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Abstract
Celiac disease is an immune-mediated disorder with significant metabolic implications. Several factors have 
been proposed to explain the association between celiac disease in patients following a gluten-free diet and 
metabolic disorders, including metabolic syndrome. Growing evidence suggests a pivotal role of gut 
microbiome dysbiosis in the onset of celiac disease and its associated metabolic disturbances. The present 
narrative review examines (i) the connections between celiac disease and metabolism-related 
comorbidities, including metabolic syndrome and metabolic dysfunction-associated steatotic liver disease; 
(ii) the role of the gut microbiome in celiac disease, including the outcomes of gut microbiome dysbiosis in 
celiac children and adults; and (iii) the potential of microbial therapeutic strategies within the context of 
personalized medicine for patients with celiac disease and comorbid metabolic conditions. A synthesis of 
existing studies highlights several protective factors and interventions for future celiac disease prevention 
research. Adopting plant-based, health-promoting dietary patterns such as the Mediterranean or vegetarian 
diet within the first two years of life reduces celiac disease risk. These fiber- and phytochemical-rich diets 
support beneficial gut microbiota growth and short-chain fatty acid production, which maintain intestinal 
barrier integrity by enhancing mucus and tight junction proteins. Short-chain fatty acids also modulate 
immunity by inducing Tregs that secrete IL-10, suppressing pro-inflammatory Th1 responses and 
autoantibody production. Precision probiotics offer diverse therapeutic benefits in celiac disease by 
reducing inflammation, restoring beneficial microbes, and degrading immunogenic gliadin peptides. 
Postbiotics complement these effects by reinforcing barrier integrity and counteracting gliadin-induced 
inflammation. Thus, integrating clinical models with microbial biomarkers promises to improve celiac 
disease diagnosis and monitoring, enabling better risk stratification, earlier detection, and personalized 
management of this heterogeneous disease.
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Introduction
Celiac disease (CeD) is an immune-mediated disorder that leads to chronic inflammation of the small 
intestine in response to gluten intake. Gluten is a protein complex specific to wheat, while structurally 
related prolamins, such as secalin in rye, hordein in barley, and avenins in oats, may also provoke immune 
activation in genetically predisposed individuals [1, 2]. This susceptibility is primarily linked to the 
presence of HLA-DQ2 and/or HLA-DQ8 alleles. CeD is also characterized by the production of autoantibodies 
against tissue transglutaminase (tTG) type 2, as well as immunoglobulin A (IgA) anti-endomysium and 
intestinal IgM antibodies targeting gluten [3]. Gastrointestinal symptoms typically manifest upon the 
ingestion of gluten-containing foods [4].

The global prevalence of CeD, based on serological testing, is estimated at 1.4%, making it the most 
common immune-mediated disorder affecting the gastrointestinal tract [5]. Currently, the only effective 
treatment for CeD is strict adherence to a gluten-free diet (GFD). Nevertheless, the restrictive nature of the 
GFD presents multiple challenges, including financial burden, social isolation, and potential adverse health 
effects such as macro- and micronutrient deficiencies and long-term metabolic complications [6–8]. 
Previously, CeD was recognized as a condition associated with significant weight loss, micronutrient 
deficiencies, and low body mass index (BMI) [9]. However, recent findings have revealed that CeD can 
present with extraintestinal manifestations and may occur without obvious signs of malnutrition [9]. 
According to Verma [10], malnutrition is common among individuals with CeD, both at diagnosis and 
during long-term follow-up. In this context, malnutrition may result from impaired nutrient absorption due 
to intestinal inflammation and/or the inadequate nutritional quality of the GFD [8, 11].

Furthermore, although the link between CeD and malnutrition has been well-established, recent 
research indicates that a wider range of patients, including those with normal weight or overweight, are 
now being diagnosed with the condition [12, 13]. A systematic review reported that 14% of CeD patients 
present overweight and 6% are obese at diagnosis [14]. Another concern is the rising incidence of 
metabolic syndrome (MetS) and liver disorders among CeD patients adhering to a GFD [15–17]. Several 
factors have been proposed to explain the association between CeD in patients following a GFD and 
metabolic disorders. First, the reduction in intestinal inflammation and restoration of absorptive capacity 
following a GFD often lead to improved nutrient absorption, sometimes described as a compensatory 
hyperphagic state [18]. Second, gluten-free processed foods frequently contain high amounts of saturated 
fats added to enhance palatability, which contributes to increased caloric intake [19]. Third, the GFD is 
generally associated with higher consumption of simple carbohydrates and saturated fats and lower intake 
of complex carbohydrates and dietary fiber [20]. Fourth, stress-related emotional eating may partly 
contribute to weight gain, especially among children and adolescents [14, 21]. Moreover, studies suggest 
that adherence to a GFD may increase the risk of metabolic complications such as weight gain, obesity, and 
MetS due to these dietary imbalances [16, 22, 23], as well as nutritional deficiencies, toxicity, morbidity, 
mortality, and mental health problems [24].

A paucity of studies has been conducted on the evaluation of risk factors for MetS in patients diagnosed 
with CeD. An investigation involving Italian patients found that a high BMI at diagnosis and exposure to 
proton pump inhibitors (PPIs) were the only factors significantly associated with MetS development in a 
multivariable logistic regression model. Variables such as age at diagnosis, baseline waist circumference, 
sex, insulin resistance, hyperglycemia, hypertension, hypercholesterolemia, hypertriglyceridemia, and 
elevated liver enzymes were not linked to MetS onset [25]. The mechanisms through which PPIs influence 
MetS risk remain to be fully elucidated. Emerging evidence indicates a possible connection between PPIs 
and gut microbiome (GM) alterations, which may promote intestinal dysbiosis and impair nutrient 
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absorption. These changes could contribute to abdominal obesity, dyslipidemia, insulin resistance, and 
hepatic fat accumulation [26]. The role of medications in modulating MetS risk among CeD patients 
requires further investigation and represents a promising area for future research.

One of the non-gluten environmental factors implicated in the development of CeD is the GM, defined 
as the complex community of microorganisms residing in the gastrointestinal tract that contributes to the 
host’s immune, metabolic, and physiological functions [27–29]. Multiple studies have shown that the GM in 
CeD patients undergoes significant alterations, characterized by an increase in opportunistic bacterial taxa 
alongside a reduction in beneficial bacteria, leading to a dysbiotic state [30].

Therefore, CeD is a systemic disorder with significant metabolic implications, and growing evidence 
suggests a pivotal role of GM dysbiosis in its onset and associated metabolic disturbances. The present 
narrative review examines (i) the connections between CeD and metabolism-related comorbidities, 
including MetS and metabolic dysfunction-associated steatotic liver disease (MASLD); (ii) the role of the GM 
in CeD, including the outcomes of GM dysbiosis in celiac children and adults; and (iii) the potential of 
microbial therapeutic strategies within the context of personalized medicine for patients with CeD and 
comorbid metabolic conditions.

Metabolic alterations in CeD
MetS

MetS comprises a cluster of interrelated conditions, including abdominal obesity, dyslipidemia, insulin 
resistance, hypertension, and elevated fasting glucose, all of which increase the risk of cardiovascular 
disease (CVD) and type 2 diabetes mellitus (T2DM) [31]. Insulin resistance and inflammation associated 
with excess central adiposity result in impaired metabolism of glucose, lipids, and other energy substrates 
across multiple organ systems, potentially contributing to the development of CVD and T2DM progressively 
[31, 32].

In individuals without CeD who have MetS, metabolic disturbances such as hypercholesterolemia, 
hypertriglyceridemia, and hyperglycemia are linked to insulin resistance. These changes contribute to 
oxidative stress, steatosis, lipid peroxidation, and increased cytokine production, resulting in inflammation 
and necrosis. Whether MetS in patients with CeD arises from similar pathophysiological mechanisms 
remains unclear [8]. However, it is well established that CeD is associated with a heightened risk of 
coronary artery disease, which correlates with risk factors including dyslipidemia, male sex, hypertension, 
obesity, and T2DM [33]. Patients with MetS display evidence of a persistent, subclinical inflammatory state 
characterized by elevated levels of cytokines and other inflammatory markers indicative of endothelial 
dysfunction and increased cardiovascular risk. These include elevated interleukins (IL-6, IL-10, and IL-18), 
adiponectin, C-reactive protein, leptin, fibrinogen, and tumor necrosis factor alpha (TNF-α), collectively 
defining the inflammation-obesity-insulin resistance triad [32, 34]. Additional contributors to obesity have 
been identified, including dietary habits and patterns, as well as obesogenic hormones such as estrogens, 
leptin, androgens, insulin, and incretins. Moreover, cytokines, physical activity, and alterations in the GM 
have also been implicated. However, studies addressing these factors specifically in the context of CeD 
remain limited [35].

Recent research has reported an increased prevalence of MetS among patients with CeD, particularly 
following the initiation of a GFD. A meta-analysis by Aggarwal et al. [16] found that the pooled prevalence of 
MetS increased from 4.3% before GFD to 21.3% afterward. Similarly, a prospective observational study 
from Italy observed an increase in MetS prevalence among newly diagnosed CeD patients, from 2% at 
baseline to 29.5% after one year on a GFD [36]. In contrast, a study conducted in the United States reported 
a relatively low MetS prevalence of 3.5% in individuals with CeD, significantly lower than the 12.7% 
prevalence found in age-, sex-, and ethnicity-matched controls [37]. A key limitation of this study was the 
lack of control for GFD initiation and adherence, which could have influenced the results. Further 
investigations into MetS parameters have produced mixed findings regarding the relationships between 
high-density lipoprotein (HDL) and triglyceride levels, waist circumference, glycemic control, and blood 
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pressure [38]. Likewise, Yerushalmy-Feler et al. [39] reported that fat percentage, rather than weight 
status, is associated with the risk of developing MetS components in individuals with childhood-onset CeD. 
A systematic review assessing the effects of the GFD on CVD risk factors in CeD patients found increases in 
HDL, fasting glucose, and BMI [40]. However, results related to low-density lipoprotein (LDL), triglycerides, 
and blood pressure were inconsistent, and the overall quality of evidence was rated as low. A recent study 
proposed that adherence to a GFD may contribute to MetS development in CeD patients, although the MetS 
rate remains lower than that observed in the general population [41].

MASLD

MASLD, formerly termed non-alcoholic fatty liver disease, is a condition defined by hepatic steatosis in 
combination with one or more metabolic abnormalities, including overweight or obesity, T2DM, and insulin 
resistance [31, 42]. MASLD is a leading cause of liver disease globally, with an estimated prevalence of 
25.2% [43]. However, its relationship with CeD remains under investigation. Aggarwal et al. [16] reported 
that MASLD can co-occur with CeD both prior to and following adherence to a GFD, finding a pooled 
prevalence of 18.2% in treatment-naive CeD patients and 28.2% among those on a GFD. Longitudinal 
studies indicate an increase in MASLD prevalence from 15.3% to 29.1% after GFD initiation, although the 
duration of dietary treatment varied widely, ranging from 6 months to 36 years. Other studies have shown 
that patients with CeD have an elevated risk of developing MASLD compared to the general population, 
with reported hazard and odds ratios of 2.8 and 3.21, respectively [44, 45]. In an Italian cohort matched for 
age, sex, and other MASLD risk factors, the odds ratio for MASLD in CeD patients was 2.9 [46]. These 
findings indicate that CeD may predispose individuals to MASLD independently of conventional metabolic 
risk factors and that MASLD frequently occurs in patients with normal or low BMI.

The pathophysiological mechanisms underlying the relationship between CeD and MASLD are complex 
and not yet fully understood. A key hypothesis centers on the role of the gut-liver axis, which describes the 
bidirectional relationship between the gastrointestinal tract and the liver via the portal vein and biliary 
system, facilitating the transport of nutrients, microbial products, and immune mediators directly to the 
liver [47, 48]. Intestinal damage caused by CeD may induce gut dysbiosis, disrupting this axis and allowing 
bacterial endotoxins and inflammatory mediators to translocate into the portal circulation. This process can 
trigger hepatic inflammation, lipid accumulation, and fibrosis via the activation of Kupffer cells [47]. In 
addition, systemic chronic inflammation associated with active CeD may further promote hepatic 
inflammation, contributing to MASLD development [49]. While inflammation typically decreases following 
the initiation of a GFD [18], the diet itself may involve increased consumption of fructose and saturated fats 
[22, 50], nutrients implicated in de novo hepatic lipogenesis [46, 51]. Moreover, gluten-free processed 
foods, often based on refined grains, tend to have a higher glycemic index, which can cause postprandial 
hyperglycemia. This condition may increase the risk of insulin resistance and hepatic fat accumulation, 
further contributing to MASLD development in individuals with CeD [18].

The GM in CeD pathogenesis
A GFD has been shown to alter the GM through a decrease in beneficial bacterial species and an increase in 
potentially harmful ones [30]. The link between CeD, MetS, and MASLD may be related to increased 
intestinal permeability (i.e., the “leaky gut” phenomenon) and the subsequent development of small 
intestinal bacterial overgrowth (SIBO) induced by dysbiosis [52]. The translocation of luminal microbiota 
or microbial products across a compromised intestinal barrier has been shown to initiate immune 
responses that contribute to the onset of MetS and MASLD. Proposed mechanisms involve alterations in the 
bile acid pool, decreased production of short-chain fatty acids (SCFAs), and reduced activation of the 
farnesoid X receptor in the distal small intestine by bile acids, all of which are associated with impaired 
intestinal barrier integrity [53].

In the context of CeD, the abundance of protective bacteria, including bifidobacteria and members of 
the phylum Bacillota such as the families Lactobacillaceae and Streptococcaceae, is reduced in comparison 
to healthy controls. Conversely, the prevalence of harmful bacteria (i.e., pathobionts) belonging to the 
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phylum Bacteroidota, including Bacteroides and Prevotella, as well as members of the phylum 
Pseudomonadota such as Escherichia, Haemophilus, Serratia, and Klebsiella, is elevated [54, 55]. 
Consequently, the disruption of metabolic processes due to dysbiosis can elevate the risk of metabolic 
diseases, including MetS and MASLD [56].

The sustained inflammation or the overgrowth of bacterial pathobionts may disrupt the regulation of 
adhesion molecules at tight junctions. This disruption facilitates the translocation of foreign 
microorganisms and toxic substances, promoting the release of partially digested gliadin peptides into the 
lamina propria [28, 30, 57]. CeD causes structural changes in the small intestine, characterized by focal 
defects in the epithelial barrier, increased apoptosis, and altered expression of tight junction proteins [58]. 
These alterations affect barrier permeability, leading to the loss of ions and water into the gut lumen. 
Specifically, barrier-forming claudins (claudin-3, claudin-5, and claudin-7) are downregulated, while 
channel-forming claudins (claudin-2 and claudin-15) are upregulated, resulting in increased selective 
paracellular solute transport [59]. In addition, zonulin, which is a protein that reversibly regulates 
intestinal permeability by modulating tight junction molecules, has been linked to CeD [60]. Gluten peptides 
and certain enteric bacteria, such as Escherichia coli (E. coli), have been found to induce zonulin, suggesting 
its involvement in CeD pathogenesis [61]. Moreover, pro-inflammatory mediators, including TNF-α and 
interferon-gamma (IFN-γ), have been identified as contributors to the downregulation of barrier and tight 
junction proteins [59].

Furthermore, microbial dysbiosis has been demonstrated to augment the magnitude and complexity of 
gliadin peptides, a process attributed to the differential proteolytic activity of the GM [62, 63]. Recent 
studies indicate that peptidases from various microbial sources can degrade gluten and its derived peptides 
[62, 63]. In this context, certain gut bacteria, such as Bifidobacterium spp., Lactobacillus spp., and Rothia 
spp., possess the ability to degrade gluten, alter intestinal permeability, and activate the host immune 
response, all of which contribute to the pathogenesis of CeD. Therefore, maintaining an eubiotic GM 
composition may help modulate symptoms associated with gluten-related disorders (GRDs) [62].

Although evidence supports a role for the GM in the pathogenesis of CeD, there remains no clear 
consensus regarding the specific microbial alterations associated with the condition. Previous research has 
primarily focused on characterizing the GM composition in infants to identify potential predictors of CeD 
development [64–66]. Moreover, factors such as the timing of initial gluten exposure and other 
environmental influences, including premature birth, mode of delivery, type of infant feeding, antibiotic use, 
and early infectious exposures, have been shown to affect epigenetic regulation through modifications of 
the GM ecosystem. These alterations can disrupt the maturation of the intestinal barrier, gut-associated 
lymphoid tissue (GALT), and the balance of innate and adaptive immune responses [66–68].

Premature birth has been proposed to result in delayed gut bacterial colonization, reduced microbial 
diversity, decreased abundance of obligate anaerobic commensals such as Bifidobacterium and Bacteroides, 
and an increased prevalence of facultative and pathogenic anaerobes, including Enterobacter, Enterococcus, 
Escherichia, Klebsiella, Clostridioides difficile, and Staphylococcus. This microbial profile favors an 
inflammatory gut environment that may promote the development of CeD [69]. Similarly, the mode of 
delivery is a critical determinant of neonatal GM colonization [70]. Cesarean section results in neonatal 
microbial colonization predominantly from environmental and maternal skin sources, characterized by 
increased Enterococcus faecalis, and decreased Bacteroides spp. and Parabacteroides spp., changes 
associated with a heightened risk of CeD [71]. Within this context, Tanpowpong et al. [72] reported an 
adjusted hazard ratio of 1.39 for CeD in cesarean-born infants compared to those delivered vaginally.

Infant feeding type significantly influences early GM composition, playing a key role in its initial 
structuring. Breastfeeding has been shown to increase the prevalence of genera such as Lactobacillus, 
Bifidobacterium, Enterococcus, Corynebacterium, Propionibacterium, Streptococcus, and Sneathia, while 
reducing Bacteroides and Staphylococcus [70]. Cenit et al. [73] observed that continued breastfeeding at the 
time of gluten introduction correlates with increased transfer via milk of immunomodulatory factors, 
including IL-12p70, transforming growth factor-β1 (TGF-β1), secretory IgA (sIgA), and Bifidobacterium 
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spp., which may delay or reduce the risk of CeD development. However, large epidemiological studies have 
not consistently demonstrated a protective effect of breastfeeding against CeD onset in genetically 
predisposed children [74].

In addition, multiple studies have linked early antibiotic exposure to an increased risk of chronic 
autoimmune and inflammatory bowel diseases, including CeD [64, 75]. Lindfors et al. [76] demonstrated a 
cumulative effect in which enterovirus infection combined with gluten exposure increased the risk of CeD 
development in children. Viral pathogens such as rotavirus, enterovirus, adenovirus type 12, and 
orthoreovirus have been identified as potential triggers of CeD by activating innate immunity via Toll-like 
receptor 3 (TLR3), leading to intestinal inflammation and loss of tolerance to gliadin peptides [77, 78].

Furthermore, researchers have identified that certain microbial species, metabolites, and pathways 
undergo alterations regarding abundance in infants at high risk of developing CeD prior to the 
manifestation of the disorder, thereby indicating that HLA-DQ alleles can exert an influence on early GM 
composition [79]. Specifically, these alterations in taxa abundance have been observed to result in an 
increase of members belonging to the phylum Pseudomonadota in patients diagnosed with CeD, 
accompanied by a concurrent decrease in members of the Bacillota and Actinomycetota phyla [80–83].

Figure 1 shows a proposed model for the pathogenesis of CeD. This model incorporates a series of 
factors that contribute to the development of CeD. Specifically, it considers the influence of host genetics, 
environmental factors, and gluten consumption. The consumption of gluten has been proven to result in an 
increase of pathobiont colonization, a reduction in autochthonous gut microbiota, and a disruption in GM 
dysbiosis. This, in turn, results in a disruption of immune homeostasis and gut integrity. Consequently, this 
disruption favors the onset of CeD and its clinical manifestations.

Figure 1. Pathogenesis of celiac disease. Rectangles in green: increase; rectangles in red: decrease. Adapted from [73], © 
2015 by the authors

GM dysbiosis in CeD
A substantial body of research has examined the microbial composition in patients with active CeD 
compared to healthy controls. To this end, samples are typically obtained from duodenal biopsies, intestinal 
aspirates, and stool specimens to analyze GM composition. In addition, salivary and pharyngeal microbiota 
have been examined, although these studies were conducted under specific research questions [84]. The 
methodologies employed for microbial identification in these studies are highly heterogeneous, each 
presenting distinct advantages and limitations. Common techniques include culture-based approaches 
(culturomics), quantitative polymerase chain reaction (qPCR), next-generation sequencing (NGS) methods 
(e.g., targeted amplicon sequencing, shotgun metagenomics, shallow metagenomics), denaturing gradient 
gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), fluorescence in situ 
hybridization (FISH), flow cytometry, gas chromatography, and 16S–23S rRNA intergenic spacer region 
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analysis [85, 86]. Beyond methodological differences, other factors influencing GM composition in CeD 
include disease activity status, adherence to a GFD, and patient age [87]. While stool samples are commonly 
employed as proxies for GM composition, notable discrepancies often exist between fecal microbiota and 
the actual microbial communities adhering to the intestinal mucosa. Despite its invasiveness, biopsy 
sampling is generally regarded as providing a more precise representation of the GM content [88].

GM dysbiosis in children with CeD

In children diagnosed with CeD, several seminal studies have demonstrated a change in their GM, both in 
stool and duodenal samples. An increase in the abundance of the species belonging to the genera 
Bacteroides (B. fragilis), Clostridium leptum, Staphylococcus (S. epidermidis and S. haemolyticus), E. coli, 
Klebsiella spp., Latilactobacillus (formerly Lactobacillus) curvatus, Leuconostoc carnosum, Leuconostoc 
mesenteroides, Prevotella spp., Salmonella spp., and Shigella spp. has been observed in stool specimens. In 
addition, it has also been observed a decline in bacterial species of the genera Bifidobacterium (B. longum 
and B. fragilis subsp. ovatus), Clostridium histolyticum, Enterococcus (E. faecium), Faecalibacterium 
prausnitzii (F. prausnitzii), Lacticaseibacillus (formerly Lactobacillus) casei, and Romboutsia (formerly 
Clostridium) lituseburense [61, 89–95]. In contrast, the composition of the GM in duodenal biopsies has been 
reported to exhibit weak differences. The abundance of certain species, including Actinomyces graevenitzii, 
Bacteroides (B. vulgatus), Blautia (formerly Clostridium) coccoides, Clostridium spp., E. coli, Haemophilus 
spp., Klebsiella oxytoca, Prevotella spp., Serratia spp., and Staphylococcus (S. pasteuri), has been found to be 
augmented. Additionally, it has been observed decreases in the abundance of the following species: 
Bifidobacterium (B. catenulatum), Enterococcus faecium, Lactiplantibacillus (formerly Lactobacillus) 
plantarum, Papillibacter cinnamivorans, Prevotella oralis, Proteus spp., Ruminococcus bromii, Streptococcus 
anginosus, and Thermoclostridium (formerly Clostridium) stercorarium [81, 91, 92, 96–99]. Furthermore, de 
Meij et al. [100] found that the composition and diversity of the mucosa-associated duodenal microbiome 
were comparable between children with untreated CeD and controls. The results of the study revealed 
increases in the abundance of Clostridium, Lactobacillus, and Streptococcus in both groups.

In recent years, advancements in generation sequencing, including targeted amplicon, shotgun 
metagenomics, and shallow metagenomics sequencing, have facilitated the investigation of GM dysbiosis in 
children diagnosed with CeD. In this respect, Olivares et al. [101] conducted a prospective study, including 
22 breastfed and vaginally delivered infants with either high genetic risk (HLA-DQ2 carriers) or low genetic 
risk (non-HLA-DQ2/8 carriers) of developing CeD. The fecal microbiota of infants was subjected to analysis 
through 16S rRNA gene pyrosequencing and real-time quantitative PCR. Their findings indicated that 
children with a high genetic risk had significantly higher abundance of members of the phyla Bacillota and 
Pseudomonadota, as well as lower proportions of members of Actinomycetota phylum compared to 
children with a low genetic risk. At the genus level, high-risk children exhibited a significantly lower 
abundance of Bifidobacterium and a higher abundance of the genera Gemella, Clostridium sensu stricto, 
Corynebacterium, unclassified Enterobacteriaceae, and Raoultella. Moreover, in high-risk children, a 
negative correlation was identified between Bifidobacterium species and several genera belonging to the 
phyla Pseudomonadota (Escherichia/Shigella) and Bacillota (Clostridium).

This same research group conducted another case-control study including 10 children with CeD and 10 
children who did not develop the disease after a 5-year follow-up [64]. The fecal microbiota of children 
with CeD was assessed using a high-throughput 16S rRNA gene amplicon sequencing. The findings revealed 
that children who remained healthy showed a progressive increase in bacterial diversity over time, marked 
by a greater abundance of Bacillota families. In contrast, those who developed CeD failed to exhibit this 
increase in microbial diversity. In addition, children who developed CeD experienced a significant decline in 
sIgA levels over the study period, whereas healthy children showed elevated levels of TNF-α, which 
correlated with Bifidobacterium spp. Furthermore, a higher relative abundance of B. longum was detected in 
healthy controls, while increased proportions of Bifidobacterium breve and Enterococcus spp. were 
associated with a greater risk of CeD onset.
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In a recent study, Leonard et al. [79] performed both cross-sectional and longitudinal analyses of the 
GM in a cohort of 10 children who developed CeD and a matched group of 10 unaffected controls. The 
cross-sectional analysis at CeD onset revealed altered abundances of several microbial species between 
cases and controls, including Bacteroides uniformis, Bacteroides vulgatus, Enterocloster bolteae, B. longum 
subsp. longum, and Streptococcus thermophilus, although no significant changes in overall microbial species 
abundance were observed. Conversely, the longitudinal analysis identified several microbial taxa with 
increased abundance prior to CeD onset, such as Dialister invisus, Parabacteroides spp., and members of the 
family Lachnospiraceae. On the other hand, other taxa, including Enterocloster clostridioformis (formerly 
Clostridium clostridioforme), F. prausnitzii, and Streptococcus thermophilus, were found to be decreased 
before the development of CeD.

A study conducted by El Mouzan et al. [102] aimed to determine whether a distinct GM profile is 
associated with CeD in children from Saudi Arabia. The study included 40 children diagnosed with CeD. 
Comprehensive analyses comparing the microbial composition between CeD patients and controls revealed 
significant differences at both fecal and mucosal levels. Fecal samples exhibited greater microbial diversity 
and abundance compared to mucosal samples. At the phylum level, members of Pseudomonadota were 
more abundant in duodenal mucosal samples, whereas Bacillota and Bacteroidota predominated in stool 
samples. At the species level, children with CeD showed increased abundance of Acinetobacter lwoffii, 
Bifidobacterium angulatum, Corynebacterium ihumii, Corynebacterium tuberculostearicum, Kocuria 
rhizophila, Lactobacillus acidophilus, Ralstonia pickettii, and Staphylococcus aureus. In contrast, Roseburia 
intestinalis was significantly enriched in non-CeD controls. A total of 169 distinct bacterial species were 
identified in fecal samples, exhibiting significant abundance differences between CeD and non-CeD children. 
Notably, Actinobaculum massiliense, Blautia hydrogenotrophica, Corynebacterium pyruviciproducens, 
Klebsiella michiganensis, and Prevotella sp. BV3P1 were elevated in CeD patients, while Actinomyces sp. 
ICM58, Alistipes inops, Anaerostipes caccae, Bacteroides pyogenes, Coprobacter fastidiosus, Enterobacter sp. 
MGH38, and Raoultella ornithinolytica were reduced in this group.

Salamon et al. [103] analyzed the bacterial microbiota profile by employing NGS targeting the V3–V4 
regions of the 16S rRNA subunit. Biopsy samples were collected from the stomach and duodenum of 
children newly diagnosed with CeD (N = 40) and from a control group (N = 20). At the phylum level, 
Pseudomonadota was the dominant phylum in both the stomach and duodenum. No significant differences 
were detected in the relative abundance of most bacterial phyla between CeD and control groups or 
between anatomical sites, except for Campylobacterota, which was exclusively identified in the stomachs of 
children with CeD. In the duodenal microbiota, a positive correlation was found between the presence of 
the HLA-DQ8 allele and the abundance of bacteria from the genus Blautia, with statistical significance 
observed specifically for Blautia wexlerae.

GM dysbiosis in adults with CeD

A body of research has previously identified alterations in the GM composition in adults. Nistal et al. [104] 
reported a decrease of Latilactobacillus (formerly Lactobacillus) sakei and Bifidobacterium spp. in stool 
specimens of CeD patients. These authors reported a reduction in the abundance of Mycobacterium spp. and 
Methylobacterium spp. in samples from duodenal biopsies. In contrast, Wacklin et al. [105] observed an 
increase in members belonging to the phylum Pseudomonadota, and a decrease in the abundance of the 
Bacillota and Bacteroidota phyla in duodenal biopsies of GFD-treated adults diagnosed with CeD.

More recently, D’Argenio et al. [106] investigated the GM composition in duodenal biopsy samples from 
20 adult patients with active CeD, 6 CeD patients adhering to a GFD, and 15 healthy controls using 16S 
rRNA gene sequencing. In addition, cultured and isolated bacterial species were identified via mass 
spectrometry. The GM profiles of active CeD patients were predominantly composed of bacteria from the 
phylum Pseudomonadota, whereas Bacillota and Actinomycetota were among the least abundant phyla. At 
the species level, Neisseria flavescens emerged as the most prevalent Neisseria species in the duodenum of 
patients with active CeD.
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In a separate study, bacterial communities were characterized by analyzing 16S rRNA extracted from 
duodenal biopsies of untreated adult CeD patients and non-CeD controls using pyrosequencing [107]. 
Bacterial richness and diversity were found to be higher in non-CeD controls compared to untreated CeD 
patients. Taxonomic classification revealed that the bacteria predominantly belonged to the phyla Bacillota 
and Pseudomonadota. Nevertheless, no statistically significant differences were observed in the 
composition of bacterial communities in the upper small intestine between untreated CeD patients and 
non-CeD controls.

Garcia-Mazcorro et al. [108] examined the GM in Mexican individuals affected by GRDs. Using ultra-
high-throughput 16S rRNA marker sequencing, the study comprehensively characterized the duodenal and 
fecal microbiota of patients with CeD (N = 6), non-celiac gluten sensitivity (NCGS) (N = 12), and healthy 
controls (N = 12). Linear discriminant analysis effect size revealed that the genus Actinobacillus and the 
family Ruminococcaceae were significantly enriched in the duodenal and fecal microbiota of patients with 
NCGS, respectively, whereas Novispirillum was more abundant in the duodenum of patients with CeD.

Bodkhe et al. [80] utilized 16S rRNA gene sequencing to investigate the microbial diversity across three 
distinct groups: individuals with CeD, those in a pre-disease state, and healthy adult controls. Although no 
statistically significant differences in overall microbial diversity were observed among the groups, specific 
alterations in amplicon sequence variants (ASVs) were identified between the pre-disease and disease 
groups. Duodenal biopsies revealed more pronounced differences in ASV profiles compared to fecal 
samples, indicating a greater microbial disruption at the primary site of disease manifestation. The 
duodenal microbiota in the pre-disease group was enriched in ASVs belonging to the genera Actinomyces, 
Anaerostipes, Bifidobacterium, Gemella, Granulicatella, and Parvimonas. In contrast, the CeD group showed a 
higher abundance of ASVs from Helicobacter and Megasphaera. Fecal microbiota analysis of CeD and pre-
disease groups demonstrated a reduction in ASVs associated with Akkermansia and Dorea compared to 
healthy controls. Furthermore, predicted functional metagenomic analysis suggested a decreased capacity 
for gluten degradation in the fecal microbiota of CeD patients relative to both the pre-disease and control 
groups.

In a study assessing adherence to a GFD, fecal samples were collected from 46 individuals with CeD 
who had maintained a GFD for a minimum of two years, along with 30 samples from healthy controls [109]. 
Adherence to the GFD was associated with a restoration of alpha-diversity among CeD individuals. 
However, the beta-diversity analysis revealed a microbial composition that remained distinct from that of 
the control group. Specifically, the GM of CeD patients exhibited a reduced abundance of several taxa, 
including B. longum and multiple members of the Lachnospiraceae family, whereas the genus Bacteroides 
was comparatively more prevalent.

Shi et al. [110] utilized 16S rDNA sequencing and metabolomics to examine the fecal microbial 
composition and metabolomic profile of patients diagnosed with CeD in Northwest China. The analysis 
revealed a substantial divergence in GM composition between CeD patients and healthy controls. At the 
genus level, the CeD group exhibited increased relative abundances of Allisonella, Lactobacillus, 
Streptococcus, and Veillonella. In contrast, the genera Anaerostipes, Blautia, Faecalibacterium, Gemmiger, 
and Ruminococcus were significantly reduced in CeD patients. Using a random forest model, the authors 
identified four bacterial genera (Allisonella, Clostridium cluster IV, Ruminococcus, and Christensenella) and 
six differential metabolites as potential biomarkers, highlighting strong correlations between these 
microbial taxa and metabolomic alterations.

In an observational study, Francavilla et al. [111] applied small RNA and shotgun metagenomic 
sequencing to stool samples collected from 63 treated CeD (tCD) patients, comprising 51 individuals 
adhering strictly to a GFD with negative TG serology (tCD-TG−), and 12 symptomatic individuals with non-
strict or short-term GFD adherence and positive TG serology (tCD-TG+), as well as from 66 healthy controls. 
In the tCD-TG− group, notable alterations in the GM were observed, including an increased abundance of 
members of the phylum Bacteroidota and the species Roseburia inulinivorans, alongside a reduction in 
members of the phyla Actinomycetota and Verrucomicrobiota, and in the species B. longum, Eubacterium 
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sp. CAG274, Roseburia sp. CAG309, Ruminococcus bicirculans, and Ruminococcus callidus. In the tCD-TG+ 
group, microbial shifts were also evident, with a decreased abundance of members of the phylum 
Euryarchaeota and the species Ruminococcus bicirculans, Haemophilus parainfluenzae, Streptococcus 
sanguinis, Veillonella atypica, and Veillonella tobetsuensis. The presence of specific molecular patterns in 
stool samples has been identified as a potential diagnostic biomarker for individuals with CeD, reflecting 
either long-term effects of dietary treatment or ongoing intestinal inflammation due to poor adherence to 
the GFD.

Microbial therapy for CeD
Currently, the most effective treatment for CeD involves strict and lifelong adherence to a GFD. However, 
evidence indicates that GFDs may be nutritionally inadequate, often lacking essential nutrients such as 
protein, folate, iron, niacin, riboflavin, thiamine, vitamin B12, zinc, selenium, and dietary fiber [8, 112]. 
Moreover, an improperly balanced GFD has been associated with adverse metabolic outcomes, including 
impaired glucose and lipid metabolism, as well as heightened risk of MetS and obesity [113]. As a result, 
ongoing research is exploring novel therapeutic targets with the aim of developing alternative or adjunctive 
therapies for CeD [114].

A deeper understanding of the role of the GM in the pathogenesis of CeD is expected to facilitate the 
development of novel preventive strategies, particularly via the early correction of dysbiosis prior to the 
onset of increased intestinal permeability. A multitude of review studies have highlighted the pivotal role of 
the GM in gluten metabolism, modulation of immune responses, and regulation of intestinal barrier 
integrity [78, 115–117]. These investigations have focused on targeting active CeD via modulation of the 
GM, including the use of probiotics, postbiotics, and synbiotics to restore beneficial microbial communities 
and promote SCFA-producing commensals, as well as the utilization of naturally occurring gluten-
degrading microbial enzymes. Table 1 summarizes human studies that have employed microbial-based 
interventions in the therapeutic management of CeD.

Certain bacterial taxa have been identified for their dual roles in gluten metabolism: some degrade 
gluten peptides that trigger strong immune responses, while others possess the ability to detoxify these 
peptides. A combination of Lactobacillus and Bifidobacterium strains has been shown to hydrolyze the 
immunogenic gliadin 33-mer peptide generated during gluten digestion by pepsin and trypsin. In vitro 
studies using Caco-2 cell lines demonstrated that these bacterial strains produce low-molecular-weight 
peptides and inhibit the release of the pro-inflammatory cytokine IL-6, as well as the differentiation of 
cytotoxic T cells [133]. Another study utilizing the same cell model revealed that B. longum and B. bifidum 
strains reduced gliadin-induced activation of the NF-κB p65 signaling pathway, alongside decreased 
production of TNF-α and IL-1β. This protective effect was mediated by the degradation of gliadin peptides, 
resulting in diminished cytotoxicity [134]. Similarly, in a mouse model replicating CD4+ T cell-mediated 
enteropathy in response to gliadin, administration of B. longum strain CECT 7347 increased IL-10 levels and 
decreased CD4+ T cell populations, thereby mitigating gliadin’s deleterious effects [135]. In addition, co-
culturing this strain with Caco-2 cells exposed to gliadin enhanced cell viability and prevented gliadin-
induced alterations in key proteins, including regulator of G-protein signaling 5, actin filament-associated 
proteins, sorting nexin-20, and T cell receptor R chain V region CTL-L17, which are typically upregulated 
during pro-inflammatory responses [136].

Another potential mechanism by which bacteria may influence CeD development involves the 
production of aryl hydrocarbon receptor (AhR) ligands. The AhR is activated in various cell types by indole-
containing ligands derived from tryptophan metabolism, many of which are produced by the GM. AhR plays 
a critical role in modulating host immune responses. Notably, a study demonstrated that AhR activation by 
bacterial tryptophan metabolites inhibits the activation of actin-regulatory proteins MyoIIA and ezrin 
[137]. This inhibition helps maintain the integrity of tight and adherens junctions, which are essential for 
preserving the structural stability of enterocytes and, consequently, the intestinal barrier. Preservation of 
these junctions contributes to decreased intestinal permeability, a key factor in CeD pathogenesis.
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Table 1. Microbial tools used for celiac disease treatment in human studies

Study Microbial tool Main outcomes

Gluten-degrading bacteria
Caminero et al. [118] Cultivable gut microbiota Thirty-five bacterial species were involved in gluten 

metabolism. The main genera were Lactobacillus, 
Streptococcus, Staphylococcus, Clostridium, and 
Bifidobacterium.

Francavilla et al. 
[119]

Eighteen commercial strains of probiotic 
lactobacilli

Ten bacterial strains provided the peptidase repertory 
required to completely degrade the immunogenic gluten 
peptides involved in CeD.

Herrán et al. [62] Bacterial species isolated from duodenal 
biopsies

Thirty-two bacterial species showed extracellular proteolytic 
activity against gluten protein. They were included within 
the genera Actinomyces, Bacillus, Bifidobacterium, 
Lactobacillus, Neisseria, Prevotella, Pseudomonas, 
Staphylococcus, Stenotrophomonas, Streptococcus, 
Veillonella, and Virgibacillus.

Moreno Amador et 
al. [120]

A bacterial strain belonging to the species 
Chryseobacterium taeanense isolated 
from the rhizosphere

The strain showed the presence of prolyl endopeptidases 
and the hydrolytic capacity of the gluten immunogenic 
peptides. Glutenase activity was detected in the 
extracellular medium, where gel electrophoresis and gliadin 
zymography identified the presence of about 50 kDa 
gluten-degrading enzyme.

Probiotics
Francavilla et al. 
[121]

N = 109 diagnosed patients with CeD with 
IBS
Treatment for 6 weeks

Probiotic cocktail: Lacticaseibacillus casei 
(L. casei), Lactiplantibacillus plantarum (L. 
plantarum), Bifidobacterium infantis (B. 
infantis) subsp. lactis, and Bifidobacterium 
breve (B. breve) (2 strains)

Gastrointestinal symptoms and the severity of IBS 
substantially decreased in the probiotic-treated group 
compared to the placebo. Lactic bacteria, Staphylococcus, 
and Bifidobacterium increased in patients receiving 
probiotic treatment.

Håkansson et al. 
[122]

N = 78 children with CeD autoimmunity

Treatment for 24 weeks
Probiotics: L. plantarum strain HEAL9 and 
Lactocaseibacillus paracasei (L. 
paracasei) strain 8700:2

Daily oral administration of probiotics modulates the 
peripheral immune response in children with CeD 
autoimmunity. Over time, median levels of IgA-tTG 
decreased more markedly in the probiotic group compared 
to the placebo group, whereas an opposite trend was 
observed for IgG-tTG levels.

Harnett et al. [123] N = 45 diagnosed patients with CeD
Treatment for 12 weeks

Probiotic cocktail: VSL#3 consists of 
Streptococcus thermophilus, B. breve, 
Bifidobacterium longum (B. longum), B. 
infantis, Lactobacillus acidophilus, L. 
plantarum, L. paracasei, and Lactobacillus 
delbrueckii subsp. bulgaricus

The primary outcome indicated that the probiotic 
formulation did not result in significant alterations in the GM 
composition between baseline and week 12.

Jenickova et al. [124] N = 78 (40 genetically predisposed 
children having tTG autoantibodies and 
38 healthy controls)
Treatment for 24 weeks

Probiotics: L. plantarum strain HEAL9 and 
L. paracasei strain 8700:2

The findings indicate a modest yet significant impact of 
probiotic supplementation on the fecal metabolome, 
primarily affecting proteolytic pathways within the gut. Over 
the six-month intervention period, stool concentrations of 4-
hydroxyphenylacetate increased in the probiotic group 
compared to controls, whereas levels of amino acids such 
as threonine, valine, leucine, isoleucine, methionine, 
phenylalanine, aspartate, and the intermediate fumarate 
were reduced.

Klemenak et al. [125] N = 49 children diagnosed with CeD

Treatment for 12 weeks
Probiotics: B. breve strain BR03 and 
strain B632

Probiotic intervention using B. breve strains demonstrated 
a beneficial effect by reducing the production of the pro-
inflammatory cytokine TNF-α in children with CeD adhering 
to a GFD.

Lionetti et al. [126] N = 96 children diagnosed with CeD

Treatment for 12 weeks

Probiotics: L. casei, L. plantarum, B. 
infantis subsp. lactis, and B. breve (2 
strains) + GFD

Treatment with a multispecies probiotic resulted in a more 
rapid and pronounced increase in BMI among children 
newly diagnosed with CeD.
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Table 1. Microbial tools used for celiac disease treatment in human studies (continued)

Study Microbial tool Main outcomes

Olivares et al. [127] N = 36 children diagnosed with CeD

Treatment for 12 weeks

Probiotic: B. longum strain CECT 7347

Decreased peripheral CD3+ T lymphocytes and slightly 
reduced TNF-α concentration were obtained in the 
experimental group. Comparison between the groups 
revealed that the administration of probiotics reduced the 
numbers of the Bacteroides fragilis group and the content 
of sIgA in stools compared to the administration of a 
placebo.

Pinto-Sánchez et al. 
[128]

N = 24 untreated CeD patients
Treatment for 6 weeks

Probiotic: B. infantis subsp. lactis strain 
NLS-SS

The patients treated with GFD for 1 year showed a 
decrease in duodenal macrophages, whereas probiotic 
treatment decreases Paneth cell counts and expression of 
α-defensin-5 in CeD patients.

Primec et al. [129] N = 40 children with CeD

Treatment for 12 weeks
Probiotics: B. breve strain BR03 and 
strain B632

Probiotic administration showed a negative relationship 
between Bacillota and pro-inflammatory TNF-α. In addition, 
probiotic effect exposed new phyla, particularly 
Synergistota, which negatively correlated to acetic acid and 
total SCFAs, indicating a potential role in microbiome 
restoration.

Quagliariello et al. 
[130]

N = 40 children with CeD
Treatment for 12 weeks

Probiotics: B. breve strain BR03 and 
strain B632

The effects of the probiotics produce an increase in 
members of the phylum Actinomycetota and a re-
establishment of the physiological Bacillota/Bacteroidota 
ratio.

Synbiotics
Tremblay et al. [131] Commercial Synbiotic: probiotics 

Lactocaseibacillus helveticus strain 
Rosell®-52, B. infantis subsp. lactis strain 
Rosell®-33, and Bifidobacterium. bifidum 
strain Rosell®-71 with the prebiotic 
fructooligosaccharides

A review of twelve studies demonstrated that synbiotic 
administration significantly enhances the efficacy of 
standard diarrhea treatments, independent of the 
underlying etiology. In eight of these studies, synbiotic use 
was associated with improved immune function, as 
evidenced by increased levels of various immune 
competence and mucosal immunity markers, alongside a 
reduced incidence of common infections. Furthermore, 
probiotic supplementation was found to improve the 
therapeutic outcomes of iron deficiency anemia.

Postbiotics
Freire et al. [132] Patient-derived organoids monolayers. 

Microbiota-derived bioproducts from 
Bacteroides fragilis, including butyrate, 
lactate, and polysaccharide A

Monolayers derived from CeD organoids exposed to gliadin 
showed increased intestinal permeability and enhanced 
secretion of pro-inflammatory cytokines compared to non-
celiac controls. Microbiota-derived bioproducts, butyrate, 
lactate, and polysaccharide A, improved barrier function 
and reduced gliadin-induced cytokine secretion. These 
bioproducts can be used to modulate the epithelial 
response to gluten.

BMI: body mass index; CeD: celiac disease; GFD: gluten-free diet; GM: gut microbiome; IgA: immunoglobulin A; tTG: tissue 
transglutaminase; IBS: irritable bowel syndrome; SCFAs: short-chain fatty acids; sIgA: secretory IgA; TNF-α: tumor necrosis 
factor alpha

In the intestinal mucosa of patients with active CeD, AhR expression is decreased. A study reported that 
these patients exhibited reduced levels of AhR ligands in stool samples, and their GM displayed a 
diminished capacity to activate this receptor compared to non-celiac controls [138]. Using a murine model 
expressing the HLA-DQ8 susceptibility gene, the researchers modulated the intestinal microbiota via a 
tryptophan-enriched diet. This intervention enhanced the production of AhR ligands and subsequent 
receptor activation, which mitigated gluten-induced immunopathology. Furthermore, a study utilizing 
intestinal organoids co-cultured with lamina propria lymphocytes demonstrated that a metabolite 
produced by a strain of Limosilactobacillus reuteri stimulated lamina propria lymphocytes to secrete IL-22 
through AhR activation. This process promoted the proliferation of intestinal stem cells and facilitated 
epithelial recovery following TNF-α-induced damage [139]. Another beneficial bacterial mechanism has 
been identified in a preclinical study using a DQ8 mouse model of gluten sensitivity, where the protective 
effect of bifidobacteria was attributed to the production of a serine protease inhibitor, known as serpin, 
which prevented gliadin-induced immunopathology [140]. In addition, other microbial metabolites have 
shown the ability to modulate both the epithelial barrier and the immune system. Freire et al. [132] 
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demonstrated that organoids derived from CeD patients exhibited a distinct response to gliadin and an 
improvement in barrier function when treated with bacterial metabolites such as lactate and butyrate, as 
well as B. fragilis polysaccharide A. These microbial bioproducts, termed postbiotics, enhanced the 
expression of genes involved in mucin production, trefoil factor 1 (TFF1), and claudin-18, genes known to 
be downregulated in CeD organoids. Furthermore, Serena et al. [141] identified a direct correlation 
between the alternative splicing of FOXP3 isoforms and the beneficial bacterial metabolite butyrate. FOXP3, 
which is a key transcription factor regulating T cell development and function, exists in multiple splicing 
variants in humans, and its deficiency is a critical factor in systemic autoimmunity. This study showed that 
butyrate, together with IFN-γ, upregulated FOXP3 isoforms in the intestinal tissue of CeD patients.

Microbial TG (mTG) is a commonly used food additive and has been identified as a potential inducer of 
autoimmune and neurodegenerative diseases [142, 143]. This enzyme increases intestinal permeability, 
suppresses mechanical (mucus) and immunological (anti-phagocytic) enteric protective barriers, 
stimulates luminal bacterial growth, and enhances the uptake of gliadin peptide. mTG and gliadin molecules 
are co-transcytosed through the enterocytes and subsequently deposited subepithelially. Additionally, 
mucosal dendritic cell surface TG induces gliadin endocytosis, and enzyme-treated wheat products elicit 
immune reactivity in CeD patients [144, 145]. Recently, Lerner et al. [146] found that sequence similarity 
and cross-reactivity between mTG and various tissue antigens could underlie the link between mTG and 
autoimmune disorders. Furthermore, cross-reactivity and sequence homology between gluten/gliadin 
peptides and human epitopes may contribute to molecular mimicry, potentially triggering autoimmunity. A 
GFD has been shown to prevent these phenomena via various mechanisms [147].

Discussion
CeD is linked to both internal genetic factors and potential external influences, such as dietary habits and 
antibiotic use [148]. These factors can alter the microbial composition, leading to dysbiosis, which may 
increase the risk of developing CeD later in life [149]. The diagnosis of CeD involves a combination of 
clinical, serological, and histopathological data. In children, diagnosis can be performed without biopsy, and 
it is based on strict criteria, including small bowel symptoms, positive HLA-DQ2/DQ8, as well as IgA and 
tTG levels [150]. In elderly subjects, the diagnosis still requires the presence of duodenal villous atrophy, 
and it is carried out through the analysis of IgA/IgG anti-tTG and anti-endomysium antibodies in a small 
intestinal biopsy [151].

The findings of this review underscore several important implications for managing patients diagnosed 
with CeD. First, the results challenge the traditional belief that CeD patients universally suffer from poor 
nutritional status due to malabsorption. Instead, it is common for patients with CeD to present with MASLD 
and MetS at diagnosis. Second, the rising prevalence of MASLD and MetS after starting a GFD requires 
serious attention, as the severity of these conditions may worsen with prolonged adherence to GFD. Third, 
both MASLD and MetS have been shown to increase the risk of CVD, stroke, T2DM, and cirrhosis [16, 152, 
153]. Therefore, it is crucial to take preventive steps to avoid the onset of MASLD and MetS in CeD patients. 
Specifically, patients should be screened for MASLD and MetS at diagnosis using standardized tests, 
enabling closer monitoring for those already affected at the start of GFD. Furthermore, ongoing monitoring 
after beginning GFD is essential to identify and manage any delayed complications. Lastly, patients must be 
informed about the risks of developing metabolic complications and consistently counseled to maintain a 
balanced diet and engage in regular physical activity.

The only current treatment for CeD is a strict GFD, which is often difficult to maintain and costly, 
leading to high rates of non-adherence. Moreover, despite following a GFD, 25–50% of patients fail to show 
significant clinical improvement [68]. The requirement for continuous monitoring of food intake has been 
shown to negatively impact patients’ quality of life, highlighting an unmet need for adjunctive therapies 
[154]. Therefore, ongoing research aimed at discovering novel and supplementary treatments for CeD is 
imperative [155]. It is crucial to recognize the need for additional prospective studies with larger sample 
sizes and standardized definitions of MetS. Such studies are essential for thoroughly assessing the impact of 
a GFD on MetS development in CeD patients. Furthermore, the pathophysiological mechanisms underlying 
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MetS in individuals with CeD remain unclear. Thus, it has to be determined whether the same processes 
that drive MetS in non-CeD populations also contribute to its development in CeD populations or if distinct 
immunologic or inflammatory pathways are involved [8].

Notably, adherence to a GFD has been shown to negatively affect microbial homeostasis in healthy 
individuals [156]. However, a major limitation in current research is the lack of longitudinal studies 
analyzing GM composition in CeD patients before and after the initiation of a GFD. The typical GFD often 
relies heavily on ultra-processed and refined foods that are high in fat and sugar while being low in dietary 
fiber, folic acid, iron, calcium, selenium, magnesium, zinc, niacin, biotin, riboflavin, pyridoxine, and vitamin 
D [157]. This highlights the broader shortcomings of the Western diet, which are particularly detrimental 
for individuals with CeD. As an alternative, CeD patients should be encouraged to adopt a Mediterranean or 
vegetarian dietary pattern that emphasizes the consumption of seasonal, organic vegetables and foods rich 
in fiber, micronutrients, and bioactive vitamins [158, 159]. In this context, incorporating pseudocereals 
such as quinoa, amaranth, and sorghum, as well as naturally gluten-free cereals, is recommended due to 
their richness in fiber, minerals, thiamine, carotenoids, flavones, tannins, proteins, and healthy fats [157]. In 
addition, ketogenic diets have been recognized for their efficacy in managing various metabolic conditions, 
as well as for their potential to modulate autoimmune diseases by reducing inflammation [160]. Building on 
these dietary patterns, a plant-based ketogenic diet has been proposed as a potential health-promoting 
approach [161]. For patients with CeD, this diet may offer promising benefits when appropriately adapted 
to exclude gluten and meet individual patient requirements. However, the potential benefits of ketogenic 
diets for CeD are primarily based on theoretical considerations, and research in this area is needed to 
determine their efficacy. Furthermore, nutraceutical supplementation, including the targeted use of 
probiotics, has emerged as a promising strategy to support both nutritional balance and gut health in CeD 
patients [162].

A range of probiotics has been investigated in the context of CeD. However, current evidence from 
clinical studies remains inconclusive regarding their efficacy. A recent meta-analysis concluded that 
probiotics may alleviate gastrointestinal symptoms in individuals with CeD, yet emphasized that higher-
quality studies are necessary before firm recommendations can be made, given the heterogeneity among 
existing trials [163]. Notably, most probiotics studied thus far have been selected based on their general 
anti-inflammatory properties rather than their specificity to CeD pathophysiology. It is important to 
emphasize the specificity of probiotic strains, such as B. longum CECT 7347, which have shown efficacy in 
clinical applications [127, 135]. In this respect, the therapeutic potential of probiotics is strain-dependent, 
and selecting the appropriate strain is crucial for achieving the desired clinical outcomes. Future probiotic 
and microbial-based interventions should focus on strains that target pathways directly implicated in CeD. 
For example, the enzymatic degradation of immunogenic wheat proteins represents a promising research 
direction, as it could mitigate the inflammatory responses triggered by gluten and other wheat-derived 
peptides. In addition, the development of combination therapies using multiple strains that act 
synergistically, or a single probiotic engineered to affect multiple targets, holds potential. Nevertheless, 
these strategies must be guided by a clear mechanistic rationale to optimize both efficacy and safety. In this 
context, the use of genetically engineered microbes customized to modulate key immune or metabolic 
pathways in CeD also requires further investigation. Precision probiotics and postbiotics represent a 
promising avenue, but their role in CeD and related metabolic conditions remains to be fully defined, as 
their use is still at an early stage and more evidence is needed to clarify their clinical relevance.

The next generation of microbial therapeutics represents an emerging class of pharmaceuticals, 
encompassing live biotherapeutic products (LBPs) and genetically modified microorganisms engineered to 
express or secrete bioactive molecules relevant to the pathogenesis of CeD [164]. The therapeutic efficacy 
of engineered bacteria has been demonstrated in animal models of CeD. However, their translation to 
human use remains limited, primarily due to safety concerns associated with plasmid-based gene delivery 
systems [165]. Recent advances have proposed novel approaches in which genes of interest are stably 
integrated into the chromosomal DNA of probiotic strains, thereby minimizing the risk of horizontal gene 
transfer and enhancing their potential suitability for clinical application [166]. In addition to the 
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detoxification of immunogenic gluten peptides, emerging microbial therapeutic strategies for CeD include 
the restoration of AhR signaling through microbial modulation of tryptophan metabolism, as well as the 
reestablishment of intestinal proteolytic homeostasis via the production of serine protease inhibitors [138]. 
These mechanisms offer promising avenues for the development of adjuvant therapies aimed at modifying 
disease progression and improving outcomes in patients with CeD.

A recent review by Herrera-Quintana et al. [167] outlined several emerging therapeutic strategies for 
the prevention and treatment of CeD. Among these, oral enzyme therapy has garnered attention for its 
ability to degrade immunogenic gluten peptides within the gastrointestinal tract. Agents such as 
latiglutenase, zamaglutenase, and AGY-010 are currently under investigation for their capacity to neutralize 
gluten toxicity by hydrolyzing immunodominant epitopes in the stomach prior to their interaction with the 
intestinal immune system [168]. Another promising therapeutic avenue involves targeting tissue TG2, an 
enzyme central to CeD pathogenesis. TG2-mediated deamidation enhances the binding affinity of gluten 
peptides to HLA-DQ2/DQ8 molecules, thereby promoting CD4+ T helper cell activation and the subsequent 
release of pro-inflammatory cytokines [169, 170]. Inhibition of TG2 enzymatic activity has thus emerged as 
a viable strategy for mitigating gluten-driven immune activation [171]. Additionally, monoclonal antibody 
(mAb)-based therapies targeting inflammatory mediators have shown clinical promise. IL-15, which is a 
key cytokine implicated in CeD, plays a crucial role in the activation of intraepithelial cytotoxic CD8+ T cells, 
leading to epithelial damage and villous atrophy [172]. In a clinical trial evaluating AMG 714, a mAb 
directed against IL-15, patients with CeD demonstrated significant improvement in clinical symptoms, 
particularly diarrhea, underscoring the potential of cytokine-targeted therapies [173].

Inflammation is a shared pathophysiological hallmark of CeD, MetS, and MASLD, despite their differing 
primary etiologies and target tissues. Emerging biomarkers, such as the systemic immune-inflammation 
index and uric-acid-to-creatinine ratio, reflect this inflammatory burden in MASLD and MetS, respectively 
[174, 175]. This shared inflammatory process may partly explain their clinical convergence and supports 
further investigation into common immunometabolic pathways. In addition, the interaction between the 
GM and sIgA has been shown to modulate intestinal inflammation, with shifts in GM composition 
potentially playing a role in reducing inflammatory responses [176]. Thus, the convergence of 
immunometabolic dysfunction in these conditions suggests that targeting inflammatory pathways may 
offer therapeutic benefits across disease contexts, requiring integrated treatment strategies.

Within the context of this discussion, it is also important to highlight that CeD is associated with a 
range of psychiatric manifestations, including depression, anxiety, eating disorders, autism spectrum 
disorder, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, and mood disorders 
[177]. Nutritional psychiatry is an emerging field that employs rigorous scientific methods to evaluate the 
efficacy and define appropriate therapeutic applications of dietary supplements and nutraceuticals in 
individuals with and without mental health conditions [178]. This approach addresses safety concerns and 
side effects commonly associated with pharmacological treatments, such as dyslipidemia, altered glucose 
metabolism, extrapyramidal symptoms, sexual dysfunction, weight gain, MetS, and T2DM [178]. 
Consequently, nutritional psychiatry may play a pivotal role in CeD management, as personalized dietary 
interventions could not only alleviate disease-specific symptoms but also improve comorbid psychiatric 
conditions. Moreover, nutritional psychiatry encompasses the use of psychobiotics, which are a novel class 
of psychotropic agents that include live microorganisms and bioactive compounds demonstrated to be 
effective in treating stress, anxiety, and depression [179]. Thus, these therapeutic strategies hold significant 
potential as adjunctive treatments in CeD.

As with all narrative reviews, the present study is subject to several inherent limitations. First, 
considerable heterogeneity was observed across the reviewed studies, stemming from differences in 
sequencing technologies, experimental protocols, analytical pipelines, and sample types. These 
methodological discrepancies complicate cross-study comparisons and hinder the identification of 
consistent microbial biomarkers for tracking disease progression. Furthermore, differences in sample 
collection procedures and storage conditions may introduce additional variability, impacting the 
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reproducibility and reliability of findings. This underscores the need for standardized methodologies and 
reporting guidelines to improve study comparisons and facilitate meta-analyses. Second, short-term studies 
typically highlight the immediate alleviation of gastrointestinal symptoms and inflammatory markers, but 
they often fail to capture the long-term impact on metabolic dysfunctions commonly associated with CeD. 
These metabolic complications may persist even in patients adhering to a GFD, and their long-term 
consequences are still not fully understood. Longitudinal studies are crucial to determine whether 
microbial interventions can provide sustained benefits in modifying the GM in a way that addresses not 
only the acute inflammatory responses but also the chronic metabolic imbalances of CeD. Moreover, the 
dynamic nature of the GM and its complex interactions with diet, lifestyle, and disease progression require 
longer intervention periods to assess the potential of microbial therapies in preventing or mitigating 
metabolic dysfunctions over time. Third, the diagnosis of CeD remains challenging due to the broad 
spectrum and non-specific nature of clinical manifestations. A substantial proportion of individuals with 
CeD remain undiagnosed, with an average diagnostic delay of approximately 12 years [180]. In this context, 
predictive models aimed at estimating CeD risk based on symptomatology and clinical risk factors offer 
potential utility. However, these models often demonstrate limited efficacy when relying solely on clinical 
data [181]. To address these challenges, future studies should consider the following recommendations: (i) 
the incorporation of microbial biomarkers derived from stool samples, which offer a non-invasive and 
accessible diagnostic modality, may significantly enhance the predictive performance of current risk 
models; (ii) the integration of microbial signatures with clinical markers of mucosal integrity could provide 
a more robust framework for disease monitoring and prognosis. Notably, evidence suggests that the GM 
composition differs among CeD patient subgroups with varying clinical phenotypes, indicating a potential 
role of GM in the persistence of symptoms despite adherence to a GFD [182].

Conclusions
CeD constitutes a heterogeneous condition with diverse clinical presentations and underlying mechanisms, 
which complicates the development of a universal treatment strategy. The emergence of personalized 
medicine is likely to become increasingly important, as it offers the potential for customizing therapeutic 
interventions to the individual’s genetic, immunological, microbial, and metabolic profiles. Consequently, 
this personalized approach may enhance treatment efficacy and minimize adverse outcomes. Moreover, it is 
pivotal to educate patients about the potential risks associated with CeD and its management, particularly 
those related to metabolic complications and dietary imbalances. Encouraging the adoption of a healthy 
lifestyle mainly consisting in a nutritionally plant-based balanced diet and regular physical activity should 
be an integral component of comprehensive care for individuals with CeD.

A synthesis of existing studies underscores the potential of several protective factors and targeted 
interventions for future research aimed at preventing CeD. Among these, the adoption of a health-
promoting dietary pattern within the first two years of life, such as the Mediterranean or vegetarian diet, 
has demonstrated a protective role in reducing CeD risk. These diets are rich in dietary fiber and 
phytochemicals, which foster the growth of beneficial commensal gut microbiota and support the 
production of SCFAs. SCFAs, in turn, play a critical role in maintaining intestinal barrier integrity by 
enhancing mucus production and upregulating the expression of tight junction proteins. Furthermore, 
SCFAs exert immunomodulatory effects, promoting immune tolerance through the induction of Tregs, 
which secrete IL-10 and mitigate pro-inflammatory Th1 responses and autoantibody production. These 
findings highlight the relevance of early-life nutritional strategies as a foundation for future preventive 
approaches in CeD.

Precision probiotics have demonstrated multifaceted therapeutic potential in the context of CeD. These 
probiotics exert their effects through several key mechanisms. They attenuate inflammatory responses 
associated with CeD by disrupting the activity of pathogenic and pro-inflammatory microbial species and 
restoring eubiotic populations that produce SCFAs. In addition, certain microbial strains synthesize 
peptidases capable of degrading immunogenic gliadin peptides, thereby mitigating antigenic stimulation. 
Precision probiotics also contribute to immune homeostasis by enhancing Treg activity and modulating 
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intestinal barrier integrity through the regulation of tight junction proteins. Moreover, they are capable of 
producing AhR ligands, which are associated with increased IL-22 production, enhanced intestinal stem cell 
proliferation, and the repair of mucosal injury. Complementing these effects, postbiotics have been shown 
to further support gut barrier function by reinforcing tight junctions and preventing gliadin-induced 
inflammatory effects. All these promising outcomes highlight the potential of precision probiotics and 
postbiotics. However, further well-designed clinical studies are needed to confirm their proven efficacy.

Therefore, the integration of clinical models with microbial biomarkers holds considerable promise for 
enhancing both the diagnosis and longitudinal monitoring of CeD. This combined approach would 
substantially improve current clinical practice by enabling more accurate risk stratification, earlier 
detection, and personalized management strategies that reflect the heterogeneous nature of the disease.
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