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Abstract
Congenital hydrocephalus (CH) is an extreme cerebrospinal fluid (CSF) condition that affects brain 
development. Current medical treatments, such as ventriculoperitoneal shunting and endoscopic third 
ventriculostomy, are invasive and susceptible to complications. The subventricular zone (SVZ) is involved 
in CH, but investigations are hindered by conventional models. Here, we introduce SVZonChip, a dynamic 
3D microfluidic device simulating SVZ physiology and CSF dynamics, presenting a proof-of-concept system 
that could be applied for studying CH. This bioengineered device provides a translational bridge between 
disease modeling and therapeutic discovery, opening up avenues for non-invasive treatments.
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Author’s opinion
Congenital hydrocephalus (CH) is a complex condition where there is abnormal accumulation of 
cerebrospinal fluid (CSF), causing progressive ventricular dilation, raised intracranial pressure, and 
devastating neurological disabilities [1]. Occurring in about 85 out of 100,000 people across the globe, CH is 
still a clinical problem, especially in low- and middle-income nations where access to sophisticated medical 
interventions is restricted [1]. Though the use of CSF shunting is still the standard treatment approach, 
shunt malfunction, infection, and late sequelae require a shift in focus toward other therapeutic strategies 
[2]. Recent findings propose that the subventricular zone (SVZ), a major neural stem cell (NSC) niche in the 
brain, is an important site for understanding CH pathophysiology [3]. The SVZ is involved in neurogenesis, 
ependymal barrier development, and homeostasis of CSF, but dysregulations in this zone are commonly 
found in CH disease [4, 5]. Conventional models for CH rely largely upon genetic mouse models, 
hydrocephalic rats, and transgenesis, which cannot adequately represent human SVZ cellular organization 
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and biomechanical forces [6]. In addition, such models raise ethical issues and have limitations in 
translation. There is, therefore, an urgent necessity for human-relevant in vitro models that can 
reproducibly mimic CSF-mediated hydrocephalus disease in humans. To overcome these challenges, our 
team created SVZonChip, a biomimetic microphysiological system that reproduces the SVZ environment in 
vitro (Figure 1). This system combines a region-specific decellularized extracellular matrix (ECM) from 
bovine SVZ tissue and a dynamic microfluidic culture system that mimics CSF flow [7]. The SVZonChip 
consists of co-cultured primary mouse radial glial cells (RGCs), ependymal cells (ECs) in a layered 
arrangement that reproduces native SVZ. In static conditions, RGCs preserve their progenitor-like state, 
whereas ECs adopt cilia and generate an epithelial barrier. When subjected to microfluidic CSF flow, 
SVZonChip shows improved ependymal ciliary growth, enhanced cellular polarization, and SRY-box 
transcription factor 2 (Sox2)+ and glial fibrillary acidic protein (GFAP)+ enrichment, resembling in vivo 
SVZ-like characteristics. Compared to conventional CH models as described in Table 1, SVZonChip offers a 
more physiologically relevant substitute by mimicking SVZ-specific cell-ECM interactions and mechanical 
stresses. SVZonChip captures essential features of SVZ pathophysiology relevant to CH, including ciliary 
architecture, flow-dependent signaling, and barrier formation. Although it does not model genetic 
mutations such as L1 cell adhesion molecule (L1CAM) or coiled-coil domain-containing protein 39 
(CCDC39) directly, it offers flexibility for both disease modeling and therapeutic exploration. Experimental 
manipulation can be achieved using chemical agents (e.g., neuraminidase to disrupt ependymal cilia) or, in 
principle, gene delivery methods (e.g., viral or lipid-based transfection), enabling the recreation of 
hydrocephalus-associated phenotypes in a controlled in vitro environment. While the platform simulates 
CSF dynamics via microfluidic flow, it does not reproduce CSF secretion, which is primarily mediated by the 
choroid plexus (CP). Future integration with CP-on-chip systems, such as those described by Pellegrini et al. 
[8], may overcome this limitation and support more comprehensive modeling of hydrocephalus. L1CAM and 
CCDC39 mutant genetic mouse models offer information on mutations associated with hydrocephalus but 
do not have essential elements for human ECM composition [9, 10]. Brain organoids from induced 
pluripotent stem cells (iPSCs) hold potential but are plagued by heterogeneity and failure to mimic fluid 
dynamics [11, 12]. Rat models for hydrocephaly offer a useful understanding of dynamics in CSF, but cannot 
mimic the mechanobiological functions of shear stress upon ependymal cilia [13]. SVZonChip fills this gap 
by incorporating biomimetic ECM, NSC science, and microfluidic CSF flow, and provides a reproducible and 
scalable system for mechanistic investigations and screening for drugs. Apart from its use in CH, SVZonChip 
is an attractive system for studying other neurodevelopmental and neurodegenerative diseases implicated 
in SVZ dysfunction. Periventricular leukomalacia, post-hemorrhagic hydrocephalus, and glioblastoma all 
entail SVZ niche dysregulation and are therefore strongly relevant to an extensive list of neurological 
disorders. SVZonChip further represents an innovative system for analysis of CSF flow dynamics in real-
time, which reveals new information about mechanobiology’s role in neural development and disease state 
progression. As the neuroscience field increasingly adopts organ-on-a-chip (OOC) technology, SVZonChip 
marks a revolutionary leap toward human-relevant disease modeling. By replicating SVZ neurogenesis and 
CSF-mediated pathophysiology in vitro, this system provides novel pathways for elucidating CH 
pathogenesis and non-invasive therapeutic development. Future directions should aim at incorporating 
patient-derived iPSCs in order to facilitate personalized disease modeling and further optimizing 
microfluidic parameters for maximizing physiological relevance. Additionally, integration with brain and CP 
organoids or OOC systems could enhance the physiological relevance of the SVZonChip model. Such 
combinations may enable multi-regional in vitro platforms that simulate interactions between CSF 
secretion (by the CP), flow dynamics, and SVZ-specific mechanobiology, offering a more comprehensive tool 
for studying CH and neurodevelopmental processes. With sustained inter-disciplinary efforts from 
bioengineers, neuroscientists, and clinicians, SVZonChip promises to reshape the terrain of hydrocephalus 
research and therapeutic discovery.
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Figure 1. Dynamic 3D organotypic model for SVZonChip. This figure shows a schematic representation of the dynamic 3D 
organotypic subventricular zone (SVZ) model. Radial glial cells (RGCs) were seeded onto polycarbonate (PCF) membrane 
insert on day 1 in a proliferation medium. On day 2, a bovine SVZ equivalent extracellular matrix (ECM) hydrogel seeded with 
RGCs was applied atop this. The insert was connected with a peristaltic pump for the dynamic flow of medium, mimicking in vivo 
conditions and facilitating RGC proliferation, differentiation, and establishment of an epithelial barrier under dynamic conditions 
for 15 days. CSF: cerebrospinal fluid; EC: ependymal cell; TAP: transient amplifying progenitor; B.V: blood vessel. Reprinted 
from [7], CC BY

Table 1. Comparative evaluation of various models of hydrocephalus listing their respective strengths and weaknesses

Model type Advantages Limitations References

Genetic mouse 
models

Replicates genetic mutations Lacks human-specific ECM, limited 
CSF flow analysis

[9, 14]

iPSC-derived brain 
organoids

Human-relevant cellular architecture Heterogeneous differentiation, lacks 
CSF dynamics

[11, 12]

Hydrocephalic rat 
models

Ventricular enlargement mimicry Fails to capture the mechanobiological 
effects of CSF

[13, 15]

SVZonChip Mimics SVZ-specific ECM and CSF flow, 
integrates microfluidic technology

Requires further validation for clinical 
translation

[7]

Genetic mouse models reflect hydrocephalus-related mutations but lack human-specific extracellular matrix (ECM) composition 
and cerebrospinal fluid (CSF) flow dynamics. Induced pluripotent stem cell (iPSC)-derived brain organoids have a human-
relevant cellular organization but are plagued by heterogeneous differentiation and cannot mimic CSF dynamics. Hydrocephalic 
rat models simulate ventricular dilation but cannot capture the mechanobiological consequences of CSF dynamics for 
ependymal cilia. SVZonChip, an organ-on-a-chip system based on subventricular zone (SVZ)-specific ECM and dynamic CSF 
flow, has the potential for clinical translation but needs further verification

Abbreviations
CH: congenital hydrocephalus

CP: choroid plexus

CSF: cerebrospinal fluid
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ECM: extracellular matrix

SVZ: subventricular zone
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