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Abstract
This article addresses the current understanding of the bidirectional relationship between iron metabolism 
and the gut microbiota. Both iron deficiency and iron overload in the gut can negatively affect the 
composition and function of the intestinal microbiota. Conversely, beneficial members of the colonic 
microbiota play a key role in enhancing systemic iron absorption. Particular attention is given to the 
potential use of microbiota-modulating agents for the correction of colonic dysbiosis as part of a 
comprehensive therapeutic approach to iron deficiency/overload conditions. Therefore, these 
interventions, by supporting microbiota restoration and reduction of intestinal inflammation, may also 
offer novel therapeutic avenues for disorders of iron metabolism.
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Introduction
Iron deficiency remains a widespread global health issue, affecting over two billion people worldwide [1]. It 
is estimated that about 40% of the population in developing countries and about 10% in developed 
countries suffer from iron deficiency [2]. This micronutrient plays a critical and universal role in numerous 
physiological processes, including protein and enzymatic functions, energy production, and is essential for 
fundamental biological mechanisms such as cellular growth and differentiation [3]. Iron deficiency impairs 
the function of multiple organ systems, most notably the central nervous, endocrine, and cardiovascular 
systems. It leads to the development of iron deficiency anemia (IDA) of varying severity, reduced physical 
performance, and a significant decline in quality of life [4]. In children, iron deficiency is particularly 
concerning due to its impact on growth and neurodevelopment [5, 6].
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The principal causes of iron deficiency include inadequate dietary intake of iron-rich foods, increased 
physiological demand, and impaired absorption due to acquired or genetic factors. The literature 
addressing intestinal iron absorption presents conflicting views regarding the valence state of iron that is 
preferentially absorbed—whether ferrous (Fe2+) or ferric (Fe3+) [7–9]. However, numerous studies 
highlight the critical importance of the solubility of orally administered iron in the intestinal lumen as a key 
determinant of its bioavailability [10]. Moreover, iron valence is not as important as the ability of a person 
to absorb iron, the causes of iron metabolism disorders, as well as the features of the intestinal microbiota.

Iron metabolism and its role in gut microbiota
Recent studies have highlighted the complex interplay between iron bioavailability, absorption, and the 
activity of microorganisms in the large intestine, emphasizing the role of the gut microbiota in regulating 
iron homeostasis [11]. Only approximately 10% of dietary iron is absorbed by the human body, while the 
remaining 90% is excreted in feces, potentially influencing the microbial composition of the colon [12]. 
Depending on dietary intake, about 15% of ingested iron is absorbed in the duodenum, with the remainder 
passing into the colon, where it may serve as a nutrient source for commensal bacteria.

Colonic bacteria have evolved mechanisms to acquire iron, including the production of high-affinity 
iron-chelating molecules known as siderophores, as well as transferrin and lactoferrin receptors that 
facilitate the uptake of free iron in the gut lumen. Since iron is essential for the survival and proliferation of 
nearly all bacterial species [13], the amount of unabsorbed iron reaching the colon can significantly 
influence microbial population dynamics [14]. Thus, changes in systemic iron homeostasis can affect the 
iron content in the intestinal lumen and, consequently, the composition of the intestinal microbiota [15].

Experimental studies in mice have shown that iron regulatory protein 2 (Irp2) and mutated Hfe genes 
(involved in hereditary hemochromatosis) play significant roles in iron regulation. Compared to wild-type 
controls, mice with deletions in Irp2 or Hfe genes exhibited substantial changes in gut microbiota 
composition, underscoring the influence of host iron metabolism on microbial ecology [15]. Iron deficiency 
has been associated with an increased risk of intestinal infections due to its impact on microbiota structure 
[16]. Conversely, iron overload also exerts adverse effects. Jaeggi et al. [17] demonstrated that iron 
supplementation in infants led to a reduction in Bifidobacteria, an increase in Enterobacteriaceae (including 
pathogenic E. coli strains), and elevated fecal calprotectin levels, indicating intestinal inflammation. The 
virulence of many pathogens is closely linked to iron availability [18].

Several studies suggest that both iron deficiency and iron overload can contribute to colonic dysbiosis, 
inflammation, and the development of colorectal cancer [19–21]. Disruptions of the gut microbiota in 
hemochromatosis have been linked to altered ferroportin function. This iron-exporting protein, encoded by 
the SLC40A1 gene, is responsible for transporting iron from enterocytes and macrophages into the 
bloodstream. Mutations in SLC40A1 lead to a hemochromatosis phenotype characterized by hepatic iron 
overload and microbiota alterations [22–24]. An iron-rich gut environment favors the expansion of 
Proteobacteria, and studies conducted with children demonstrated that excess iron contributes to chronic 
inflammation and the proliferation of pathogenic bacteria [25].

Inflammatory bowel diseases (IBDs) can disrupt both iron absorption and gut microbiota balance. The 
resulting excess of iron in the intestinal lumen may contribute to the appearance of pathobionts—
commensal bacteria that acquire pathogenic traits under dysbiotic conditions [26]. Lee et al. [27] further 
reported that in patients with IBDs and anemia, oral iron therapy produced distinct alterations in bacterial 
phylotypes and fecal metabolites compared to intravenous iron therapy. Notably, oral iron administration 
resulted in reduced levels of Faecalibacterium prausnitzii and Ruminococcus bromii [27]. F. prausnitzii is a 
well-recognized member of the healthy gut microbiota, known for its anti-inflammatory properties 
mediated by butyrate production [28, 29]. Similarly, R. bromii contributes to butyrate production through 
the fermentation of resistant starch [30]. A decrease in the abundance of these beneficial taxa is associated 
with sustained intestinal inflammation and may increase the risk of colorectal cancer [31]. These 
pathobionts are implicated in the etiology of both IBD and colorectal cancer [32]. However, not all studies 
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confirm a universally negative effect of iron supplementation. For instance, an experimental study in rats 
revealed that iron-deficient rats had significantly lower concentrations of butyrate and propionate in the 
cecum (this may be due to lower levels of Roseburia spp. and the Eubacterium rectale group) and exhibited 
pronounced alterations in microbial composition [33]. In contrast, prolonged high-dose iron 
supplementation (50 mg Fe, 4 days per week for 266 days) did not induce intestinal inflammation, and the 
abundance of major microbial groups and short-chain fatty acid (SCFA) concentrations remained stable 
[34]. It can be assumed that in IBDs, IDA is associated not only with blood loss through stool, but also with 
impaired iron metabolism in the intestine, and concomitant changes in the microbiota confirm the effect of 
these pathogenetic patterns. Also, it is important that in patients with active IBDs, iron absorption is 
reduced, but in patients with IBDs in remission, it is normal [13]. Therefore, for prophylaxis of gut 
microbiota disorders in active IBDs, intravenous iron intake is preferred, and in IBDs in remission, oral iron 
can be administered. It is important to investigate the effect of iron deficiency and iron therapy on redox 
status, intestinal microbiota, and possible interactions between them because it also promotes negative 
effects in IBD patients [35].

Iron metabolism and the role of gut microbiota changes
While systemic iron levels can influence the composition of the intestinal microbiota, increasing evidence 
suggests that the microbiota itself actively participates in the regulation of iron absorption and homeostasis 
[36]. Studies in germ-free (axenic) mice have demonstrated the increase in the expression of divalent metal 
transporter 1 (DMT1) and duodenal cytochrome B (DCYTB) in 8–10-fold, reduction in ferroportin 
expression in the duodenum by twofold, and decreased iron levels in enterocytes. Following colonization 
with commensal bacteria, iron accumulation in intestinal epithelial cells increased significantly [37].

A study conducted among young women in southern India found that lower iron status positively 
correlated with decreased levels of fecal Lactobacillus spp. [38]. This relationship may be attributed to the 
ability of lactic acid—produced by Lactobacillus species—to enhance the bioavailability of dietary iron [39]. 
Similarly, other research has shown that probiotic strains such as L. fermentum can promote intestinal iron 
absorption. This effect has been linked to the production of p-hydroxyphenyllactic acid by Lactobacilli, 
which facilitates the reduction of ferric (Fe3+) to ferrous (Fe2+) iron—a necessary step for absorption via 
DMT1 channels in enterocytes [40]. The ability of Lactobacillus-based probiotics to improve iron 
bioavailability underscores their potential as adjunctive tools in clinical nutrition and anemia management 
[39].

Furthermore, the pH of the colonic lumen is an important factor that influences iron absorption. 
Several gut microorganisms ferment galactooligosaccharides, which leads to acidification of the gut 
environment, which increases the solubility and absorption of iron. Therefore, dietary inclusion of acetic 
acid-producing probiotic products may contribute to improved iron absorption through this pH-lowering 
mechanism [41].

Iron imbalance and its correction: which ways and types of iron 
administration can we choose?
To correct iron deficiency, various strategies may be employed, including the use of iron-rich foods, dietary 
supplements, and, in severe cases, medical interventions such as blood transfusions or erythrocyte 
concentrate infusions [42]. It has been well established that vegetables, meat, and meat products serve as 
excellent dietary sources of iron, and that fermentation of these products can enhance iron bioavailability. 
However, a major challenge lies not in the source of iron itself, but in the chemical form of the iron and the 
pathway by which it is absorbed [43].

As mentioned above, oral administration of heme iron has been shown to alter gut microbial 
populations, leading to dysbiosis, particularly through the reduction of butyrate-producing taxa. This is of 
clinical significance, as butyrate is a key SCFA with anti-inflammatory and anticarcinogenic properties. A 
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comparative mouse study demonstrated that oral iron supplementation exacerbated colitis and promoted 
adenoma formation to a greater extent than parenteral iron administration [44].

Thus, intravenous iron supplementation, by minimizing adverse microbiota alterations and intestinal 
inflammation, may represent a more favorable therapeutic option compared to oral iron administration.

It is actual and clinically promising to use the peptide-iron chelates (peptide-iron complex). To 
investigate the effects of peptide-iron chelates on gut microbiota composition and intestinal inflammation 
in a mouse model of IDA, animals were administered low, medium, and high doses of peptide-iron chelates 
and ferrous sulfate (FeSO4) (1.0, 2.0, and 3.0 mg Fe/kg body weight, respectively) via oral gavage daily for 
four weeks [45]. Intake of peptide-iron chelates at various doses resulted in reduced inflammation and 
increased secretion of secretory immunoglobulin A [45]. In addition, these chelates mitigated inflammatory 
cell infiltration and oxidative stress in colonic tissue, thereby improving gut permeability.

16S rRNA gene sequencing demonstrated that treatment with peptide-iron chelates increased 
microbial diversity in the colon, reduced dysbiosis, and restored the Firmicutes-to-Bacteroides ratio. In 
contrast, administration of traditional FeSO4 was associated with an increase in pathogenic bacteria (e.g., 
Helicobacter and Erysipelatoclostridium) and a decrease in beneficial taxa (e.g., Bifidobacterium and Blautia) 
[45, 46].

A related study explored the use of a pectin-iron complex as a delivery matrix for L. plantarum CIDCA 
83114. The researchers evaluated the biostability of pectin-iron nanoparticles and estimated their 
biological activity. The results demonstrated that iron was non-toxic to the probiotic cells and did not 
influence bacterial viability. So, the probiotic strain can promote the dual utility for both iron delivery and 
bacterial stabilization. This approach presents a promising alternative for addressing iron deficiency [47]. 
Further innovation includes a novel formulation based on three compounds: iron oxide nanoparticles, 
pectin, and lactic acid bacteria. These components act synergistically to provide safe delivery of soluble iron 
to the gastrointestinal tract [47].

Another study focused on the synthesis of organic iron-binding compounds derived from 
polysaccharides. A complex composed of iron chloride-inulin-succinic anhydride-cysteine was developed, 
which exhibited favorable biodegradability in the presence of inulinase and strong mucoadhesive 
properties. These results demonstrated that such iron-binding complexes may be effective in the oral 
treatment of IDA or as components of iron-fortified functional foods [48].

Probiotics, other biotics, and iron imbalance correction
A balanced gut microbiota plays a critical role in optimizing iron absorption. Therefore, therapeutic 
strategies targeting the correction of intestinal dysbiosis—through the use of probiotics (life bacteria 
strains), prebiotics (compounds that stimulate the growth and activity of beneficial bacteria in the 
intestine), or synbiotics (probiotics and prebiotics)—are increasingly considered as part of comprehensive 
approaches to managing iron deficiency conditions [42, 49].

However, evidence on the efficacy of probiotic interventions in improving iron absorption remains 
inconsistent. A systematic review indicated that L. plantarum 299v may be effective for the prevention of 
IDA. This strain was shown to improve the absorption of non-heme dietary iron in healthy adult Europeans 
[39]. In contrast, Rosen et al. [50] reported that for pediatric patients, there is no significant improvement 
in serum ferritin levels after intake of L. plantarum 299v compared to a control group, suggesting strain-
and context-specific variability in response.

In an animal study, the effects of multi-strain oral probiotic supplementation were evaluated in rats. 
This medicine contains a mixture of several probiotic strains: B. bifidum W23, B. lactis W51 and W52, L. 
acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, and Lactococcus lactis strains W19 and W58, 
and was administered at low (2.5 × 109 CFU) and high (1 × 1010 CFU) doses. The results demonstrated 
enhanced iron-binding capacity in the high-dose group relative to controls [51].
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Several studies have also reported that the intake of prebiotics and/or synbiotics correlates with 
improved iron bioavailability. This effect is primarily attributed to the decrease of ferric iron (Fe3+) to its 
more absorbable ferrous form (Fe2+), facilitating uptake by enterocytes [52]. For instance, in a study using 
Sprague-Dawley rats, dietary supplementation with unrefined galacto-oligosaccharide prebiotics over a 
period of 3–4 weeks significantly enhanced the intestinal absorption of calcium, magnesium, and iron [53].

A study conducted in school-aged children (9–12 years) demonstrated that synbiotic supplementation 
may improve iron absorption. All participants were divided into two different groups: participants in one 
group received iron supplementation in the form of syrup (administered twice weekly), while the other 
group consumed a synbiotic formulation consisting of L. plantarum Dad 13 and fructooligosaccharides in 
milk (administered six times weekly) over a 3-month period. Overall, no statistically significant differences 
were observed between the groups in serum iron levels or gut microbiota composition. However, a higher 
abundance of E. coli was found in children who received only the iron syrup, whereas those who consumed 
the synbiotic mixture exhibited increased levels of Bifidobacterium spp. in their feces [49].

The effect of synbiotic intake on iron absorption was revealed in patients with type 2 diabetes mellitus, 
given the known association between metabolic disturbances and altered serum mineral levels. Synbiotic 
supplementation was shown to exert beneficial effects on iron absorption in both diabetic and non-diabetic 
individuals, with significant changes in serum iron bioavailability observed in both groups [54].

As previously discussed, oral iron supplementation can adversely affect the gut microbiota and 
promote intestinal inflammation. Increased luminal iron concentrations in the colon may reduce the 
abundance of beneficial bacteria such as Bifidobacterium and Lactobacillus, while promoting the growth of 
enterobacteria, including enteropathogenic E. coli. Therefore, combining oral iron therapy with probiotic 
supplementation may help mitigate these negative outcomes [55, 56].

A summary of selected studies evaluating the efficacy and safety of probiotic-based interventions in the 
correction of iron deficiency states is presented in the accompanying Table 1.

Table 1. Consumption of probiotics, prebiotics, and synbiotics in different types of iron deficiency and their effects on 
iron status

Type of iron deficiency Probiotic strain/Prebiotic type Reported effect

Impaired iron absorption Lactobacillus plantarum FS2 ↑ iron bioavailability by 128–372% [57]
Low iron bioavailability Bifidobacterium bifidum, B. longum ↑ iron absorption [41]
IDA L. plantarum 299v ↑ iron absorption [58, 59]
IDA Streptococcus thermophilus ↑ iron uptake and utilization (improved 

hemoglobin, serum iron, total iron-binding 
capacity, ferritin) [60]

IDA L. fermentum Delivers iron nanoparticles to enterocytes, 
ensuring adequate iron uptake [61]

IDA L. acidophilus ↑ serum ferritin and ↑ iron absorption [62]
IDA L. plantarum 299v + iron + vitamin C ↑ blood iron levels [63]
IDA L. plantarum Dad 13 No difference in iron status or gut 

microbiota profile [49]
Iron metabolism disorders 
associated with obesity

Multistrain probiotic (B. bifidum W23, B. lactis 
W51/W52, L. acidophilus W37, L. brevis W63, 
etc.)

May affect iron metabolism in 
postmenopausal women with obesity; 
further research is required [51]

Menorrhagia-related anemia L. plantarum 299v + iron ↑ iron absorption [64]
IDA GOS + inulin Improved immune function in iron-deficient 

women [65]
IDA FOS and GOS ↑ iron bioavailability [66]
IDA Inulin ↑ iron sulfate bioavailability; ↓ calcium 

absorption [67]
IDA GOS ↑ iron absorption [68]
IDA Inulin + oligofructose ↑ DMT1 expression in the cecum, ↓ 

ferroportin expression in the duodenum, 
supports intestinal iron regulation [69]
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Table 1. Consumption of probiotics, prebiotics, and synbiotics in different types of iron deficiency and their effects on 
iron status (continued)

Type of iron deficiency Probiotic strain/Prebiotic type Reported effect

Celiac disease-associated 
anemia

Inulin enriched with oligofructose ↓ serum hepcidin; ↑ iron absorption [70]

IDA B. lactis HN019 + oligosaccharides ↓ risk of anemia and iron deficiency [71]
IDA B. bifidum, B. longum + GOS ↑ iron absorption [42]
+: and; ↑: increase; ↓: decrease; DMT1: divalent metal transporter 1; FOS: fructooligosaccharides; GOS: 
galactooligosaccharides; IDA: iron deficiency anemia

As can be seen from Table 1, most studies show a positive effect of probiotic strains and prebiotics on 
iron metabolism. We can see that probiotics generally improve iron status by restoring disorders of the 
intestinal microbiota, which improves the absorption, bioavailability, and assimilation of iron. A large 
number of papers are devoted to the strain L. plantarum 299v. Perhaps, as a result of further research, data 
will be obtained that will allow the introduction of this strain, or other probiotic strains, into the treatment 
regimens of patients with impaired iron metabolism.

Conclusions
Both iron deficiency and iron overload in the gut during therapeutic interventions can negatively affect the 
composition and function of the intestinal microbiota. Conversely, beneficial members of the colonic 
microbiota play a key role in enhancing systemic iron absorption. Therefore, modulation of gut microbiota 
through targeted use of probiotics, prebiotics, and synbiotics represents a promising strategy in the 
comprehensive management of iron deficiency disorders. These interventions not only support microbiota 
restoration and reduction of intestinal inflammation, but may also offer novel therapeutic avenues for iron 
imbalance correction. It is essential to study the ability of probiotics to act as iron transporters, convert iron 
into an accessible form, or create metabolites that indirectly increase iron content and absorption in the 
intestine.

While a growing body of evidence supports the efficacy of probiotic-based interventions in correcting 
iron deficiency, additional well-controlled, large-scale clinical trials are necessary to conclusively validate 
the beneficial effects of probiotics, prebiotics, and synbiotics in this context.
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