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Abstract
Hepatocellular carcinoma (HCC) ranks as the sixth most diagnosed cancer and the third most common 
cancer-related death globally. The underlying precise molecular mechanisms for its progression remain 
poorly understood. Interestingly, approximately 90% of HCC-related deaths are not due to the primary 
tumor itself but rather to its difficult-to-treat metastatic spread. Despite sorafenib being the first-line 
therapy for HCC, challenges such as drug resistance, frequent recurrence, and metastasis contribute to poor 
prognosis. In this context, alternative therapeutic strategies are urgently needed. A broad spectrum of 
phytochemicals, including polyphenolic derivatives, flavonoids, carotenoids, alkaloids, terpenes, lignans, 
and saponins, has shown considerable promise as potential anti-cancer agents, both in vitro and in vivo. 
These natural plant-derived compounds exhibit distinct and overlapping mechanisms of action, 
characterized by their antioxidant, anti-inflammatory, and anti-cancer properties, offering a novel approach 
to HCC treatment. An extensive literature search was conducted from 2010 to 2024 using reputable 
electronic databases such as MEDLINE, Embase, Google Scholar, Science Direct, and other reliable sources 
using different keywords, including HCC, medicinal plants in HCC, HCC metastasis, and mechanism of action 
of medicinal plants in HCC, among others. This comprehensive review aims to summarize the potential role 
of plant-based bioactive components in combating HCC through various cellular mechanisms, highlighting 
their therapeutic potential in the management of both primary and metastatic disease.

Keywords
Anti-cancer drugs, epithelial-mesenchymal transition (EMT), liver cancer, metastasis, phytochemicals

Introduction
Hepatocellular carcinoma (HCC) is the 3rd leading cause of cancer-related death and 6th most common 
type of cancer globally. According to the Global Cancer Observatory (GLOBOCON 2022, version 1.1), 
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approximately 870,000 new cases of liver cancer were reported globally, with around 760,000 deaths 
attributed to the disease, reflecting the varying incidence rates worldwide [1]. Notably, the expected 
incidence of HCC is projected to increase by 55% from 2020 to 2040. The majority of HCC cases are 
concentrated in East and Southeast Asia, with China accounting for 62.4% of cases, followed by Japan 
(7.0%), India (5.3%), Thailand (4.2%), and Vietnam (4.0%) [2, 3]. Most HCC cases occur in individuals with 
cirrhosis, with the highest mortality rate observed in alcoholic liver disease (ALD), followed by MAFLD 
(metabolic dysfunction-associated fatty liver disease), and HBV (hepatitis B virus) or HCV-related cirrhosis 
[2, 3].

Moreover, Mongolia has the highest HCC incidence globally, while China reports the majority of cases 
in Asia, followed by Japan, India, Thailand, and Vietnam [4]. HCC incidents vary by country due to 
differences in screening practices, etiological factors, and treatment strategies. Hepatic viral diseases, 
particularly HBV and HCV, were historically the leading cause of HCC, but MAFLD now surpasses them in 
many countries, except in Africa, where HBV and aflatoxin exposure remain dominant risk factors. In 
regions like Northern Africa, Western Europe, and the USA, HCV remains a significant contributor to HCC 
[5]. Furthermore, metabolic disorders such as alpha 1-antitrypsin deficiency, Wilson’s disease, porphyria, 
and hereditary hemochromatosis are linked to the development of HCC, often in the context of cirrhosis [6]. 
Autoimmune conditions, including autoimmune hepatitis and primary sclerosing cholangitis, also play a 
role in HCC pathogenesis [7].

Pathophysiology of HCC
In HCC, invasion typically begins within the liver parenchyma, known as intrahepatic metastasis, where 
cancer cells circulate and infiltrate adjacent liver tissues. This process is facilitated by various molecular 
mechanisms, including alterations in cell-cell and cell-extracellular matrix (ECM) interactions, 
dysregulation of signaling pathways, and remodeling of the ECM. Invasion can be classified as either micro 
or macro. The majority of invasion occurs in the portal vein (approximately 60%), while only 20% occurs in 
the hepatic vein [8]. On the other hand, metastasis refers to the spread of cancer cells from the primary 
malignancy site to distant parts of the body. Radiological reports indicate that metastasis occurs through 
various routes, including the hematogenous route, lymphatic spread, bile duct invasion, and direct 
extrahepatic invasion. The hematogenous route is the most common pathway for HCC metastasis, primarily 
due to the invasion of intrahepatic arterioles and venules that drain into the pulmonary circulation. The 
lungs (the most common site), bones, and adrenal glands are frequently affected via the hematogenous 
route, while the diaphragm, abdominal wall, and peritoneum are commonly involved through direct 
extrahepatic invasion [9, 10].

A key molecular mechanism driving HCC invasion is the deregulation of epithelial-mesenchymal 
transition (EMT). EMT is a biological process in which epithelial cells lose their polarity and cell-cell 
adhesion, acquiring mesenchymal traits that enable them to migrate, invade surrounding tissues, and resist 
apoptosis. Previously, EMT was viewed as a simple binary transition between epithelial and mesenchymal 
states. However, recent studies reveal that EMT involves varying degrees of phenotypic changes, including 
partial EMT, intermediate EMT, extreme EMT, and ameboid EMT. In all phases, the ameboid stage shows a 
high potential for extravasation and metastasis due to squeezing mobility [11]. EMT changes are driven by 
factors such as disruption of cell-cell adhesion proteins, activation of transcription factors, alterations in 
cell surface proteins, increased production of degrading enzymes, and activation of key signaling pathways. 
Molecular markers like E-cadherin and cytokeratin are associated with epithelial cells, while N-cadherin 
and vimentin are linked to mesenchymal cells with migratory capabilities. Mechanisms altering these 
protein expressions include upregulation of retinoic acid receptor γ (RARγ), a nuclear receptor that 
promotes cell migration and invasion by downregulating E-cadherin, and homeodomain-interacting protein 
kinase 8 (HDGF8), a histone demethylase that also facilitates HCC cell migration [12, 13]. In addition, 
cytoskeletal remodeling, regulated by RhoGAP (an enzyme that hydrolyzes GTP to GDP), plays a crucial role 
in cell migration by modulating E-cadherin expression and actin polymerization [14].
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Angiogenesis is a key process in HCC invasion and metastasis, involving the activation of endothelial 
cells to form new blood vessels, which provide nutrients to cancer cells. This process is regulated by 
various mechanisms; under hypoxic conditions, increased expression of HIF-1α (hypoxia inducible factor-
1α) (a hypoxia-induced transcription factor) activates several angiogenic factors in HCC [15]. Pro-
angiogenic factors include epidermal growth factor (EGF) [16], platelet-derived growth factor (PDGF) [17], 
fibroblast growth factor (FGF) [18], endoglin [19], and leptin [20], while anti-angiogenic factors like 
thrombospondin-1 [21] and endostatin [22] counteract this process. Invasion also involves complex 
interactions within the tumor microenvironment (TME), which comprises stromal cells such as hepatic 
stellate cells (HSCs), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and 
tumor-associated neutrophils (TANs) [23]. HSCs play a critical role in invasion and metastasis by secreting 
pro-angiogenic factors like vascular endothelial growth factor receptor (VEGFR) and PDGF, along with IL-8, 
which stimulates new blood vessel formation [24]. Additionally, HSCs modulate immune responses by 
promoting the transition of macrophages from the M1 to M2 phenotype via the CCL2/CCR2 pathway [25].

Current therapeutic landscape
The treatment of HCC faces significant challenges due to limited therapeutic options. Clinical management 
is complex and varies depending on tumor stage, liver function, and the patient’s overall health. The 
Barcelona Clinic Liver Cancer (BCLC) staging system and the Child-Pugh score are widely accepted tools for 
guiding therapeutic decisions [26, 27]. Patients in the early stages (BCLC 0/A) with preserved liver function 
and minimal tumor burden are typically eligible for potentially curative treatments, including hepatic 
resection, local ablation [such as radiofrequency ablation (RFA) or microwave ablation (MWA)], or liver 
transplantation (LT). The choice among these options depends on factors such as portal hypertension, 
bilirubin levels, and the presence of multiple nodules [28]. Hepatic resection is best suited for non-cirrhotic 
or cirrhotic patients with a single nodule (BCLC stage 0 or A), Child-Pugh A liver function, and no significant 
portal hypertension. Surgical resection offers a 5-year survival rate of ~ 70% though tumor recurrence is 
common, occurring in 75–80% of patients within 5 years. Recurrence is especially prevalent in cases 
related to viral hepatitis, particularly HCV [29, 30]. For patients who are not suitable for surgery, LT is a 
viable alternative. Eligibility typically follows the Milan criteria (a single lesion ≤ 5 cm or 2–3 nodules ≤ 
3 cm without vascular invasion). LT provides favourable long-term outcomes, with low recurrence rates 
and a 10-year survival rate of around 70% [28]. In regions with limited deceased donor organs, living donor 
LT is practiced. Post-transplant immunosuppressants like tacrolimus are essential to prevent graft 
rejection, which is closely linked to recurrence risk. Sirolimus, however, has shown potential in reducing 
tumor progression [31, 32]. For patients ineligible for surgery or transplantation, non-surgical locoregional 
therapies such as RFA, MWA, percutaneous ethanol injection (PEI), and transarterial chemoembolization 
(TACE) are preferred. RFA is especially effective for nodules smaller than 2 cm and serves as an alternate to 
surgery for early-stage HCC, with a median overall survival of about 60 months and 5-year recurrence rates 
of 50–70% [33]. TACE is the first-line therapy for intermediate-stage HCC (BCLC-B), particularly in patients 
with preserved liver function (Child-Pugh A) and no vascular invasion or metastasis. More recently, 
selective internal radiation therapy (SIRT) with yttrium-90 microspheres has been used palliatively in 
BCLC-B patients; however, phase 3 trials have not demonstrated superior survival compared to sorafenib, 
alone or combined [34, 35].

Advanced HCC with BCLC-D patients are treated with first-line or second-line systemic therapies. 
Current systemic therapies include targeted therapy and immunotherapy. Sorafenib, an oral multi-kinase 
inhibitor, targets serine/threonine kinases RAF-1 and RAF, as well as tyrosine kinases such as VEGFR-1, -2, 
-3, and PDGFR-β, which are crucial in cancer development. Approved in 2007 as the first-line treatment for 
advanced HCC, sorafenib has been associated with adverse effects including hand-foot syndrome (7.0%), 
asthenia (7.4%), and diarrhea (13.1%), which can impact quality of life and lead to treatment 
discontinuation [36, 37]. Another option, regorafenib also a multi-kinase inhibitor targets VEGFRs 1–3, 
TIE2, RET, and RAF-1. It inhibits tumor cell proliferation, induces apoptosis, and exerts anti-angiogenic 
effects by blocking multiple pathways [38]. However, it is also linked to adverse reactions such as fatigue, 
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hypertension, hand-foot skin reactions, and gastrointestinal symptoms, including diarrhea, nausea, and 
anorexia. Hepatotoxicity is a particular concern in HCC patients, who often have compromised liver 
function [39].

Another treatment option for HCC is the combination of atezolizumab and bevacizumab. Atezolizumab 
is a monoclonal antibody that inhibits PD-L1 (programmed death-ligand 1), while bevacizumab targets 
VEGF, a key mediator of angiogenesis [40]. In 2020, this combination was approved as a new standard 
treatment for patients with unresectable HCC. However, atezolizumab may cause immune-related adverse 
events such as hepatitis, pneumonitis, and colitis, while bevacizumab is associated with hypertension, 
bleeding, thromboembolism, and proteinuria. The combination therapy can increase the overall risk of 
these side effects [41]. A comparative overview of these therapies, including their mechanisms, clinical 
outcomes, and toxicity profiles, is presented in Table 1.

Table 1. Systemic treatments for advanced HCC: a comparative analysis of efficacy, survival outcomes, and safety 
profiles

Drug Target Benefits Median OS and 
hazard ratio

Common adverse effects Reference

Sorafenib TKI—VEGFR, 
PDGFR, RAF

First-line for advanced 
HCC, delays HCC 
progression

6.5 months 
(5.56–7.56) and 
0.68

HFSR, diarrhea, fatigue, 
hypertension

[36]

Donafenib TKI—
RAF/MEK/ERK

Modified structure of 
sorafenib

12.1 months 
and 0.831

HFSR, diarrhea, and 
elevated LFT

[42]

Lenvatinib TKI—VEGFR, 
FGFR, PDGFR, 
RET, KIT

Non-inferior to sorafenib, 
higher response rate (24%)

13.6 months 
(range from 
12.1–14.9) and 
0.92

Palmar-plantar 
erythrodysesthesia, 
hypertension, weight loss, 
proteinuria, diarrhea

[43]

Regorafenib TKI—VEGFR, 
PDGFR, FGFR

Second-line after sorafenib, 
OS benefit (~ 3 months)

10.6 months 
(range from 
9.1–12.1) and 
0.63

Fatigue, diarrhea, 
hypertension, HFSR

[38]

Cabozantinib TKI—MET, 
VEGFR, AXL

Second/Third-line, OS and 
PFS benefit, activity in 
bone/lung metastases

10.2 months 
and 0.76

Diarrhea, HFSR, fatigue, 
increased LFTs

[44]

Ramucirumab Anti-VEGFR-2 
monoclonal 
antibody

Second-line if AFP > 
400 ng/mL, improves OS in 
AFP-high HCC

8.5 months 
(range from 
7.0–10.6) and 
0.710

Hypertension, proteinuria, 
bleeding, fatigue

[45]

Apatinib TKI of VEGFR-2 Second-line treatment after 
chemotherapy failure

8.7 months 
(range from 
7.5–9.8) and 
0.785

Hypertension, HFSR [46]

FOLFOX (5-FU + 
leucovorin + 
oxaliplatin)

Cytotoxic 
chemotherapy

Some benefit in Asia, used 
in advanced/metastatic 
HCC

5.9 months and 
0.75

Hematological symptoms, 
diarrhea, neuropathy

[47]

Nivolumab + 
ipilimumab

Checkpoint 
inhibitors (PD-1 + 
CTLA-4)

Active in metastatic HCC 23.7 months 
(range from 
18.8–29.4) and 
0.76

Hepatitis-colitis, 
endocrinopathies, skin rash

[48]

Atezolizumab + 
bevacizumab

PD-L1 + VEGF 
inhibition

First-line standard in 
advanced HCC

19.2 months 
(range from 
17.0–23.7) and 
0.66

Hypertension, GI bleed, 
fatigue, immune hepatitis

[40]

5-FU: 5-fluorouracil; AFP: alpha-fetoprotein; GI: gastrointestinal; HCC: hepatocellular carcinoma; HFSR: hand-foot skin reaction; 
LFT: liver function test; OS: overall survival; PD-1: programmed death-1; PD-L1: programmed death-ligand 1; PFS: progression-
free survival; TKI: tyrosine kinase inhibitor; VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor

Another immunotherapy target is CTLA-4, a CD28 homolog that inhibits T-cell activation by preventing 
CD28 from binding to CD80/CD86. Monoclonal antibodies against CTLA-4 reduce helper T-cell activity and 
enhance regulatory T-cell (Treg) function, thereby suppressing immune responses. A phase I/II study 
(NCT02519348) evaluated tremelimumab (anti-CTLA-4 antibody) combined with durvalumab (T300 + D) 
versus monotherapy with either agent. The combination showed a higher overall response but also a 
greater incidence of adverse events compared to targeted therapies [49].
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Need for developing plant-based alternative therapies for HCC
HCC remains a major clinical challenge due to limited treatment options and significant side effects 
associated with current therapies. Plant-derived phytochemicals offer a promising alternative, as they can 
reduce cancer burden without causing severe toxicity to normal tissues.

These compounds act through various mechanisms, including antioxidant, anti-inflammatory, and pro-
apoptotic pathways (Figure 1). Phytochemicals are classified into groups such as polyphenols, alkaloids, 
and flavonoids, all of which have demonstrated anticancer properties. Compared to conventional 
chemotherapy, phytochemicals generally exhibit better metabolism and biotransformation, making them 
both safer and potentially more effective. Plant-based therapies not only enhance treatment efficacy but 
also help mitigate treatment-related side effects.

Figure 1. Overview of the etiological factors contributing to HCC. The figure also highlights the mechanisms of medicinal 
plants in suppressing tumor growth and metastasis. EMT: epithelial-mesenchymal transition; FDL: fatty liver disease; HCC: 
hepatocellular carcinoma

Medicinal plants as anticancer agents
Numerous phytochemicals have significantly advanced cancer research and show promising therapeutic 
potential in HCC, primarily by modulating key molecular pathways involved in tumor growth, survival, and 
metastasis.

Alkaloids

Alkaloids are cyclic compounds containing one or more basic nitrogen atoms, making them unique and 
valuable in medicine. They are classified based on their chemical structure and the plant source from which 
they are derived. For instance, vinblastine, extracted from Vinca rosea (Apocynaceae family), is classified as 
an indole alkaloid. It, along with its analogue vincristine, exhibits anticancer activity by inhibiting 
microtubule polymerization [50]. Another class, proto-alkaloids, consists of plant metabolites derived from 
aromatic amino acids such as tryptophan, tyrosine, or phenylalanine. An example is colchicine, which is 
derived from Colchicum autumnale and inhibits cancer progression by disrupting the cytoskeleton of tumor 
cells, thereby reducing tumor burden in HCC [51]. Camptothecin, a pyrroloquinoline alkaloid extracted 
from the plant Camptotheca acuminata, exhibits antioxidant properties by decreasing the expression of the 
Nrf2 protein in an HCC mouse model [52]. Moreover, some alkaloids can modulate immune responses, 
enhancing the immune system’s ability to recognize and eliminate malignant cells.
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Flavanoids

Flavonoids are secondary metabolites classified as polyphenolic compounds, abundantly present in fruits, 
vegetables, tea, and medicinal plants. They are characterized by aromatic rings with specific degrees of 
hydroxylation and various substituents that distinguish each flavonoid [53]. These compounds have 
attracted significant attention due to their ability to modulate signaling pathways involved in tumor 
development, progression, angiogenesis, and metastasis. Quercetin, found in high concentrations in various 
berries, onions, apples, and red wine, inhibits the proliferation of liver cancer cells by reducing 
inflammation and inducing cell cycle arrest [54]. Apigenin, extracted from Petroselinum crispum (parsley), 
demonstrates antimetastatic potential in an in vivo HCC model by altering miRNA expression and inducing 
apoptosis [55]. Luteolin, a flavonoid mainly found in broccoli, pepper, thyme, and celery, exhibits anticancer 
activity in vitro HCC models by modulating the expression of the p53 protein [56]. Genistein, derived from 
dyer’s broom (Genista tinctoria), reverses the EMT markers and inhibits cancer cells’ migration and 
invasion [57].

Terpenoids

Terpenoids are among the most diverse groups of phytochemicals, derived from terpenes composed of 
repeating isoprene units that form characteristic carbon skeletons. Based on the number of isoprene units, 
terpenes are classified into several groups, including monoterpenoids, sesquiterpenoids, diterpenoids, and 
triterpenoids [58]. Tanshinone I, a diterpenoid found in lavender, peppermint, cherries, celery seeds, and 
lemongrass, exhibits anticancer activity by inducing apoptosis and inhibiting p53-mediated autophagy in 
the HepG2 cell line model [59]. Parthenolide, a sesquiterpene lactone derived from Tanacetum parthenium 
(feverfew), exerts anticancer effects by modulating the immune system, reducing inflammation, and 
interfering with signaling pathways involved in the inflammatory response [60]. Ursolic acid, a triterpenoid 
found in apple peel, rosemary, thyme, oregano, and lavender, functions as an antioxidant and anti-
inflammatory agent, and also reverses sorafenib resistance in HCC cells in an in vitro model [61]. 
Furthermore, saponins, a class of triterpenoids, exhibit anticancer properties by inducing apoptosis and 
blocking the β-catenin signaling pathway in the HCC mouse model [62]. Additionally, various terpenoids 
have been shown to inhibit angiogenesis, migration, and invasion of cancer cells, further highlighting their 
potential in cancer therapy.

Polyphenols

Polyphenols have shown strong potential to inhibit cancer progression in both in vitro and in vivo models. 
These compounds are classified based on their structure and function. For example, flavonoids, found in the 
root bark of plant species such as Ramulus mori (Moraceae family) and Sophora flavescens (Leguminosae 
family), act as antioxidants and anti-inflammatory agents, and inhibit the proliferation of HCC cells in vitro 
by modulating the ERK signaling pathway [63]. Stilbenes, another class of polyphenols found in red grapes 
and peanuts, exhibit anticancer and antimetastatic properties in vitro HCC models by inducing autophagy 
[64]. Phenolic acids, primarily present in fruits (especially berries), vegetables, cereals, legumes, and 
beverages such as coffee and wine, demonstrate anticancer activity by inducing apoptosis and modulating 
the TME in both in vivo and in vitro [65]. Lignans combat HCC through multiple mechanisms, including the 
induction of apoptosis and the inhibition of angiogenesis. Sesame and flax seeds are among the most 
concentrated dietary sources of lignans [66].

Key medicinal plants and phytochemicals with proven efficacy against HCC 
metastasis: mechanistic insights and preclinical evidence
Several medicinal plants have shown promising therapeutic potential against HCC through mechanisms 
including the induction of apoptosis, inhibition of metastasis, anti-inflammatory effects, and modulation of 
key oncogenic signaling pathways (Table 2). Below is an overview of key phytochemicals derived from 
selected medicinal plants that have shown efficacy in preclinical HCC metastasis models, highlighting their 
molecular targets and proposed modes of action.
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Table 2. Key medicinal plants and phytochemicals with proven efficacy against HCC metastasis

S. 
No.

Scientific 
name

Common name Active 
compound

Mechanism of action Therapeutic potential Reference

Apoptosis and cell cycle arrest
1 Ferula assa-

foetida
Asafoetida-
devil’s dung

Farnesiferol C ↑ caspase activation results in 
increased apoptosis

Induction of apoptosis [67]

2 Petroselinum 
crispum

Parsley Apigenin Induction of cell cycle arrest 
and apoptosis, inhibiting the 
PI3K/Akt signaling pathways by 
overexpression of miR-199a/b-
5p

Cell cycle arrest, 
apoptosis

[55]

Activates anti-angiogenic factor
3 Berberis 

vulgaris
Barberry Berberine Block the HIF-1α/VEGF axis, 

reduced expression of Id-1 by 
inactivation of p16INK4a/RB 
pathway

Anti-angiogenic [68]

4 Solanum 
lycopersicum

Tomato Lycopene ↓ expression of HIF-1α, VEGF, 
CD31, MMP-2, and MMP-9

Suppression of 
neovascularization

[69]

Metabolic reprogram
5 Picrorhiza 

kurroa
Kutki Picroside II ↓ glycolytic enzyme expression 

activity
Metabolic 
reprogramming

[70]

6 Silybum 
marianum

Milk thistle Silybin Activating the AMPK-DR5 
pathway inhibits intracellular 
ATP levels and glycolysis

↓ ATP production and 
glycolysis

[71]

Reduces tissue invasion
7 Arctium lappa Greater 

burdock
Arctigenin Wnt/β-catenin signaling, ↑ 

expression of E-cadherin, ↓ N-
cadherin, and vimentin, prevent 
EMT

EMT suppression [72]

8 Camptotheca 
acuminata

Happy tree Camptothecin ↓ expression of Nrf2, ↑ 
expression of E-cadherin, and ↓ 
N-cadherin

EMT inhibition [73]

9 Curcuma 
longa

Turmeric Curcumin ↓ expression of MMPs-2/9, 
VEGF,

inhibit the PI3K/Akt/mTOR/NF-
κB signaling

EMT suppression, 
angiogenesis inhibition

[74]

10 Dioscorea 
zingiberensis

Zingiber yam Diosgenin Inhibit platelet activation, inhibit 
P2Y2 receptor activity, and ↑ E-
cadherin expression

EMT inhibition and 
reducing metastatic 
potential

[75]

11 Glycyrrhiza 
inflata

Chinese 
licorice

Licochalcone A Downregulation of the 
MKK4/JNK signaling pathway 
and NF-κB transcriptional 
activation

EMT inhibition [76]

12 Glycine max Soybean Genistein Inhibiting the EIF5A2/PI3K/Akt 
pathway, ↑ miR-1275, attenuate 
the EMT and stemness

EMT & stemness 
inhibition

[77]

13 Panax 
quinquefolius

Ginseng Ginsenoside Inhibit the HIF-1α and NF-κB 
signaling pathway, preventing 
EMT by ↓ vimentin and ↑ E-
cadherin

EMT suppression [78]

14 Plumbago 
zeylanica

Chitrak Plumbagin ↑ expression of E-cadherin and 
↓ N-cadherin, vimentin, and 
snail, preventing EMT

EMT suppression [79]

15 Rosmarinus 
officinalis

Rosemary Rosmarinic acid Inhibition of PI3K/Akt/mTOR 
signal pathway

Anti-invasion, anti-
survival

[80]

16 Salvia 
miltiorrhiza

Danshen Tanshinone IIA ↓ expression of Rho GTPases 
regulates the cytoskeleton 
remodeling

EMT suppression [81]

17 Scutellaria 
baicalensis

Chinese 
skullcap

Baicalein ↓ expression of MMP-2, MMP-
9, ↑ expression of TIMP-1 and 
2

Anti-invasion [82]

18 Thymus 
vulgaris

Thyme Carvacrol Reduced the activity of 
argyrophilic nucleolar 
organizing regions, proliferating 
cell nuclear antigen, and 
MMPs-2/9

Suppresses 
proliferation & 
metastasis

[83]
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Table 2. Key medicinal plants and phytochemicals with proven efficacy against HCC metastasis (continued)

S. 
No.

Scientific 
name

Common name Active 
compound

Mechanism of action Therapeutic potential Reference

19 Withania 
somnifera

Ashwagandha Withaferin A ↓ expression of CD44, CD90, 
and EpCAM, inhibition of 
PI3K/Akt signaling pathway by 
↑ miR-200c

EMT suppression [84]

Induces autophagy
20 Allium sativum 

L.
Garlic Allicin Induced autophagy Cell survival regulation [85]

21 Rheum 
palmatum

Turkish 
rhubarb

Emodin Induced S and G2/M phase cell 
cycle arrest, induced 
autophagy, suppressed Wnt/β-
catenin pathways

Inhibits proliferation and 
metastasis

[86]

Activation of the immune system
22 Andrographis 

paniculata
King of bitters Andrographolide ↑ miR-22-3p expression level 

and ↓ HMGB1 and MMP-9 
expression levels

Immunomodulation [87]

23 Crocus 
sativus

Saffron crocus Crocetin ↑ expression of SHP-1, reduced 
activation STAT3, ↓ expression 
of MMP-9

Inhibition of 
inflammation and 
invasion

[88]

24 Gentiana 
macrophylla

Qinjiao Luteoloside ↓ ROS level, ↓ expression of 
NLRP3, ↓ secretion of IL-1β

Anti-inflammatory 
response

[89]

25 Salvia 
miltiorrhiza

Danshen Cryptotanshinone ↓ IDO1 enzyme activity 
modulates immunoregulation

T cell modulation, 
immunoregulation

[90]

26 Terminalia 
bellirica

Bahera Tannins Modulating tumor immune 
microenvironment, restoration 
of CD8+ T cell infiltration and 
function

Reversal of immune 
suppression in the 
tumor 
microenvironment

[91]

EMT: epithelial-mesenchymal transition; HCC: hepatocellular carcinoma; HIF-1α: hypoxia inducible factor-1α; Id-1: inhibitor of 
differentiation-1; IDO1: indoleamine 2,3-dioxygenase 1; MMP-2: matrix metalloproteinase-2; RB: retinoblastoma; VEGF: 
vascular endothelial growth factor

Curcuma longa

Curcumin, a potent polyphenol extracted from Curcuma longa of the Zingiberaceae family, is widely found 
in the southeastern and southern regions of tropical Asia. It has been a key component of Ayurvedic and 
traditional Chinese medicine for centuries [92]. It has gained attention for its anti-proliferative, 
antimetastatic, and anti-inflammatory properties, as well as its ability to regulate multiple signaling 
pathways, making it a promising anticancer agent. A study reported that curcumin modulates the 
expression of cell adhesion markers—E-cadherin, N-cadherin, vimentin, and fibronectin, thereby regulating 
EMT through the TGF-β1 (transforming growth factor-β1) pathway and inhibiting HIF-1α in HepG2 cells, 
ultimately reducing tumor invasion and migration [93].

Curcumin acts on multiple molecular targets, including TGF-β, toll-like receptors (TLRs), and matrix 
metalloproteinases (MMPs), and also inhibits HCV replication, highlighting its antiviral potential [94, 95]. 
Curcumin inhibits cancer cell proliferation by mechanisms such as suppressing CDK2 activity in colon 
cancer [96]. In vitro studies have further demonstrated that curcumin induces cell cycle arrest at the S 
phase by downregulating cyclin A1 and promotes apoptosis by upregulating pro-apoptotic proteins, 
including Bax and caspase-3 [97]. It further suppresses cancer progression by blocking key signaling 
pathways such as NF-κB and Wnt, which are involved in cell proliferation and migration [98]. The 
combination of curcumin with metformin enhances therapeutic efficacy compared to curcumin alone by 
targeting the PI3K/Akt/mTOR/NF-κB and EGFR/STAT3 pathways, thereby suppressing angiogenesis and 
metastasis [74]. However, curcumin faces limitations such as poor absorption, rapid metabolism, and high 
clearance, with most of it excreted in unmetabolized sulfated or glucuronidated forms. A study using pH-
sensitive nanoparticles co-loaded with doxorubicin and curcumin demonstrated improved drug delivery 
and enhanced inhibition of HCC proliferation [99].
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Panax ginseng

The Araliaceae family, particularly the Panax genus, produces ginsenosides—also known as gintonin—a 
group of triterpenoid saponins derived from ginseng with notable anti-HCC properties [100]. Ginseng, 
primarily found in China and India, contains various ginsenoside subtypes, including ocotillol-type pseudo-
ginsenosides, oleanane, protopanaxatriol (PPT), and protopanaxadiol (PPD). Among these, PPD 
significantly inhibits HCC cell migration and invasion. A recent study reported that PPD reduces STAT3 
phosphorylation, thereby preventing its dimerization and nuclear translocation, leading to downregulation 
of TWIST1 expression. This effect reverses EMT in HCC by increasing E-cadherin levels and decreasing N-
cadherin levels [101]. Another PPD derivative, ginsenoside Rh2, inhibits autophagy and reduces β-catenin 
levels in HCC cells in a dose-dependent manner [102]. A modified form, 20(S)-PPD, induces apoptosis by 
suppressing the PI3K/Akt signaling pathway, further inhibiting HCC proliferation [100, 103]. Additionally, 
ginsenoside Rg3 has been shown to reduce long non-coding RNA (lncRNA) expression and inhibit the 
PI3K/Akt pathway in vitro studies, resulting in reduced HCC cell migration [104].

Glycyrrhiza glabra

Glycyrrhiza glabra (liquorice), a medicinal plant from the Leguminosae family, is widely used in Ayurvedic 
medicine and primarily found in Central Asia and China [105]. Its root extract contains glycyrrhizin, a 
sweet-tasting tetracyclic triterpenoid saponin, commonly used as a flavouring agent in food and medicine. 
Liquorice is rich in bioactive compounds, including glycyrrhizin, glycyrrhetinic acid (GA), liquiritigenin, 
isoliquiritigenin, licochalcone A, licopyrano-coumarin, and glabrocoumarin. Among these, glycyrrhizin and 
GA have shown significant anticancer and antimetastatic potential. Glycyrrhizin is metabolized into GA by 
gut microbiota, which is responsible for its therapeutic effects [106]. GA (also known as enoxolone) exhibits 
anti-inflammatory, anticancer, and pro-apoptotic activities. It suppresses HCC proliferation by inhibiting 
the JNK1 pathway, which is associated with malignant transformation, and reduces the self-renewal 
capacity of HSCs [107]. In combination with sorafenib, GA enhances anticancer efficacy. It also inhibits cell 
migration and metastasis by targeting the EGFR, ERK, and Akt signaling pathways [108]. GA binds 
specifically to a receptor on the sinusoidal surface of hepatocytes (GA receptor), enabling its use in targeted 
drug delivery. For instance, GA has been conjugated with 5-fluorouracil (5-FU) via an alkyl side chain, 
resulting in increased ROS (reactive oxygen species) production and enhanced apoptosis [109]. 
Additionally, licochalcone A, a compound from Glycyrrhiza inflata, shows synergistic effects with sorafenib 
by blocking the MKK-4/JNK signaling pathway, thereby inhibiting HCC metastasis [76].

Picrorhiza kurroa

Picrorhiza kurroa (kutki) is a medicinal plant native to high-altitude regions (3,000–5,500 meters) of the 
Himalayas, India, Pakistan, Nepal, and Tibet. Belonging to the Plantaginaceae family, it includes two species: 
P. kurroa Royle ex Benth and P. scrophulariiflora Pennell [110, 111]. Valued in Ayurvedic medicine, the 
plant’s roots and rhizomes produce two primary crystalline compounds—picroline and kutkin—which 
contain various bioactive phytochemicals, including glycosides, iridoids, alkaloids, and terpenes. Among 
these, iridoids are the major class, featuring compounds such as picroside I–V, verminoside, catalpol, 
veronicoside, specioside, 6-feruloylcatalpol, pikuroside, and aucubin [112]. Picroside II has demonstrated 
antimetastatic and anti-angiogenic effects in both cellular and animal models [113]. It reduces 
inflammation by lowering TNF-α, IL-1β, and IL-6 levels and inhibiting NF-κB signaling in rat lung tissue 
[114]. In HCC models, picroside II targets glycosylphosphatidylinositol (GPI)-anchored signaling, 
suppressing cell proliferation and migration. However, further studies are needed to fully understand its 
role in inhibiting tumor cell migration [70].

Silybum marianum

Silymarin is a bioactive extract derived from Milk thistle (Silybum marianum), a medicinal plant known for 
its distinctive milky-white-veined leaves. It remains stable in acidic environments but degrades in alkaline 
conditions, making it effective in the acidic microenvironment of tumors. Silymarin comprises several 
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active compounds, including silybin (or silibinin), isosilibinin, silydianin, silychristin, isosilychristin, and 
taxifolin. Among these, silybin is the most prominent for its anti-cancer properties, demonstrating 
antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, antimetastatic, and anti-angiogenic effects 
[115]. Silybin shows enhanced therapeutic efficacy when combined with other agents. For example, in 
combination with doxorubicin, it induces cell cycle arrest at the G2-M phase by regulating the cdc25C-cyclin 
B1-cdc2 pathway and promotes apoptosis [116]. When paired with sorafenib, silibinin effectively 
suppresses the self-renewal capacity of cancer stem cells by downregulating stemness-related markers 
such as Nanog and Klf4 [117]. Additionally, silybin inhibits tumor progression in HCC by downregulating 
MMPs and modulating key signaling pathways, including the ERK1/2 cascade, Slit-2/Robo-1, and by 
suppressing PD-L1 expression, thereby enhancing T-cell activation [118, 119].

Allium sativum L.

Garlic (Allium sativum L.), a member of the Liliaceae family, is a herbaceous plant widely cultivated in India, 
Central Asia, and surrounding regions. Known for its pungent aroma and flavor, garlic is rich in sulfur-
containing phytochemicals that contribute to its extensive nutritional, physiological, and medicinal benefits 
[120, 121]. Approximately 82% of garlic’s sulfur compounds include allicin, diallyl sulfide (DAS), diallyl 
trisulfide (DATS), E-/Z-ajoene, and S-allyl cysteine (SAC) sulfoxide. It also contains other organosulfur 
compounds such as SAC, N-acetylcysteine, and S-allyl mercapto cysteine (SAMC) [121, 122]. Among these, 
allicin (diallyl thiosulfinate) is the principal bioactive component with significant anticancer activity [123].

Although naturally derived from garlic, allicin is liposoluble and unstable post-synthesis, rapidly 
converting in vitro into secondary metabolites such as DADS (diallyl disulfide), DATS, SAC, SAMC, and γ-
glutamyl-SAC (GSAC), which can also be synthesized artificially [122, 124]. Studies show that allicin induces 
apoptosis via the p38/MAPK signaling pathway in gastric carcinoma cells [125] and through p53-mediated 
autophagy in Hep3B cells [85]. Additionally, allicin suppresses telomerase activity, contributing to cancer 
cell apoptosis and senescence [126, 127]. It also inhibits the NF-κB pathway and modulates inflammatory 
cytokines by promoting pro-inflammatory signaling and inducing autophagy through TAMs in hepatoma 
cells [128–130].

Allicin exhibits antimetastatic properties across various cancers. In gastric cancer, it inhibits cell 
migration by upregulating miR-383-5p and blocking ERBB4/PI3K/Akt signaling, while in 
cholangiocarcinoma, it suppresses MMP-2 and MMP-9 activity [131, 132]. In breast cancer, it enhances 
doxorubicin sensitivity by inhibiting the Nrf2/HO-1 pathway and promoting apoptosis [133, 134]. DATS, 
another allicin metabolite, also shows anticancer activity in HCC. In HepG2 cells, DATS induces apoptosis by 
activating the AMPK/SIRT1 pathway [135] and disrupts the ubiquitination of APPL1 via inhibition of 
TRAF6-mediated K63-linked polyubiquitination, leading to the inactivation of STAT3, Akt, and ERK1/2 
pathways and suppression of tumor progression [136]. However, these findings are based on in vitro 
models, and further in vivo studies are necessary to validate DATS’s therapeutic potential in HCC.

Azadirachta indica

Azadirachta indica, commonly known as neem or “The Village Pharmacy”, belongs to the Meliaceae family. 
Valued in modern medicine as well as traditional systems such as Unani, Ayurveda, and Homeopathy, neem 
is recognized for its wide range of therapeutic properties. Its bioactive compounds fall into two major 
categories: isoprenoids and non-isoprenoids. Key constituents include azadirachtin, nimbolide, gedunin, 
nimbin, nimbidin, quercetin, and limonoids. These compounds contribute to disease prevention by 
reducing inflammation, inducing apoptosis, inhibiting angiogenesis, modulating immune responses, and 
providing antioxidant effects. Notably, neem exhibits significant anticancer activity by altering cancer cell 
behavior, making it a promising agent for cancer therapy [137].

Nimbolide, a potent limonoid derived from neem flowers and leaves, possesses diverse 
pharmacological properties including antimalarial, antibacterial, antiviral, antioxidant, anti-inflammatory, 
anti-invasive, neuroprotective, hepatoprotective, and pro-apoptotic effects. It enhances antioxidant defence 
by increasing the activity of enzymes such as glutathione (GSH) peroxidase, catalase, and superoxide 
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dismutase (SOD) [138, 139]. Nimbolide also regulates lipid metabolism by modulating genes like liver X 
receptor-α (LXR-α), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-
binding protein-1c (SREBP1c) in hepatocytes [140]. In autoimmune hepatitis, nimbolide exerts anti-
inflammatory effects by targeting histone deacetylase 3 (HDAC3), thereby reducing the expression of 
proinflammatory cytokines such as IL-1β, IL-6, and TNF-α [141]. In HCC, nimbolide enhances tight junction 
integrity by upregulating proteins such as ZO-1 and occludin, thereby preserving membrane polarity and 
reducing cell migration. Our previous study confirmed these effects, along with its anti-inflammatory 
properties [142]. However, further investigation is needed to fully elucidate nimbolide’s role in metastasis 
prevention in HCC.

Furthermore, in prostate cancer, nimbolide downregulates metastasis-associated genes like MMP-9 
and ICAM1, reducing cell migration and invasion [143]. In oral cancer, it induces autophagy-dependent 
apoptosis by inhibiting the PI3K/Akt signaling pathway [144].

Nimbolide also reverses EMT markers in triple-negative breast cancer (TNBC) cells and inhibits the 
integrin-FAK (ITG-FAK) signaling pathway, affecting actin cytoskeleton remodeling and promoting 
apoptosis [145]. In pancreatic cancer, combining nimbolide with docetaxel (DTX) enhances DTX sensitivity, 
suppressing tumor growth and metastasis through inhibition of NF-κB signaling and promotion of 
apoptosis [146, 147].

Numerous medicinal plants exhibit promising antimetastatic effects in HCC through well-defined 
molecular mechanisms. Curcumin longa inhibits PI3K/Akt/mTOR/NF-κB pathway and downregulates 
MMPs-2/9 and VEGF, thereby impeding angiogenesis and invasion. Andrographis paniculata suppresses 
tumor progression by modulating HMGB1 and MMP-9 expression via upregulation of miR-22-3p. 
Camptotheca acuminata affects EMT markers by downregulating Nrf2 and N-cadherin while upregulating 
E-cadherin. Silybum marianum activates the AMPK-DR5 pathway, inhibiting glycolysis and inducing 
apoptosis. Collectively, these phytochemicals target critical oncogenic processes.

Challenges and future perspectives
Herbal medicine is one of the oldest forms of therapeutic intervention and has significantly influenced 
modern pharmaceutical development. Many medicinal plants, including those used in traditional Indian 
healthcare systems like Ayurveda, have been historically employed to treat various diseases. However, 
several challenges limit the effective use of herbal remedies in treating complex diseases such as cancer, 
including HCC.

A major limitation is the lack of sufficient clinical studies to validate the efficacy of plant-based 
anticancer agents, particularly in preventing cancer metastasis. Additionally, poor systemic absorption—
such as low gastrointestinal uptake—significantly reduces the therapeutic potency of compounds like 
curcumin in clinical trials. Other contributing factors to low bioavailability include rapid metabolism and 
fast systemic elimination [99]. While herbal medicines generally have fewer side effects compared to 
synthetic drugs, their therapeutic application is hindered by the difficulty in identifying and standardizing 
active compounds due to the complex mixture of constituents in plant extracts. More research is necessary 
to elucidate the molecular mechanisms of these active ingredients and improve their pharmacokinetic 
properties [148].

Conclusions
This comprehensive review highlights the potential of plant-based bioactive compounds in targeting HCC 
through diverse cellular mechanisms. Natural agents such as nimbolide, curcumin, crocetin, allicin, 
picroside II, and ginsenosides have shown promising anti-cancer effects in both in vitro and in vivo studies. 
Notably, many of these compounds are commonly found in dietary sources, including spices and fruits. 
Preclinical and clinical findings suggest that these phytochemicals can enhance the efficacy of conventional 
anti-cancer therapies while reducing their side effects, offering promising alternative strategies for 
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controlling HCC progression and metastasis. Further exploration of their molecular pathways may pave the 
way for the development of more effective and less toxic cancer treatments.
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