropathological changes, such as amyloid plaques and neurofibrillary tangles (NFTs), by the age 
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of 30 to 40 [16, 17]. This phenomenon is primarily attributed to the triplication of chromosome 21, which 
leads to the overexpression of amyloid precursor protein (APP) and subsequent Aβ plaque formation [18]. 
Despite the early onset of neuropathology, clinical symptoms of dementia typically do not appear until 
around age 50 or later. This indicates a separation between neuropathological changes and the beginning of 
cognitive decline [19, 20].

The progression of AD in individuals with DS is influenced by various biological and genetic factors, 
such as oxidative stress, neuroinflammation, the apolipoprotein E (APOE) genotype, and aging-related 
genes on chromosome 21 [14, 18]. The prevalence of dementia in adults with DS between the ages of 40 
and 59 varies significantly, ranging from 4% to 55%. The prevalence increases considerably after age 50, 
reaching 75% and 90% of people over 60 years of age [14, 17]. The mean age of AD onset in this population 
is 53.8 years, with an estimated age of death of 58.4 years [21]. Thus, AD is classified as one of the primary 
causes of mortality among adults with DS.

Although cognitive deterioration in aging individuals with DS is often attributed to AD, it is important 
to consider other age-related conditions that may lead to functional decline. These include musculoskeletal 
and sensory impairments [22]. Clinically, cognitive decline is often characterized by impairments in 
memory, attention, language, and social functioning, which can progress to dementia [23]. 
Neuropathologically, AD in individuals with DS shares many features with sporadic AD, including synaptic 
loss, neuroinflammation, and selective neuronal degeneration in the entorhinal cortex, hippocampus, and 
neocortex [14, 18, 24] although they have notable differences in their origin and manifestation (Table 1). 
However, AD associated with DS exhibits distinctive characteristics, including earlier and more substantial 
amyloid accumulation, increased tangle density in the hippocampus, and a distinct M2b neuroinflammatory 
profile in older individuals [22, 24].

Table 1. Comparison between Alzheimer’s disease (AD) in Down syndrome (DS) vs. sporadic AD (sAD)

Feature AD in DS sAD

Age of onset Early onset (commonly 40–50 years) Late onset (typically > 65 years)
Genetic factors Trisomy 21→Overexpression of APP gene (chromosome 

21)
APOEε4 allele is a major risk factor; 
no APP gene overexpression

Amyloid-β deposition Begins in teens–twenties; nearly universal by age 40 Later onset; variable presence
Neurofibrillary tangles 
(tau pathology)

Develop later than amyloid but at younger ages than in 
sAD

Correlates with disease severity; 
gradual accumulation

Brain atrophy pattern Early hippocampal and cortical atrophy; cerebellar 
involvement may be less pronounced

Prominent hippocampal, temporal, 
and parietal lobe atrophy

Cognitive profile Baseline intellectual disability complicates diagnosis; early 
signs: behavior/personality changes, decline in adaptive 
skills

Prominent memory loss; later 
language, visuospatial, and executive 
deficits

Neuroimaging (MRI/PET) Early amyloid PET positivity; structural MRI shows earlier 
atrophy

Amyloid PET positivity later; 
progressive cortical atrophy

Cholinergic system 
involvement

Significant degeneration of basal forebrain cholinergic 
neurons

Similar degeneration observed

Seizure prevalence Higher incidence of seizures (up to 50% late in disease) Lower seizure incidence (~10–22%)
Rate of progression May be faster after onset Variable, but generally more gradual
Neurological 
comorbidities

Congenital brain differences, hypothyroidism, epilepsy Vascular risk factors (hypertension, 
diabetes, etc.) are more common

Diagnosis challenges Harder to detect due to pre-existing cognitive impairment Easier to detect due to prior cognitive 
baseline

Neuropathological 
hallmarks

Classic AD pathology is universally present by age 40 Pathology variable and age-
dependent

APP: amyloid precursor protein; APOEε4: apolipoprotein E epsilon4; MRI: magnetic resonance imaging; PET: positron emission 
tomography

The manifestation of AD in individuals with DS is influenced by intellectual disability and reduced 
cognitive reserve. This often results in non-amnestic symptom patterns and a complicated trajectory of 
decline due to comorbid health conditions [25]. The early and frequent emergence of AD in this population 
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intersects with broader challenges, including accelerated aging, increased dependence on care, and a 
growing burden on aging family caregivers [26]. These factors give rise to substantial clinical, familial, and 
public health concerns. Consequently, regular health screenings, timely diagnoses, and multidisciplinary 
interventions are crucial for enhancing quality of life and postponing functional deterioration in individuals 
with DS at risk for or living with AD [27].

Diagnosis of AD in DS

Conventionally, DS has been diagnosed primarily through karyotype analysis and prenatal screening using 
biochemical and ultrasound markers [28]. Recently, advanced genetic and molecular techniques, such as 
next-generation sequencing and whole-exome sequencing, have significantly improved the accuracy and 
efficiency of diagnoses, with sensitivities exceeding 99% [29]. Additionally, non-invasive prenatal testing, 
which analyzes cell-free fetal DNA in maternal blood, has achieved detection rates above 98%. Proteomic 
and metabolomic studies have identified additional promising DS biomarkers in maternal serum, placental 
tissue, and amniotic fluid [30]. These studies have revealed numerous differentially expressed proteins and 
metabolic alterations.

In contrast, diagnosing AD in individuals with DS requires a multifaceted approach. This approach 
includes physical and neurological examinations, cognitive assessment batteries, and caregiver and 
informant questionnaires. It also involves neuroimaging techniques such as magnetic resonance imaging 
(MRI) and positron emission tomography (PET). PET scans targeting amyloid, tau, and fluorodeoxyglucose 
(FDG) detect changes in cognitive, behavioral, and functional domains [31]. These scans facilitate the 
identification of different stages of cognitive decline and dementia.

Biomarker studies in DS show progression similar to that of sporadic AD: early reductions in 
cerebrospinal fluid (CSF) Aβ42 and elevated plasma neurofilament light chain (NfL) levels are followed by 
amyloid PET changes, tau accumulation, brain atrophy, and hypometabolism [15]. Cognitive decline in DS 
correlates closely with regional glucose metabolism, as assessed by FDG-PET [31]. The most extensively 
studied biomarkers are amyloid and tau. DS individuals exhibit elevated baseline plasma Aβ levels due to 
APP overexpression [32].

In addition to imaging and clinical evaluations, established AD biomarkers, such as Aβ40, Aβ42, total 
tau, and phosphorylated tau 181 (pTau181), can now be measured in the blood of individuals with DS [33]. 
Emerging biomarkers, including pTau217, NT1-Tau, NfL, and glial fibrillary acidic protein (GFAP), have also 
demonstrated the potential to enhance diagnostic accuracy [34]. Furthermore, metabolomic biomarkers 
reflecting alterations in glucose metabolism, oxidative stress, cholesterol pathways, inflammation, and 
amino acid metabolism are being investigated for their potential to facilitate early AD detection in DS [34, 
35].

Early diagnosis is critical for improving quality of life; however, it is often complicated by 
comorbidities, pre-existing intellectual disability, and functional variability [36–38]. Studies suggest that 
artificial intelligence and machine learning methods could improve the early detection of AD in individuals 
with DS. Algorithms such as k-nearest neighbors, Naive Bayes, decision trees, and ensemble methods have 
shown potential in enhancing diagnostic precision when applied to MRI and PET imaging data [30, 39–41].

Research into anti-Aβ antibodies in DS continues to reveal the complexity of disease mechanisms. 
Individuals with DS exhibit elevated plasma levels of Aβ1-42 and corresponding antibodies with higher 
affinity and titers than observed in the general population. These findings suggest a potential state of 
autoimmunization against Aβ [42, 43]. Higher plasma Aβ40/42 ratios and increased anti-fibril antibody 
titers have been associated with a greater risk of dementia [44]. Postmortem brain analyses confirm the 
presence of soluble Aβ protofibrils and insoluble Aβ40 and Aβ42, resembling the pathology seen in 
sporadic AD [45]. These findings reinforce the therapeutic potential of targeting Aβ pathology in individuals 
with DS and AD [46].
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Neuropsychological aspects of AD in DS

Diagnosing cognitive impairment and AD in individuals with DS presents unique clinical challenges due to 
the baseline presence of intellectual disability and atypical symptoms [47, 48]. Early indicators of AD in this 
population include visual memory decline, diminished learning capacity, and reduced social functioning 
[49]. Reliable diagnostic tools such as the Cambridge Examination for Mental Disorders of Older People 
with Down’s Syndrome and Others with Intellectual Disabilities (CAMDEX-DS) have demonstrated high 
accuracy in detecting the prodromal and dementia stages of AD [50]. Other effective instruments include 
the Modified Cued Recall Test and the Dementia Questionnaire for People with Learning Disabilities [51]. 
An accurate diagnosis requires a multidimensional approach that integrates observer-rated assessments, 
direct neuropsychological testing, and evaluations of functional abilities in daily life [48]. Longitudinal 
assessment and exclusion of alternative causes of cognitive decline are important, even among individuals 
with severe baseline impairments [49].

The cognitive and behavioral phenotype of individuals with DS evolves throughout life, showing 
greater decline with age [47, 52]. Neuropsychologically, individuals with DS who develop AD often follow a 
similar trajectory to individuals with sporadic or autosomal dominant AD. The initial clinical hallmark is 
typically a decline in episodic memory, especially among individuals who are amyloid-positive at diagnosis 
or become so over time [53]. Early impairments in attention and executive functioning are also common, 
followed by deficits in visuospatial skills, verbal fluency, motor coordination, and planning abilities 
(Figure 1) [54]. Nonverbal skills tend to remain relatively stable in adulthood, while verbal skills typically 
decline more steeply [54–56].

Figure 1. Cognitive domains affected by aging in individuals with Down syndrome. The neuropsychological profile of 
individuals with Down syndrome (DS) changes throughout life and declines further with age, potentially due to neurological 
disorders such as Alzheimer’s disease (AD). The primary affected domains are language, attention, learning, and memory. 
Created in BioRender. Dominguez, E. (2025) https://BioRender.com/vc7pgmf

Language is one of the cognitive domains most severely affected in DS, with expressive abilities 
typically being more impaired than receptive ones [23, 57]. In adulthood, language impairments become a 
central component of the cognitive decline associated with AD-like dementia (Figure 1). These deficits have 
been shown to negatively impact behavior, social relationships, and overall quality of life. Although 
relatively stable during earlier stages of life, receptive language abilities tend to decline with age, 
particularly in older adults with DS. Figueroa and Darbra [57] found that older individuals with DS 
performed significantly worse on the Token and Peabody tests, suggesting that receptive language may be 
more vulnerable to age-related decline than expressive abilities. However, declines in verbal fluency and 
expressive language have also been documented in individuals without AD, while comprehension often 
remains intact [9, 23, 58].

https://BioRender.com/vc7pgmf
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Deficits in working memory, particularly in the verbal domain, are well-documented in individuals 
with DS and tend to persist across the lifespan (Figure 1) [59, 60]. Long-term memory is also compromised, 
with difficulties in encoding and retrieval processes becoming evident in adolescence and early adulthood 
[16, 61, 62]. These memory issues are linked to temporal lobe and hippocampus dysfunctions [63] and 
progressively worsen with age [64]. Episodic memory remains relatively intact in early adulthood but 
deteriorates significantly with the onset and progression of dementia. Some studies suggest that episodic 
memory is the first cognitive domain to deteriorate during aging in individuals with DS [65]. As cognitive 
decline progresses, explicit memory, including verbal and visual encoding, also deteriorates [66].

Executive functions, including inhibitory control, cognitive flexibility, and working memory, are 
essential for self-regulation, planning, and goal-directed behavior [67]. Adults with DS exhibit significant 
impairments in these domains and score lower than their typically developing peers on standardized 
executive function measures such as the Global Executive Composite, Plan/Organize, Working Memory, 
Task Monitor, and Metacognition Index scales [68, 69]. However, it remains unclear whether these 
neuropsychological changes follow a distinct progression, occur independently, or converge over time to 
culminate in AD.

Neuropathological aspects of AD in DS

Neuroanatomical changes, particularly in the hippocampus and corpus callosum, are also linked to 
cognitive deterioration. Additionally, psychosocial factors may influence cognitive function and AD 
progression in DS [49, 70]. Therefore, a comprehensive diagnostic approach that incorporates clinical, 
imaging, and biomarker data is crucial for the early detection of AD in this population [34, 35].

Despite the clinical heterogeneity observed in older individuals with DS, age-related AD 
neuropathology is a consistent and defining feature. Postmortem studies of DS brains have identified 
structural abnormalities such as reduced total brain weight, hypoplasia of the frontal and temporal lobes, a 
simplified gyral pattern with fewer sulci, generalized cortical atrophy, ventricular enlargement, and 
cerebellar and brainstem atrophy, particularly in the middle cerebellar lobe [71]. Interestingly, while 
subcortical regions such as the lenticular nuclei and posterior parietal and occipital cortices often retain 
relatively normal volumes, the hippocampus shows disproportionately severe volume reduction, and the 
amygdala exhibits shrinkage consistent with overall brain size reduction [72].

Neuroimaging studies have further elucidated these structural changes. For instance, MRI findings 
reported by Pujol et al. [73] revealed significant volume reductions in the hippocampus, basal forebrain 
(specifically the substantia innominata), and the temporal and parietal lobes in adults with DS and 
dementia. Similarly, Mullins et al. [74] observed an increased lateral ventricular volume in individuals with 
DS, even in those without dementia. Fortea et al. [15] corroborated these findings, describing a distinctive 
DS brain morphology characterized by diminished frontal lobe, hippocampus, cerebellum, and brainstem 
volumes. These patterns closely mirror the neurodegeneration seen in sporadic AD.

Crucially, evidence suggests that some neuropathological differences in DS originate developmentally 
rather than degeneratively. Pinter et al. [64] found that children with DS have smaller hippocampal 
volumes than their typically developing peers, indicating early neurodevelopmental alterations. 
Neuropsychological evaluations of school-aged individuals with DS reveal hippocampal-specific 
dysfunctions alongside broader cognitive impairments [75]. In adults with DS without clinical dementia, 
age-related atrophy affects the hippocampus and corpus callosum, suggesting changes in allocortical and 
neocortical structures [72].

Cellular mechanisms involved in the development of AD in DS
Accelerated aging in DS

Advancements in pediatric medical care, particularly surgical interventions for congenital heart defects, 
have significantly increased the life expectancy of individuals with DS. Life expectancy rose from an average 
of four years in 1950 to approximately 60 years by 2010 [4, 76–78]. However, this extended lifespan has 
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not been matched by proportional improvements in overall health outcomes. By age 30, many individuals 
with DS exhibit clear signs of accelerated aging. This is characterized by the early onset of age-related 
conditions and premature physical decline compared to the general population [79–81].

This is reflected by the high prevalence of comorbidities, including early menopause, osteopenia, 
osteoporosis, hypothyroidism, abnormal fat distribution, obesity, atherosclerosis, hypertension, and 
immune system dysfunction [16, 19, 82–84]. Furthermore, there is a possibility of the development of 
neurological or psychiatric disorders, including anxiety, depression, conduct disorder, epilepsy, cognitive 
impairment, and early-onset AD [16, 65].

Notably, the accelerated aging process in DS begins prenatally, as evidenced by epigenetic age 
acceleration observed in newborns with the condition [85]. Studies using epigenetic clocks have shown that 
individuals with DS have a biological age approximately 6.6 years older than their chronological age, based 
on blood and brain tissue [86].

Premature aging in DS is associated with multiple established hallmarks of aging, including Aβ 
accumulation, oxidative stress, and chronic neuroinflammation [87]. Additional mechanisms, such as 
cellular senescence and disruptions in metal homeostasis (e.g., copper imbalance), are believed to 
contribute to accelerated aging, age-related diseases, and cognitive decline in this population [80, 81].

Amyloid-β in DS

AD is an incurable and progressive neurological disorder that ranks as the sixth leading cause of death 
worldwide and is the most common form of dementia, accounting for approximately 80% of all diagnoses 
[88]. The disease typically progresses over a period of 8 to 10 years during its clinical stages, following 
prodromal and preclinical phases that may span up to two decades [89]. The annual incidence of the 
condition ranges from 1% to 3%, with a prevalence that varies from 10% to 30% among individuals over 
the age of 65 [90]. Globally, the number of individuals affected is expected to reach approximately 152 
million by 2050, with the most significant increase occurring in developing countries [88].

The main relationship between DS and AD is due to the overexpression of the APP gene located on 
chromosome 21 [91]. This genetic alteration leads to the excessive production and accumulation of Aβ 
peptides, particularly Aβ42. Intraneuronal Aβ deposits can be detected at an early age in individuals with 
DS and precede the formation of extracellular amyloid plaques [92, 93]. This early accumulation triggers a 
cascade of pathological events, including oxidative stress, mitochondrial dysfunction, chronic 
neuroinflammation, glial alterations, vascular abnormalities, and the formation of NFTs, hallmark features 
of AD pathology (Figure 2) [20, 93, 94].

The pathological cascade of AD in DS begins early, with intracellular Aβ accumulation detectable in 
endosomes and lysosomes as early as 28 weeks of gestation [18]. By age eight, extracellular Aβ deposits are 
present, with a dramatic increase in deposition occurring between the ages of 35 and 45 [53, 92]. Diffuse Aβ 
plaques begin forming between ages 20 and 30 and evolve into neuritic plaques during the fourth decade of 
life. NFTs appear after Aβ deposition, reflecting the progressive nature of AD pathology [15]. Individuals 
with DS over the age of 40 exhibit AD-associated neuropathological hallmarks, including extracellular senile 
plaques, perivascular Aβ deposits (amyloid angiopathy), intraneuronal NFTs, and neuritic plaques, 
regardless of dementia symptoms [15, 20, 53, 95]. This pathology typically begins in the entorhinal cortex, 
then progresses to the hippocampus, and eventually spreads to the neocortical association areas [72]. 
Together, these interconnected mechanisms contribute to the accelerated onset and progression of AD in 
individuals with DS.

Oxidative stress and mitochondrial dysfunction

Studies have linked the overexpression of superoxide dismutase 1 (SOD1) to the accumulation of reactive 
oxygen species (ROS) and the oligomerization of Aβ in individuals with DS [96]. Trisomy 21, a characteristic 
of DS, leads to the overexpression of SOD1 and APP, contributing to increased oxidative stress and neural 
dysfunction [97]. An imbalance between SOD1 and glutathione peroxidase activity has been associated with 
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Figure 2. Neuropathology of Alzheimer’s disease in Down syndrome. During aging, trisomy 21 may trigger a series of 
processes, including structural brain alterations, early amyloid-β deposition, microvascular changes, neuroinflammation, and cell 
loss. These processes may be interrelated, contributing to different stages of cognitive decline and the development of 
Alzheimer’s disease. AD: Alzheimer’s disease; Aβ: amyloid-β; NFT: neurofibrillary tangle. Created in BioRender. Dominguez, E. 
(2025) https://BioRender.com/ccmz1u4

increased free radical production [96]. High levels of oxidative damage, particularly the accumulation of 4-
hydroxy-2-nonenal (HNE)-bound proteins, have been observed in the frontal cortex of individuals with DS 
and correlate with Aβ levels [98]. Additionally, increased SOD and catalase activity have been reported in 
plasma samples from adults with DS and cognitive impairment [99, 100]. SOD1 deficiency in an AD mouse 
model has been shown to accelerate Aβ oligomerization and worsen memory impairment, suggesting that 
cytoplasmic superoxide plays a critical role in Alzheimer’s pathogenesis [101]. Similarly, neurons obtained 
from the brains of individuals with DS have been shown to be highly sensitive to oxidative stress [102]. 
Taken together, these findings underscore the intricate relationship between SOD1 overexpression, 
oxidative stress, and Aβ aggregation in DS and AD, highlighting the potential of antioxidant-based 
therapeutic strategies.

Mitochondrial abnormalities have been linked to various clinical manifestations in DS, including 
intellectual disability, premature aging, and AD-like dementia [103–105]. Studies have demonstrated that 
mitochondrial DNA (mtDNA) mutations accumulate with age and are notably higher in the brains of 
individuals with DS and AD [104, 106]. This leads to a reduction in mtDNA copy number and impaired 
mitochondrial function [107, 108]. This dysfunction contributes to increased oxidative stress, elevated ROS 
production, and neuronal cell death in DS [102, 106, 109]. Overproduction of Aβ is also associated with 
mitochondrial dysfunction, suggesting that energy deficits in DS may contribute to altered processing of Aβ 
[110, 111]. Furthermore, the relationship between mitochondrial dysfunction and autophagy has been 
investigated in DS, revealing that autophagy can lead to inflammation and the development of a redox 
imbalance, as well as changes in protein homeostasis and signal transduction [112]. Consequently, 
therapeutic strategies that correct mitochondrial defects and enhance autophagy are being investigated as 
potential interventions to improve cognitive function and quality of life in individuals with DS and AD [106, 
112].

Microvascular dysfunction

Microvascular dysfunction is a critical contributor to the development and progression of AD, particularly 
in individuals with DS. Postmortem studies of brains from individuals with both conditions reveal 
significant vascular abnormalities, such as reduced microvessel density and compromised endothelial 
integrity [113]. These findings closely resemble those observed in sporadic AD. They also contribute to 

https://BioRender.com/ccmz1u4
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decreased cerebral blood flow, impaired nutrient delivery, and reduced metabolic waste clearance. These 
factors exacerbate neurodegeneration [113].

Additionally, the excessive accumulation of Aβ in individuals with DS leads to cerebral amyloid 
angiopathy (CAA). In CAA, Aβ deposits within cerebral vessel walls promote further vascular injury and 
accelerate AD pathology [114, 115]. Despite the absence of typical systemic vascular risk factors, such as 
hypertension or atherosclerosis, individuals with DS frequently exhibit cerebrovascular lesions, including 
white matter hyperintensities and microbleeds. These lesions increase with age and disease progression 
[116, 117]. These vascular injuries may intensify astrocytosis, promoting tau hyperphosphorylation and 
amplifying neurodegeneration [118].

The interplay among vascular pathology, Aβ accumulation, and neuroinflammation creates a 
reinforcing cycle that drives cognitive decline in DS. The mechanisms of vascular amyloidosis, endothelial 
dysfunction, and chronic inflammation are shared by sporadic and familial forms of AD. This underscores 
the value of DS as a model for studying the early and aggressive pathogenesis of AD [119, 120].

Understanding this complex network is essential for developing targeted preventive and therapeutic 
strategies that address vascular health, inflammation, and Aβ pathology for individuals with DS and the 
broader population affected by AD [118, 120].

Glial and neuronal dysfunction in DS and AD

Postmortem studies reveal significant reductions in neurons, astrocytes, and oligodendrocytes in the cortex 
and basal ganglia of adults with DS, indicating widespread cellular degeneration [121, 122]. Glial 
dysfunction disrupts key metabolic and homeostatic processes, including Aβ clearance, oxidative stress 
regulation, and inflammatory control, thereby amplifying neurodegeneration [123, 124].

Astrocytes

In both DS and AD, astrocytes display pathological reactivity, characterized by elevated secretion of 
inflammatory mediators such as interleukin-1 and S100β. These mediators contribute to sustained 
neuroinflammation [125]. DS astrocytes also exhibit reduced expression of thrombospondin-1 (TSP-1), a 
critical molecule in synaptogenesis and spinogenesis [126–128]. This deficiency impairs dendritic spine 
formation and the production of synaptogenic proteins in DS and AD [126, 128, 129]. TSP-1 secretion is 
further diminished in astrocytes exposed to Aβ, which reinforces the impact of Aβ pathology on astrocytic 
function [129, 130], suggesting a potential association between TSP-1 and the aging process as well as the 
development of age-related diseases [131].

Single-nucleus RNA sequencing has identified disease-associated astrocyte subtypes in AD mouse 
models and aging human brains. This indicates a convergence of genetic predisposition and age-related 
changes in astrocyte biology [132]. Together, these findings suggest that dysfunctional astrocytic support 
plays a critical role in Aβ accumulation, synaptic failure, and cognitive decline.

Microglia

In individuals with DS, the deposition of Aβ triggers early microglial activation and a sustained 
neuroinflammatory response marked by elevated levels of proinflammatory cytokines and immune-related 
proteins [125]. These changes are detectable from early developmental stages and are associated with 
synaptic dysfunction, impaired neurogenesis, and neuronal loss [125]. The complement component C1q, 
which binds to thioflavin-S-positive Aβ plaques, increases with age in the brains of individuals with DS, 
further linking Aβ accumulation to immune activation [133]. Veteleanu et al. [134] further underscore 
immune dysfunction in DS and AD in their study, reporting elevated levels of complement activation 
products (TCC and iC3b), core complement components (C1q, C3, and C9), and abnormalities in regulatory 
proteins, such as factor H and clusterin. Furthermore, mitochondrial dysfunction in cerebral endothelial 
and glial cells exacerbates Aβ-induced inflammation, contributing to vascular and neuronal damage [135].
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In both human tissue and mouse models [e.g., Ts65Dn and Dp(16)], microglia shift from a homeostatic 
to a reactive phenotype. This phenotype is characterized by excessive synaptic pruning, heightened 
cytokine production, and tau-induced senescence [136–138]. Interferon signaling contributes to this 
dysfunction and inhibiting it has shown potential to restore spine density, normalize neuronal activity, and 
improve cognition.

However, recent evidence challenges the traditional view that activated microglia are the primary 
drivers of pathology. Instead, it suggests that dystrophic (senescent) microglia may play a more significant 
role in tau-related degeneration in sporadic AD [138–140].

Oligodendrocytes

Oligodendrocyte dysfunction and myelination deficits contribute to AD pathology in DS. Similar to changes 
observed in sporadic AD, hypomyelination and reduced oligodendrocyte populations have been identified 
in DS brains [141]. These alterations are accompanied by dysregulated gene expression involved in 
oligodendrocyte differentiation and myelin production [142]. This dysregulation can potentially impair 
neural conductivity and contribute to slowed information processing and cognitive decline [142]. Structural 
abnormalities in white matter may underlie the age-related cognitive deficits commonly observed in DS 
[143].

Neurons

Significant neuronal alterations contribute to the pathological landscape of AD in DS. Ferrer and Gullotta 
[144] reported pronounced dendritic spine loss and morphological abnormalities in the CA1 and CA2–3 
regions of the hippocampus in adults with both conditions, likely due to the accumulation of neuritic 
plaques and NFTs. Reduced spine density may be associated with decreased levels of TSP-1 [126–128]. In 
addition, reduced TSP-1 levels have been reported in sporadic AD brains [145] as well as in AD-related 
synaptic pathology [129, 130]. Another hallmark of AD pathology, present in individuals with and without 
DS, is the degeneration of the basal forebrain cholinergic neurons [146], which are crucial for cognitive 
function and are especially vulnerable in individuals with DS and AD. This contributes to impairments in 
memory and language [146]. A study of 33 adults with DS revealed developmental neuronal deficits and 
AD-related neuronal loss. The degree of neuronal reduction correlated strongly with age and dementia 
stage [147].

Together, these glial and neuronal alterations form a multifaceted, self-reinforcing pathology that 
accelerates cognitive decline in individuals with DS. The convergence of Aβ overproduction, mitochondrial 
alteration, chronic neuroinflammation, glial dysfunction, synaptic damage, and vascular abnormalities 
resembles the mechanisms seen in sporadic AD, highlighting the importance of DS as a model for studying 
the early stages of AD pathogenesis.

Chromosome 21 and its genetic expression in DS
Human chromosome 21 (Hsa21) is one of the smallest autosomes in the human genome. Comprehensive 
genomic analyses have identified 233 protein-coding genes, 423 non-coding genes (including 69 small and 
300 long non-coding RNAs, as well as 29 Hsa21-specific non-coding RNAs), and 188 pseudogenes on this 
chromosome [148]. Despite these findings, the molecular mechanisms underlying the phenotypic 
variability of DS and its strong association with AD are not fully understood [149]. Two predominant 
hypotheses have been proposed to explain the genetic basis of DS and its contribution to AD pathogenesis.

The first, known as the “gene dosage hypothesis” or the “chromosome 21 overdose effect”, suggests 
that the clinical features of DS result from the trisomic state of Hsa21. This state leads to an approximately 
1.5-fold increase in gene expression. This overexpression includes key genes such as APP, dual-specificity 
tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), and SOD1 [148, 149]. These genes have been 
associated with AD-like dementia and premature aging in individuals with DS (Figure 3). Triplication of the 
APP gene, in particular, has been shown to be both necessary and sufficient to induce early-onset AD [91].
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Figure 3. Location of genes on chromosome 21 associated with AD. The locations on the long (q), and petite (p) arms are 
shown within the chromosome, and the genes are shown on the sides. Hsa21: human chromosome 21; APP: amyloid precursor 
protein; SOD1: superoxide dismutase 1; SYNJ1: synaptojanin 1; RCAN1: regulator of calcineurin1. Created in BioRender. 
Garcia, O. (2025) https://BioRender.com/yaqw41n

The second hypothesis, referred to as “chromosomal instability”, posits that trisomy 21 disrupts 
transcriptional homeostasis, affecting not only Hsa21-encoded genes but also the expression of genes 
located on other chromosomes [148, 150], resulting in diverse phenotypic outcomes such as facial 
dysmorphology. Increased fluctuating asymmetry in facial features, particularly those derived from 
mandibular prominence, supports this view [151]. This global transcriptional dysregulation may play a 
critical role in the onset and progression of dementia. For example, the APOE epsilon4 (APOEε4) allele on 
chromosome 19 has been associated with increased amyloid deposition and a higher risk of AD in the 
general population, including individuals with DS [152].

Chromosomal instability is a well-documented phenomenon in DS. Individuals with trisomy 21 exhibit 
increased genomic instability, including higher frequencies of chromosomal aberrations, micronuclei, and 
nuclear anomalies compared with controls [153, 154]. This instability intensifies with age and contributes 
to mosaicism through additional chromosomal segregation errors [155]. Taken together, these findings 
suggest that chromosomal instability is a defining feature of DS that affects cellular and developmental 
processes.

The role of Hsa21 genes in the development of AD in DS

The triplication of Hsa21 genes in individuals with DS alters gene dosage and regulation. This leads to 
widespread disruptions in cellular homeostasis. These changes affect multiple biological processes, 
including protein aggregation, mitochondrial function, inflammation, and synaptic signaling. Collectively, 
these changes accelerate the onset and progression of AD. Understanding the molecular mechanisms 
linking DS to early-onset AD requires knowledge of the specific contributions of Hsa21 genes and their 
interactions with genes on other chromosomes [4, 148].

Amyloid plaque formation

Amyloid plaque formation is a defining feature of AD pathology, driven by a complex interplay of genetic 
factors (Figure 4). The most extensively studied gene in this context is the APP gene, which encodes APP. In 

https://BioRender.com/yaqw41n
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DS, APP overexpression due to trisomy 21 increases the production of Aβ, particularly the aggregation-
prone Aβ42 isoform [156]. This leads to neuritic plaque formation. DYRK1A, a kinase overexpressed in DS, 
amplifies this process by phosphorylating APP and promoting its cleavage via the amyloidogenic pathway 
[157]. Furthermore, Aβ peptides can upregulate DYRK1A, forming a pathogenic feed-forward loop [158].

Figure 4. Overexpression of genes located on chromosome 21 that contribute to the neuropathology associated with 
Alzheimer’s disease in individuals with Down syndrome. The arrows illustrate the various connections between amyloid 
plaque formation, neurofibrillary tangles (NFTs), mitochondrial dysfunction, oxidative stress, neuroinflammation, synaptic 
dysfunction, and neuronal death. APP: amyloid precursor protein; Aβ: amyloid-β; SOD1: superoxide dismutase 1; APOEε4: 
apolipoprotein E epsilon4; RCAN1: regulator of calcineurin1; DYRK1A: dual-specificity tyrosine-phosphorylation-regulated 
kinase 1A; SYNJ1: synaptojanin 1. Created in BioRender. Dominguez, E. (2025) https://BioRender.com/66zeti5

Tau hyperphosphorylation and NFT

NFTs, which are composed of hyperphosphorylated tau, are another hallmark of AD. DYRK1A 
phosphorylates tau at multiple residues, promoting its aggregation. Elevated DYRK1A expression correlates 
with cognitive impairment and NFTs burden in DS and AD [157]. These tangles disrupt axonal transport, 
impair synaptic function, and drive neurodegeneration [158].

Regulator of calcineurin1 (RCAN1) promotes tau pathology by inducing oxidative stress and disrupting 
calcium signaling, thereby enhancing tau phosphorylation and NFTs accumulation [159]. These effects 
contribute to cognitive deficits, circadian rhythm disturbances, and other symptoms associated with AD 
and DS [160]. CXADR, a gene involved in hippocampal plasticity, is downregulated during inflammation and 
is linked to increased tau phosphorylation via MAPK-p38 signaling [161]. Furthermore, APOEε4 promotes 
tau phosphorylation by activating the calpain-CDK5 pathway, highlighting its multifaceted role in AD 
progression [162].

Mitochondrial dysfunction and oxidative stress

Mitochondrial dysfunction and oxidative stress are early events in AD pathophysiology [105–108]. In DS, 
the overexpression of RCAN1 and DYRK1A impairs mitochondrial dynamics by disrupting calcium signaling 
and phosphorylation cascades (Figure 4). RCAN1 contributes to oxidative damage by dysregulating the 
redox pathway [160] and ETS2 induces mitochondrial-regulated apoptotic death [163, 164].

https://BioRender.com/66zeti5
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GABPa, which is triplicated in DS, encodes a transcription factor involved in mitochondrial biogenesis 
and neuronal homeostasis. While it is typically neuroprotective, its overproduction in DS can lead to 
epigenetic modifications that impair neuronal function [165]. Meanwhile, SOD1, which encodes the 
antioxidant enzyme SOD1, exhibits paradoxical behavior; it is overexpressed in DS but decreased in AD 
[96]. Misfolded SOD1 aggregates can exacerbate mitochondrial dysfunction and oxidative damage, 
accelerating memory decline and Aβ aggregation [99, 100, 166]. Additionally, RUNX1 overexpression 
impairs mitochondrial function, contributing to neurodegeneration in AD [167, 168].

Neuroinflammation

Neuroinflammation is markedly elevated in DS-associated AD due to the overexpression of several 
immune-related genes [125]. S100β, which encodes a calcium-binding protein secreted by astrocytes and 
microglia, acts as a proinflammatory cytokine that amplifies glial activation [124]. Its upregulation in DS 
promotes neuroinflammation.

ITGB2 is highly expressed in microglia and the hippocampus, disrupting synaptic function and 
enhancing immune-mediated neurotoxicity in AD. The overexpression of IFNAR1, IFNAR2, and IFNGR2 
leads to aberrant interferon signaling, triggering excessive synaptic pruning and impairing microglial 
plasticity [138, 169]. Conversely, reducing the expression of these genes in model systems has been shown 
to enhance microglial function and mitigate cellular aging (Figure 4).

RIPK4 increases TNF-α production and promotes cytotoxicity via TNFR1 activation [170]. CXADR 
overexpression is associated with neuroinflammation and M1 macrophage activation in DS [161]; however, 
its expression decreases in response to AD-related or systemic inflammation. The overexpression of 
immune-related genes on chromosome 21 leads to persistent dysregulation of both innate and adaptive 
immunity. These changes likely amplify neuroinflammation and neurodegeneration and may serve as early 
biomarkers for dementia in DS.

Synaptic dysfunction

Synaptic loss strongly correlates with cognitive impairment in AD. In DS, several Hsa21 genes impair 
synaptic integrity through various mechanisms. Synaptojanin 1 (SYNJ1) regulates synaptic vesicle recycling 
and phosphoinositide metabolism. It is overexpressed in DS and linked to synaptic deficits and cognitive 
decline [171]. Genetic variants in SYNJ1 have also been associated with altered AD onset and memory 
impairment [172, 173]. In mouse models, SYNJ1 overexpression impairs the function of hippocampal place 
cells, contributing to memory deficits [174]. Other key genes, such as RCAN1, DYRK1A, ITGB2, and GABPa, 
also impair both synaptic plasticity and synaptic transmission via inflammatory and metabolic pathways, 
mitochondrial stress and epigenetic dysregulation (Figure 4) [149]. GABPa triplication may also impair the 
regulation of genes essential for neuronal communication [148].

ADAMTS1 overexpression affects the composition of the extracellular matrix in the hippocampus, 
disrupting inhibitory neurotransmission [175]. CBS, which is involved in homocysteine metabolism, 
produces excess hydrogen sulfide (H2S). This impairs synaptic signaling and increases the risk of AD later in 
life for individuals with DS [176].

Cytotoxicity and neuronal death

Neuronal apoptosis is a convergence point of multiple AD-related pathological processes. RCAN1 enhances 
Aβ-induced cytotoxicity and mitochondrial stress, triggering apoptotic pathways [159]. RUNX1 
dysregulates the PI3K/Akt pathway, thereby increasing neuronal susceptibility to degeneration [167]. 
RIPK4, another Hsa21 gene, activates nuclear factor kappa B (NF-κB) signaling and promotes cell death via 
the TNFR1 pathway [169].

Interestingly, COL6A1 and COL6A2, which encode collagen VI subunits, are upregulated in response to 
Aβ exposure and may exert neuroprotective effects by inhibiting apoptosis [177]. However, dysregulation 
of these genes may paradoxically contribute to neurodegeneration.
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The role of microRNAs in the development of AD in DS
In addition to protein-coding genes, chromosome 21 contains several non-coding RNAs, including 
microRNAs (miRNAs), that play a crucial role in regulating early molecular events involved in the 
pathophysiology of DS and AD [148]. Circulating chromosome 21-encoded miRNAs, such as miR-155 and 
let-7c, have been associated with cognitive impairment and dementia in Mexican adults with DS [178]. Let-
7c promotes neurodegenerative processes by inducing the production of pro-inflammatory molecules and 
activating caspase-3, ultimately leading to neuronal cell death [179].

Other studies have demonstrated that miR-155, miR-99a, and miR-125b, which are also encoded on 
chromosome 21, are inducible and regulated by NF-κB, a central mediator of inflammatory signaling. The 
upregulation of these miRNAs may suppress the expression of anti-inflammatory and innate immune 
regulatory genes, contributing to AD pathogenesis [180].

In DS mouse models, reduced levels of miR-17, miR-20a, miR-101, and miR-106b are associated with 
increased expression of the APP, while decreased levels of miR-199b correlate with elevated levels of 
DYRK1A. These miRNA expression alterations contribute to Aβ accumulation and tau 
hyperphosphorylation, hallmark pathological features of AD in individuals with DS [181].

Chromatin and neurodegeneration in DS
A related area of interest involves chromatin remodeling, a crucial nuclear process that regulates gene 
expression. Recent studies have revealed key mechanisms by which chromatin remodeling is altered in DS. 
For instance, overexpressing DYRK1A disrupts REST/NRSF levels and impairs the SWI/SNF chromatin 
remodeling complex. This leads to the dysregulation of genes involved in dendritic development [182]. 
Similarly, triplication of HMGN1, another Hsa21-encoded gene, interferes with PRC2 activity and 
contributes to abnormal neuronal phenotypes [183]. Additionally, elevated BRWD1 expression, encoded by 
another Hsa21 gene, has been found to misdirect the BAF complex, thereby altering gene expression in DS 
neurons [184]. Restoring BRWD1 gene dosage in trisomic mouse models has been shown to improve 
cognitive deficits and normalize BAF complex localization [184]. These findings underscore the pivotal role 
of chromatin remodeling in DS neurodevelopmental and neurodegenerative pathologies, suggesting 
promising avenues for targeted therapeutic interventions. Advances in genetic engineering and 
nanotechnology further expand the potential for novel strategies to modify DS [185].

Epigenetic changes associated with AD in DS
Research on DS has revealed significant epigenetic alterations that contribute to accelerated aging, 
cognitive decline, and an increased risk of AD. Trisomy 21 induces broad changes in epigenetic regulation, 
including DNA methylation, histone modifications, and chromatin remodeling [85, 86, 186]. Horvath et al. 
[86] demonstrated that individuals with DS have an increased biological age, averaging 6.6 years older than 
their chronological age, while Jones et al. [187] identified distinct DNA methylation patterns linked to 
trisomy 21 and cognitive impairment. Furthermore, Do et al. [188] reported that the extra chromosome 
exerts widespread trans-acting epigenetic effects, including differential CpG methylation on Hsa21 genes. 
These changes can disrupt normal gene expression, reactivate transposable elements, and induce genomic 
instability [189].

These epigenetic alterations are closely tied to the dysregulation of genes involved in transcription and 
chromatin architecture, which may intensify neurodegeneration. In AD, aberrant epigenetic states 
characterized by DNA hypermethylation and histone deacetylation have been associated with impaired 
synaptic plasticity, elevated oxidative stress, neuroinflammation, and reduced neurogenesis [190, 191]. 
Epigenetic modifications are notably dynamic and responsive to environmental influences, such as diet and 
stress. This offers promising avenues for therapeutic intervention.

Genome-wide methylation studies further highlight the extent of epigenetic disruption in DS. Haertle et 
al. [192] identified 2,716 differentially methylated sites and regions in blood samples from a French cohort 
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that distinguished individuals with DS from controls. Among these were nine methylation differences 
specifically linked to AD dementia. One of these was the ADAM10 gene, which encodes a protein that 
prevents amyloid plaque formation. Similarly, analyzing buccal epithelial cells from Canadian adults with 
DS revealed over 3,300 differentially methylated CpG sites, including the TSC2 gene. Hypomethylation of 
the TSC2 gene has been associated with reduced protein expression, leading to dysregulated mTOR 
signaling and tau accumulation. These are both key processes in AD pathogenesis [190].

Importantly, epigenetic modifiers encoded on chromosome 21 may play a direct role in 
neurodegeneration. DNMT3L, a gene involved in establishing DNA methylation patterns, is overexpressed 
in fetal cortex tissue from DS pregnancies and may contribute to gene-specific hypermethylation [193]. 
Hypermethylation of TSPYL5 can increase neuronal apoptosis, a hallmark of AD [194]. TSPYL5 regulates 
the TP53 pathway. Furthermore, DNMT3L overexpression has been associated with increased APP 
expression, which promotes the formation of Aβ plaques and reinforces its role in Alzheimer-like pathology.

mtDNA methylation is also emerging as a significant epigenetic factor in DS-related neurodegeneration. 
Altered methylation patterns in the D-Loop and coding regions of mtDNA have been observed in individuals 
with DS, leading to dysregulated mitochondrial gene expression [106]. These changes may amplify 
oxidative stress and proinflammatory responses, impairing neuronal function and survival and increasing 
susceptibility to early-onset dementia (Figure 4).

Together, these findings underscore the pivotal role of epigenetic mechanisms in linking the molecular 
pathology of DS and AD. They also provide new insights into therapeutic strategies that target gene 
expression and slow disease progression.

Pharmacological and non-pharmacological therapeutic interventions
Various pharmacological and non-pharmacological interventions have been proposed to mitigate cognitive 
decline and reduce the risk of developing AD in individuals with DS. Non-pharmacological approaches, such 
as structured physical activity [195, 196] programs including Tai Chi [197] and creative adaptations of 
GameSquad [198] have demonstrated effectiveness in enhancing cognitive and physical health. These 
interventions can be delivered in natural environments or remotely via online platforms [199] and are 
suitable for children, adolescents, and adults with DS. They support executive functions, such as attention, 
working memory, cognitive flexibility, and inhibitory control [200]. Additionally, these programs improve 
physical health by reducing blood pressure, enhancing balance, lowering adiposity, and decreasing weight 
and body mass index. Importantly, these programs also contribute to the psychological well-being of 
caregivers, highlighting their value as holistic interventions. Music-based therapies also show promise, 
offering engaging, low-risk strategies for promoting cognitive function and emotional well-being [201].

In terms of pharmacology, several compounds have been investigated for their ability to enhance 
cognitive function and counteract neurodegeneration in individuals with DS. These include 
acetylcholinesterase inhibitors, DYRK1A inhibitors, and GABA and NMDA receptor modulators [202]. Other 
promising agents include flavonoids, such as epigallocatechin-3-gallate (EGCG), fluoxetine, and certain fatty 
acids [203–207]. These interventions target mechanisms such as neurotransmitter regulation and the 
reduction of oxidative stress and neuroinflammation. These mechanisms are altered in DS and contribute to 
AD pathology. Additionally, various plant-derived compounds could be used to attenuate symptoms and 
decelerate the progression of AD in adults with DS. In particular, diadzein and formononetin have been 
identified as modulators of key signaling pathways involved in inflammatory processes and the aggregation 
of Aβ [208, 209]. Furthermore, these compounds could induce neuroprotective mechanisms by reducing 
oxidative stress, increasing the activity of antioxidant enzymes such as SOD, catalase, and reduced 
glutathione, as well as improving mitochondrial function and decreasing neuronal apoptosis [208, 209]. 
These findings support the potential of diadzein and formononetin as therapeutic agents in the context of 
AD associated with DS.
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Despite these advancements, managing AD in individuals with DS remains a significant challenge with 
far-reaching implications for families, caregivers, and healthcare systems. The convergence of age-related 
neurodegeneration and the preexisting neurodevelopmental profile of DS creates complex needs that are 
often poorly understood. In many group care settings, staff rely on improvised trial-and-error approaches 
to manage AD progression, reflecting a lack of specialized training and systemic preparedness [210]. 
Caregivers, especially younger ones, report high levels of anxiety about the potential onset of AD [26]. 
Families often face a fragmented service landscape that emphasizes long-term disability care rather than 
responsive dementia care strategies [211, 212]. This mismatch can lead to emotional distress, confusion, 
and a pervasive sense of helplessness, underscoring the urgent need for integrated, coordinated care 
models [211].

In this context, developing inclusive, person-centered health policies is crucial to supporting 
individuals with DS and their families throughout their lives. Early intervention services beginning in 
childhood should promote holistic development and be tailored to individual needs [213]. Educational 
systems must adopt inclusive strategies that accommodate language and communication challenges, foster 
collaboration with families, and ensure smooth transitions between stages of schooling [214]. However, 
disparities in regional service availability hinder access to high-quality care, contributing to unequal 
outcomes and reduced quality of life [215]. Therefore, public health strategies must prioritize training 
professionals, providing psychosocial support, and implementing stress management programs. Particular 
attention must be paid to the compounded challenges posed by AD in individuals with DS.

Finally, the NIH INCLUDE initiative has played a transformative role in enhancing DS research 
infrastructure, supporting participant recruitment, and promoting clinical trial engagement [216]. 
Previously underfunded and narrowly focused, DS research is evolving toward more robust trial designs, 
the validation of reliable biomarkers, and integrative strategies combining pharmacological treatments 
with cognitive interventions [216, 217]. These ongoing efforts aim to refine therapeutic strategies and 
improve clinical outcomes for individuals with DS who are at risk for or affected by AD.

Conclusions
Individuals with DS are uniquely predisposed to developing AD due to genetic, molecular, and physiological 
alterations associated with trisomy 21. The overexpression of Hsa21 genes, chromatin remodeling 
disturbances, mitochondrial dysfunction, and widespread epigenetic changes collectively accelerate 
neurodegeneration. These mechanisms are further amplified by chronic inflammation and synaptic 
dysregulation, contributing to the early and aggressive onset of dementia. While there is currently no cure 
for AD, emerging therapeutic strategies, including gene-targeted treatments, anti-inflammatory agents, 
lifestyle interventions, and inclusive support systems, offer hope for delaying cognitive decline and 
improving quality of life. Moving forward, a multidisciplinary and individualized approach is essential to 
address the complex clinical needs of individuals with DS and reduce the burden of AD across this 
vulnerable population.
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