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Abstract
The liver operates as a highly coordinated microsystem, where various liver cell types engage in dynamic 
interactions to maintain homeostasis. This intercellular cooperation resembles sociological models of 
sustainable cooperation, encompassing mechanisms such as resource sharing, communication networks, 
and conflict resolution. However, both in biology and sociology, cooperation can break down due to 
external pressures and self-serving behaviors. In metabolic dysfunction-associated steatotic liver disease 
(MASLD), chronic metabolic stress disrupts this equilibrium, leading to endothelial dysfunction, immune 
overactivation, and fibrosis—akin to sociological models of systemic collapse. A common model in 
sociology, Hardin’s Tragedy of the Commons, describes how individuals overexploit shared resources when 
acting in self-interest, ultimately leading to resource depletion. Similarly, under metabolic stress, hepatic 
cells prioritize short-term survival by increasing lipid storage, inflammatory signaling, and extracellular 
matrix (ECM) production. This self-serving response, much like free-riding in societal systems, exacerbates 
dysfunction, reinforcing a cycle of fibrosis and organ failure. Moreover, the failure in MASLD extends 
beyond the liver itself. The liver’s cooperative role is integral to its participation in inter-organ axes, 
including those with the cardiovascular, gut, brain, and kidney systems. While the analogy has limitations—
cells do not possess intent as humans do—the fundamental principle of cooperation breakdown leading to 
systemic instability holds across disciplines. An interdisciplinary approach integrating biological and 
sociological insights offers novel perspectives for therapeutic innovation. Sociological frameworks provide 
concepts such as incentive structures and collective action, which can be applied to cellular behavior. By 
restoring cooperative cellular networks, therapies like extracellular vesicle (EV) treatment, ECM 
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remodeling, and receptor (ant)agonists mimic interventions in social systems that rebuild trust and 
sustainability. This review explores how biological and sociological models of cooperation breakdown align 
and how regenerative medicine can leverage these insights to develop strategies that restore cellular 
equilibrium and halt disease progression.

Keywords
Liver homeostasis, sustainable cooperation, metabolic dysfunction-associated steatotic liver disease, 
intercellular communication, sociological models

Introduction
Sustainable cooperation, a key concept in sociology, refers to the persistence of mutually beneficial 
interactions among individuals or groups over time [1–4]. It is often analyzed through frameworks such as 
game theory, which models strategic decision-making among agents, mutualism, which describes 
cooperative relationships where all parties gain benefits, and collective action, which explores how 
individuals coordinate efforts to achieve shared goals despite potential conflicts of interest [3, 5, 6]. These 
principles, commonly used to understand human societies and ecosystems, can also provide insight into 
cellular interactions within complex biological systems [2–4, 6–8].

The liver, a highly organized and dynamic organ, relies on intricate communication networks among its 
resident cells to maintain homeostasis [8–10]. Hepatocytes, liver sinusoidal endothelial cells (LSECs), 
Kupffer cells (KCs), hepatic stellate cells (HSCs), cholangiocytes, and other innate immune cells engage in 
continuous cross-talk through signaling molecules, extracellular vesicles (EVs), and direct cell-cell 
interactions [10, 11]. Much like cooperative networks in human societies, these cells dynamically regulate 
each other’s functions, balancing regeneration, immune responses, and metabolic activities [10, 12]. 
However, when this cooperation breaks down—due to persistent stress, inflammation, or metabolic 
dysfunction—it can lead to disease progression, such as in metabolic dysfunction-associated steatotic liver 
disease (MASLD) [9, 10, 13, 14].

The idea that health depends on physiological harmony among body parts or organs has a long history, 
dating back to classical thinkers like Galen. Our aim is not to restate this holistic principle but to offer an 
updated, cross-disciplinary framework that connects modern sociological theories, such as the Tragedy of 
the Commons, institutional failure, and self-repair models, to specific disruptions in hepatic cell-cell 
communication seen in MASLD. This approach extends classical concepts by integrating contemporary 
systems biology with regenerative medicine and social theory.

In doing so, we go beyond metaphors by mapping concrete therapeutic strategies [e.g., EV-mediated 
immune recalibration, extracellular matrix (ECM)-based structural normalization, receptor (ant)agonist-
driven metabolic reprogramming] onto sociological mechanisms such as conflict mediation, trust 
restoration, and collective-action repair. These analogies not only provide a conceptual lens for 
understanding intercellular dysfunction but also provide information on targeted interventions aimed at 
restoring hepatic cooperation.

This review, therefore, seeks to synthesize sociological and biomedical insights into a cohesive model 
of systemic breakdown and repair. By drawing parallels between sociological cooperation models and 
hepatic cellular networks, we aim to provide a novel perspective on the mechanisms governing liver 
homeostasis and disease development. Ultimately, we propose that viewing MASLD through this 
interdisciplinary lens may yield new therapeutic avenues by addressing the fundamental breakdown of 
cooperation within and outside the liver.

The liver as a cooperative microsystem
The liver functions as a highly coordinated microsystem, where multiple cell types interact dynamically to 
maintain homeostasis (Figure 1) [14, 15]. This balance is achieved through a continuous exchange of 
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signals, nutrients, and metabolic byproducts among hepatocytes, LSECs, HSCs, KCs, and other immune cells 
[10, 15]. Each of these cell types plays a distinct yet interdependent role, mirroring the principles of 
mutualism in sociological theory, where different actors contribute to the stability of a shared system [9, 10, 
16].

Figure 1. The intercellular communication and cooperation between liver cells under healthy and diseased conditions. 
Healthy condition: ① The dynamic crosstalk between hepatocytes and liver sinusoidal endothelial cells (LSECs) maintains liver 
metabolism, regeneration, and immune tolerance, ensuring a stable and functional hepatic microenvironment; ② The 
hepatocytes and quiescent hepatic stellate cells (qHSCs) engage in mutual regulation through paracrine signaling and 
extracellular matrix (ECM) maintenance, ensuring liver structure, metabolic balance, and protection from injury; ③ Functional 
LSECs maintain HSC quiescence through paracrine signaling, nitric oxide production, and vitamin A transfer, while qHSCs 
support the structural and functional integrity of LSECs; ④ The crosstalk between functional LSECs and Kupffer cells (KCs) in a 
healthy liver involves a balance of immunoregulation, anti-inflammatory signaling, and clearance of debris and endotoxins. 
LSECs maintain the immunotolerant environment by suppressing excessive KC activation via nitric oxide, anti-inflammatory 
cytokines, and antigen presentation. KCs, in turn, support LSEC function by clearing toxins and secreting growth factors, 
ensuring the stability of the liver sinusoidal microenvironment. Diseased condition: ① Chronic parenchymal cell damage; ② It 
leads to the release of danger-associated molecular patterns (DAMPs) and pro-inflammatory mediators by KCs; ③ LSECs 
capillarization; ④ KCs are activated and continuously secrete inflammatory mediators; ⑤ qHSCs are stimulated by DAMPs to 
transform into activated HSCs (aHSCs). They start to exhibit a state of rapid proliferation and secreting high amounts of ECM, 
triggering inflammation and fibrosis

Hepatocytes, the primary parenchymal cells of the liver, regulate metabolic functions, detoxification, 
and protein synthesis [17]. They rely on LSECs for nutrient and oxygen exchange, as well as on KCs for 
immune surveillance [9, 18]. HSCs contribute to ECM remodeling and respond to injury by supporting 
tissue repair, while cholangiocytes manage bile production and transport [19, 20]. In a healthy liver, these 
cells engage in reciprocal regulation, adjusting their behavior in response to environmental and 
physiological changes [9, 10, 21]. This cooperative equilibrium prevents excessive inflammation, fibrosis, or 
metabolic dysfunction [11, 21].

Sociologist Elinor Ostrom’s work on common-pool resource management provides an insightful 
parallel to liver cell cooperation [1, 22, 23]. Ostrom argued that sustainable resource management relies on 
collective governance, where individuals follow self-regulated rules to maintain long-term benefits for the 
group [24]. Similarly, liver cells maintain a self-organized regulatory network, where no single cell type 
dominates, but instead, each contributes to the stability of the system [9]. For instance, hepatocytes 
produce metabolic substrates that KCs and LSECs utilize, while LSECs secrete angiocrine factors that 
regulate HSC quiescence, preventing excessive fibrosis [9, 10]. When this delicate balance is disrupted—for 
example, due to chronic lipid overload, inflammation, or oxidative stress—cellular cooperation 
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deteriorates, leading to pathological changes in MASLD, including hepatocyte dysfunction, LSEC 
capillarization, and uncontrolled HSC activation [10, 13].

By viewing the liver as a cooperative system governed by mutualistic interactions, we can better 
understand the mechanisms that sustain hepatic function under normal conditions and how their failure 
contributes to disease progression. This perspective also suggests that restoring cooperative dynamics, 
rather than targeting individual cell types in isolation, may be a more effective therapeutic approach for 
MASLD and other chronic liver diseases.

Mechanisms of cellular cooperation
The liver operates as a highly coordinated system, where cellular interactions ensure homeostasis through 
specialized roles, signaling networks, and regulatory mechanisms (Figure 2) [9–11]. These cooperative 
behaviors resemble social systems, where resource sharing, communication, and conflict resolution sustain 
collective stability [1, 4].

Figure 2. Regulatory mediators of intercellular communication between liver cells under physiological and pathological 
conditions. HGF: hepatocyte growth factor; RSPO3: R-spondin 3; MASP1: mannan-binding lectin serine protease 1; TRAIL: 
tumor necrosis factor-related apoptosis-inducing ligand; ITGβ1: integrin β1; IGFBP7: insulin-like growth factor-binding protein-7; 
ADAMTS1: ADAM metallopeptidase with thrombospondin type 1 motif 1; S1P: sphingosine 1-phosphate; TPM1: tropomyosin-1; 
SphK1: sphingosine kinase 1; TLR3: toll-like receptor-3; VNN-1: pantetheinase; VEGF: vascular endothelial growth factor; 
CXCL10: C-X-C motif chemokine 10; LSECs: liver sinusoidal endothelial cells; HSCs: hepatic stellate cells

Resource sharing and division of labor

In a functional liver, different cell types specialize in distinct yet interdependent roles, much like the 
division of labor in social economies [25]. LSECs play a crucial role in regulating nutrient and oxygen 
exchange between the bloodstream and hepatocytes, acting as metabolic gatekeepers [26]. Hepatocytes, in 
turn, process these nutrients and synthesize proteins, while HSCs contribute to ECM homeostasis and tissue 
repair [17, 19]. KCs, cholangiocytes, and other immune cells also fulfill essential roles in immune 
surveillance and bile production, respectively [18, 27].

This specialization enhances efficiency, much like Adam Smith’s concept of division of labor, where 
task specialization increases productivity [28]. In economics, decentralized specialization allows societies 
to optimize resource use—similarly, in the liver, cellular division of labor prevents metabolic overload and 
ensures rapid adaptation to changing physiological demands [28, 29]. However, in conditions such as 
MASLD, hepatocyte lipid accumulation and metabolic dysfunction disrupt this balance, leading to excessive 
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stress on other liver cells, much like economic systems failing due to inefficient resource distribution [30–
32].

Signaling and communication networks

Effective cooperation requires continuous communication among liver cells, primarily mediated through 
EVs, cytokines, and direct cell-cell interactions [9, 11]. EVs, which carry bioactive molecules such as 
microRNAs and proteins, act as informational messengers, enabling cross-talk among liver cell types [11]. 
This resembles knowledge-sharing networks in social systems, where decentralized communication fosters 
stability and adaptability [33].

From a network theory perspective, the liver’s intercellular signaling resembles distributed 
information processing, where no single node (cell type) controls the entire system [34, 35]. Instead, 
multiple pathways ensure redundancy and adaptability [35]. For instance, LSECs secrete factors that keep 
HSCs in a quiescent state, while KCs modulate immune responses through cytokine signaling [27, 36]. When 
this informational balance is disrupted, such as in chronic inflammation, EV-mediated signals may shift 
towards pro-fibrotic or inflammatory cues, reinforcing pathological changes in MASLD [37]. This parallels 
failures in decentralized networks, where misinformation or communication breakdowns can destabilize 
entire systems [33, 34].

Conflict resolution and self-regulation

While cooperation is essential, conflict naturally arises in both social and biological systems. KCs and other 
immune cells act as regulatory agents, preventing excessive damage by clearing pathogens and apoptotic 
cells [18, 27, 38]. However, in conditions like MASLD, chronic stress, and lipid accumulation can lead to the 
overactivation of KCs, resulting in excessive inflammation and hepatocyte injury [27, 39].

This process mirrors challenges in social cooperation models, where systems must prevent 
exploitation and free-riding (as described in public goods theory) [1, 24]. In well-functioning societies, 
regulatory mechanisms such as legal frameworks and social norms prevent individuals from exploiting 
collective resources [1, 40]. Similarly, in the liver, negative feedback loops normally restrain immune 
activation, preventing excessive tissue damage [41]. However, in disease states, this self-regulation fails, 
leading to chronic inflammation, fibrosis, and loss of liver function [42, 43].

Breakdown of sustainable cooperation in MASLD
In a healthy liver, intercellular cooperation ensures homeostasis through resource sharing, communication, 
and self-regulation [9, 10]. However, in MASLD, prolonged metabolic stress disrupts this balance, leading to 
loss of LSEC integrity, HSC overactivation, chronic inflammation, and even hepatocyte death (Figures 1 and 
2) [20, 30, 32, 39]. These pathological shifts resemble sociological collapse models, where the breakdown of 
cooperation destabilizes entire systems [44, 45].

Loss of LSEC integrity: disrupted nutrient exchange and pro-inflammatory signals

LSECs play a central role in maintaining metabolic homeostasis by regulating nutrient and oxygen 
exchange, as well as preventing excessive immune activation [26, 46–48]. In early MASLD, chronic lipid 
accumulation and oxidative stress induce capillarization of LSECs, where they lose their fenestrae and 
adopt a more rigid, vascular-like phenotype [47]. This impairs nutrient exchange, leading to hepatocyte 
stress and metabolic dysregulation [47, 49]. Additionally, dysfunctional LSECs secrete pro-inflammatory 
signals, amplifying KC activation and perpetuating a cycle of inflammation [50].

This failure parallels Hardin’s “Tragedy of the Commons” (1968), a sociological model describing how 
unregulated resource consumption leads to collective system collapse [44, 51]. In MASLD, excessive lipid 
accumulation overwhelms hepatocytes, forcing LSECs to adapt maladaptively, much like how 
overexploitation of natural resources leads to environmental degradation [52–55]. Without intervention, 
this process escalates, further destabilizing the hepatic microenvironment [55].
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HSC overactivation: fibrosis and loss of liver plasticity

HSCs are normally quiescent and serve as the primary storage site for vitamin A in the liver, storing it in 
lipid droplets and regulating retinoid metabolism [20, 56]. In their resting state, HSCs contribute to liver 
homeostasis not only by maintaining ECM balance and providing structural support [19, 57], but also by 
promoting hepatocyte metabolism and regeneration through R-spondin 3 (RSPO3), an HSC-enriched 
modulator of WNT signaling [58]. However, in MASLD, chronic LSEC dysfunction and inflammatory signals 
drive persistent HSC activation, leading to excessive ECM deposition (fibrosis) [48, 59]. Over time, this 
reduces liver plasticity, impairing its ability to regenerate and respond to metabolic demands [21].

This breakdown of regulation mirrors sociological models of institutional failure, where self-organized 
systems collapse due to unchecked exploitation and rigidity [60, 61]. As Ostrom (1990) noted, sustainable 
governance relies on adaptive mechanisms that prevent the overuse of shared resources [1, 62, 63]. In the 
liver, HSCs should remain responsive to changing conditions, balancing ECM production and degradation 
[20]. However, in MASLD, the feedback loops that normally restore equilibrium fail, leading to a 
pathological fibrotic state akin to a society trapped in irreversible economic or environmental decline [20, 
44, 64].

KC dysregulation: from immune surveillance to chronic inflammation

KCs are the liver’s resident macrophages, responsible for immune surveillance, clearance of apoptotic cells, 
and tolerance to gut-derived microbial products [27, 65]. However, in MASLD, excessive lipid exposure and 
oxidative stress trigger KC reprogramming into a pro-inflammatory phenotype, characterized by excessive 
secretion of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) [18, 
65–67].

Chronic KC activation propagates hepatocyte injury and exacerbates fibrosis by stimulating HSC 
activation [67–69]. This loss of immune tolerance resembles sociological models of governance failure, 
where institutions meant to mediate conflicts instead contribute to systemic instability [70, 71]. In this 
analogy, KCs function like regulatory bodies that, when overwhelmed by excessive stimuli, shift from 
maintaining order to perpetuating dysfunction [27].

Hepatocyte dysfunction: metabolic overload and loss of adaptability

Hepatocytes, as the liver’s primary metabolic units, regulate lipid metabolism, glucose homeostasis, and 
detoxification [17]. Under physiological conditions, they maintain energy balance by coordinating with 
LSECs, KCs, and HSCs [9, 10]. However, in MASLD, sustained lipid accumulation and oxidative stress impair 
mitochondrial function, reducing ATP production and increasing reactive oxygen species (ROS) generation 
[30, 32].

This metabolic overload forces hepatocytes into maladaptive responses, including excessive 
triglyceride storage, apoptosis, and lipid peroxidation [17]. Eventually, these changes trigger hepatocyte 
ballooning and cell death, further exacerbating inflammation and fibrosis [72, 73]. The hepatocyte 
dysfunction in MASLD resembles economic collapse models, where excessive short-term resource 
consumption leads to irreversible decline [44, 74]. Just as economies suffer when industries prioritize 
immediate gains over long-term stability, hepatocytes under metabolic stress prioritize lipid accumulation 
at the cost of overall liver function [75, 76].

The liver as a failing commons: a model of systemic breakdown

The liver in MASLD can be viewed as a failing common, where cooperative cellular behaviors that once 
sustained function are disrupted by metabolic stress, inflammation, and fibrosis [14, 39]. Just as societies 
collapse when individuals act in short-term self-interest at the expense of long-term stability, hepatocytes, 
LSECs, KCs, and HSCs in MASLD shift from cooperation to self-preservation, leading to organ dysfunction 
[11, 77]. This sociological perspective not only explains why MASLD progresses but also highlights potential 
therapeutic strategies: restoring LSEC function, reducing HSC activation, and modulating KC-mediated 
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inflammation could help reestablish cellular cooperation. By addressing the breakdown of intercellular 
coordination, rather than just targeting isolated pathological features, we may identify more effective 
interventions to prevent liver failure in MASLD.

Beyond the liver: cross-organ cooperation and systemic disruption in 
MASLD
While much attention in MASLD research has focused on hepatocellular dysfunction, the progression and 
prognosis of the disease are deeply influenced by inter-organ dynamics [78, 79]. The liver does not operate 
in isolation but is embedded in a broader physiological network involving the gut, cardiovascular system, 
and other organs, each with tightly regulated feedback loops [78–80]. Disruption in this inter-organ 
“society” can exacerbate systemic failure, mirroring how the collapse of one sector in a sociopolitical system 
often cascades into wider instability, resulting not only in hepatic dysfunction but also in widespread 
consequences such as cardiovascular disease, cognitive disturbance, and gut-derived metabolic stress.

Liver–cardiovascular coordination: a fatal disintegration

Cardiovascular disease is the leading cause of mortality in patients with MASLD [81, 82]. This reality 
underscores the pathophysiological entanglement between hepatic dysfunction and cardiovascular risk 
[83]. Hepatic steatosis and inflammation promote atherogenesis through increased secretion of pro-
inflammatory cytokines, altered lipid metabolism, and insulin resistance [84]. Conversely, systemic 
hypertension and endothelial dysfunction can amplify hepatic injury by impairing blood flow and oxygen 
delivery to liver tissue [81–85]. Rather than coincidental comorbidities, MASLD and cardiovascular disease 
are co-evolving and mutually reinforcing conditions [14]. Their bidirectional influence reflects a collapse in 
systemic cooperation, where dysfunction in one organ destabilizes another, much like a financial crisis 
rippling through interconnected economic institutions. This breakdown underscores the need for 
therapeutic strategies that address the broader network of inter-organ dynamics, not just isolated hepatic 
pathology.

Liver–gut axis: microbial disruption and information breakdown

The gut microbiome plays a pivotal role in MASLD, functioning as a communication hub that links dietary 
inputs, metabolic regulation, and immune signaling [86]. In healthy states, the liver and gut maintain a 
cooperative relationship via the portal circulation, where microbial metabolites, such as short-chain fatty 
acids and bile acids, help modulate hepatic metabolism and immune tone [80, 87]. This bidirectional 
exchange preserves homeostasis and ensures that signals from the gut are appropriately interpreted by 
hepatic cells. However, gut dysbiosis disrupts this finely tuned relationship [80, 88]. Increased intestinal 
permeability (“leaky gut”) permits the translocation of bacterial endotoxins such as lipopolysaccharide 
(LPS), alongside microbial-associated molecular patterns (MAMPs), into the liver [89]. These stressors 
directly interfere with KC homeostasis and disrupt hepatocyte lipid metabolism, triggering chronic low-
grade inflammation and metabolic dysfunction [90, 91]. Additionally, dysbiosis alters bile acid signaling, 
further impairing hepatic regulatory circuits [80, 92]. Collectively, these effects make gut dysbiosis a 
powerful upstream disruptor of intercellular communication in the liver, exacerbating MASLD progression 
[80]. From a sociological perspective, the gut microbiome can be likened to a decentralized network of 
informants and producers whose biochemical outputs influence central governance, represented here by 
the liver. When this network becomes dysregulated, distorted messages flood the system, mirroring the 
societal consequences of disinformation. As in political systems destabilized by misinformation, the liver’s 
capacity to coordinate and respond rationally is compromised, accelerating systemic breakdown [93]. 
Therapeutically, restoring liver–gut cooperation involves recalibrating this informational axis. 
Interventions targeting the microbiome, such as prebiotics, probiotics, postbiotics, or microbial-derived 
EVs, aim to reduce inflammatory inputs and restore signal fidelity [94]. By reestablishing a healthier 
microbial environment, these strategies seek to interrupt the pathological feedback loop and promote 
cooperative stability across the liver–gut axis.
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Liver–brain axis: neuroimmune disruption and metabolic feedback loops

The liver–brain axis is increasingly recognized as a bidirectional communication pathway involved in 
regulating appetite, cognition, and systemic homeostasis [95]. The liver influences central nervous system 
(CNS) function through cytokines, metabolic hormones [e.g., insulin, leptin, fibroblast growth factor 21 
(FGF21)], and detoxification of neuroactive substances [96, 97]. In MASLD, disrupted hepatic signaling and 
chronic low-grade inflammation can alter vagal tone, impair neuroendocrine feedback, and contribute to 
neuroinflammation, cognitive impairment, and mood disorders [96, 98]. This systemic crosstalk breakdown 
parallels sociological dysfunction, where impaired “policy implementation” (liver signaling) undermines 
executive function (brain regulation). Thus, the liver–brain axis represents another site of inter-organ 
cooperation whose destabilization amplifies MASLD’s multisystem burden.

Liver–kidney axis: metabolic and detoxification interdependence

The liver and kidneys cooperate in key metabolic functions, including ammonia detoxification, glucose 
homeostasis, and xenobiotic clearance [99]. In MASLD, particularly in advanced stages with fibrosis or 
cirrhosis, this interdependence is strained [99, 100]. Systemic inflammation, disrupted bile acid 
metabolism, and impaired renal perfusion contribute to hepatorenal dysfunction and cardiorenal 
complications [99–101]. Analogous to a destabilized central bank burdening a dependent economy, hepatic 
failure transfers metabolic stress to the kidneys, accelerating their decline and reinforcing systemic 
collapse. The liver–kidney axis thus exemplifies how inter-organ cooperation, once disrupted, can amplify 
disease progression across organ systems.

Liver–adipose axis: metabolic diplomacy and energy governance

Adipose tissue, particularly visceral fat, is a key regulator of hepatic function through the release of 
adipokines (e.g., adiponectin, leptin, resistin) and free fatty acids [102, 103]. In MASLD, dysfunctional 
adipose tissue acts as a metabolic saboteur, contributing to insulin resistance, lipotoxicity, and systemic 
inflammation [104]. This reflects a breakdown in metabolic diplomacy, where formerly cooperative energy 
reservoirs now release antagonistic signals that destabilize hepatic homeostasis. Sociologically, this 
resembles a once-productive trading partner devolving into a hostile neighbor, flooding markets (the liver) 
with toxic goods (lipids and cytokines) and undermining internal regulatory systems.

Liver–skeletal muscle axis: resource allocation and sarcopenic feedback

The liver and skeletal muscle maintain a dynamic partnership in regulating systemic metabolism, 
particularly in glucose and amino acid homeostasis [105, 106]. Skeletal muscle acts as a major reservoir for 
glucose disposal and protein storage, while the liver orchestrates gluconeogenesis and nutrient distribution 
[105, 107, 108]. In the context of MASLD, this inter-organ axis becomes strained. Chronic inflammation, 
insulin resistance, and altered amino acid metabolism contribute to sarcopenia—a progressive loss of 
muscle mass and function, which in turn reduces peripheral glucose uptake and increases metabolic burden 
on the liver [109, 110]. This feedback loop represents a failure in systemic resource allocation, akin to the 
breakdown of infrastructure-sharing in a complex federation. When skeletal muscle, normally a cooperative 
energy sink, begins to degrade, it no longer fulfills its role in buffering postprandial glucose or maintaining 
metabolic stability. The liver, already under lipotoxic and inflammatory pressure, is forced to compensate, 
worsening hepatocellular stress and accelerating disease progression.

Liver–lung axis: shared inflammatory landscapes and hypoxic burden

Although less frequently discussed, the liver and lungs are deeply interconnected, especially in the context 
of systemic inflammation and hypoxia [111]. In MASLD, circulating pro-inflammatory cytokines and altered 
coagulation profiles can affect pulmonary microvasculature, increasing the risk for conditions such as 
pulmonary hypertension and obstructive sleep apnea [112, 113]. Conversely, chronic hypoxia from lung 
disease can exacerbate hepatic steatosis and fibrosis through oxidative stress [114, 115]. This reflects a 
feedback loop where two interdependent systems collapse under shared inflammatory pressure, much like 
adjacent urban sectors in crisis amplifying each other’s vulnerabilities.
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Restoring cooperation: potential therapeutic strategies
MASLD is not merely a condition of individual cellular malfunction but a broader failure of intercellular 
cooperation within the liver microenvironment [9, 10]. Effective treatment, therefore, must extend beyond 
correcting isolated pathways to restoring the systemic interactions that underlie hepatic function. Drawing 
inspiration from sociological models of intervention, such as policy reform, economic restructuring, and 
conflict mediation, we can conceptualize therapeutic strategies like EVs, ECM, and receptor (ant)agonists as 
tools for rebuilding cooperative networks among liver cells.

EV therapy: restoring cellular communication and preventing fibrosis

EVs mediate intercellular communication by transferring proteins, microRNAs, and lipids, helping maintain 
homeostasis under physiological conditions [11, 116]. In MASLD, the loss of functional EV-mediated 
signaling contributes to inflammation, fibrosis, and metabolic dysfunction [11]. Studies suggest that stem 
cell-derived EVs or engineered EVs could [117, 118]:

Reprogram KCs toward a pro-resolving phenotype, reducing excessive inflammation [27, 65, 119, 
120].

1)

Suppress HSC activation, preventing excessive ECM deposition [119, 121].2)

Enhance LSEC function, restoring endothelial integrity and nutrient exchange [50, 122, 123].3)

Promoting hepatocyte function recovery and regeneration [124–126].4)

This strategy mirrors sociological policy interventions, where external mediation helps restore 
communication between conflicting groups, reducing systemic instability [127]. Just as diplomatic 
negotiations or economic aid can rebuild cooperative structures in failing societies [127, 128], EV therapy 
aims to reestablish intercellular dialogue, preventing disease progression [129].

ECM hydrogels: providing a supportive microenvironment

A key challenge in MASLD is the loss of liver plasticity due to fibrosis, which limits tissue regeneration 
[130]. ECM hydrogels offer a biomimetic environment, supporting hepatocyte function, reducing HSC 
activation, and improving overall tissue remodeling [131–133]. By providing a structural and biochemical 
niche, ECM hydrogels may:

Promote hepatocyte regeneration, counteracting metabolic dysfunction [131, 134, 135].1)

Suppress fibrogenic signaling, preventing irreversible ECM accumulation [57, 136].2)

Support LSEC stability, facilitating vascular homeostasis [57, 131, 137, 138].3)

This approach is analogous to institutional interventions in sociology, where rebuilding public 
infrastructure (e.g., education systems, healthcare networks) restores long-term societal function [74, 139]. 
Just as stable institutions enable communities to recover from economic or environmental crises, ECM 
hydrogels provide a microenvironment that allows hepatocytes and other liver cells to regain functionality 
[140, 141].

Systemic remodeling based on receptor (ant)agonists: rebuilding liver cooperation

The liver’s ability to maintain homeostasis and respond to injury is governed by complex signaling among 
diverse cell types. Receptor (ant)agonists, which activate/inhibit specific signaling pathways, can be viewed 
as molecular analogues to public policy—strategically deployed to incentivize constructive cellular 
behavior and restore communication. These agents help orchestrate a return to physiological balance, 
much like systemic reforms aimed at stabilizing failing social institutions.

In the context of MASLD, receptor (ant)agonists that modulate pathways related to metabolism, 
inflammation, and fibrosis show particular promise. Agonists of the peroxisome proliferator-activated 
receptors (PPARs), for instance, not only enhance lipid metabolism but also exert anti-inflammatory effects 
within hepatic cells [142–144]. Likewise, glucagon-like peptide-1 (GLP-1) receptor agonists improve 
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hepatocyte survival and reduce hepatic steatosis, contributing to a more resilient and functionally 
coordinated liver environment [145, 146]. By recalibrating intercellular signaling networks, these agents 
foster conditions that support collective regeneration and reduce fibrotic progression. Many drugs under 
investigation have demonstrated promising therapeutic effects by targeting various key pathways in the 
pathogenesis of MASH (Table 1) [147]. Among these, resmetirom, a thyroid hormone receptor β (THRβ) 
agonist developed by Madrigal Pharmaceuticals, has become the first and only officially FDA-approved drug 
for treating MASH [148]. Other candidates, such as PPARs agonists, GLP-1 analogs, and FGF21 analogs, are 
awaiting approval [147, 149]. Despite these advances, developing pharmacotherapeutics for MASH remains 
a significant challenge due to the complexity of its pathogenesis, heterogeneity, and the side effects 
associated with existing treatments [39, 147, 149–151]. Metabolic modulators improve insulin sensitivity 
and reduce hepatic steatosis but are associated with weight gain, while GLP-1 receptor agonists (e.g., 
liraglutide, semaglutide) and sodium-glucose transport protein 2 (SGLT2) inhibitors enhance glycemic 
control, reduce liver fat, and demonstrate cardiovascular benefits [147, 152]. Anti-fibrotic agents like 
obeticholic acid, a FXR agonist, and PPAR agonists like lanifibranor target lipid metabolism and fibrosis but 
may cause adverse effects like pruritus [147, 149, 153, 154]. Resmetirom and other lipid metabolism 
modulators have shown efficacy in reducing steatosis and fibrosis during clinical trials, and antioxidants 
like vitamin E alleviate oxidative stress in some patients. However, their long-term safety and limited 
clinical efficacy require further evaluation [39, 147, 149].

Table 1. List of ongoing pharmacotherapeutic agents in phase II–IV trials for MASH/MASLD

Target Agent Latest 
phase

NCT Sponsor

Resmetirom FDA-
approved

NCT04951219

NCT04197479

NCT05500222
NCT03900429

Madrigal Pharmaceuticals

VK2809 NCT04173065
NCT02927184

Viking Therapeutics

ASC41 NCT05462353 FirstWord Pharma

THRβ agonist

TERN-501

Phase II

NCT05415722 Terns Pharmaceuticals
Pioglitazone Phase IV NCT00994682 University of Florida
IVA337 
(Lanifibranor)

NCT04849728
NCT05232071

NCT03459079

Inventiva Pharma

Elafibranor

Phase III

NCT02704403
NCT03883607

NCT01694849

Genfit

Saroglitazar NCT03061721

NCT03863574

Zydus Therapeutics

PPARα/δ/γ 
agonist

Pemafibrate

Phase II

NCT05327127
NCT03350165

Kowa Research Institute, Inc.

Obeticholic acid Phase III NCT02548351
NCT01265498

National Institute of Diabetes and 
Digestive and Kidney Diseases 
(NIDDK)

Cilofexor NCT02854605 Gilead Sciences
HPG1860 NCT05338034 Hepagene (Shanghai) Co., Ltd.
Tropifexor NCT02855164

NCT04147195

NCT03517540

Novartis Pharmaceuticals

TERN-101 NCT04328077 Terns, Inc.
MET409 NCT04702490 Metacrine, Inc.

Nuclear receptor 
agonists

FXR agonist

CS0159 NCT05591079 Cascade Pharmaceuticals, Inc

Phase II
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Table 1. List of ongoing pharmacotherapeutic agents in phase II–IV trials for MASH/MASLD (continued)

Target Agent Latest 
phase

NCT Sponsor

Semaglutide NCT04822181

NCT02970942

Novo Nordisk A/S

Liraglutide NCT01237119

NCT02654665

University of Birmingham

GLP-1R agonist

Dulaglutide Phase IV NCT03648554 Central Hospital, Nancy, France; Eli 
Lilly and Company

A3 adenosine receptor agonist Namodenoson Phase III NCT02927314 Can-Fite BioPharma
Efruxifermin Phase III NCT06215716

NCT06161571

NCT03976401
NCT04767529

Akero TherapeuticsFGF mimetics FGF21 
analogue

Pegozafermin Phase II NCT03486912
NCT03486899

NCT03400163

NCT02413372

89bio

SCD-1 inhibitor Aramchol NCT04104321 Galmed Research and Development
CCR2/CCR5 
inhibitor

Cenicriviroc NCT03028740 Tobira Therapeutics, Inc.

Galactin-3 
inhibitor

Belapectin (GR 
MD-02)

NCT06035874 Galectin Therapeutics

ASK1 inhibitor Selonsertib CTR20230344 The First Hospital of Jilin University
GS-0976 NCT02856555 Gilead SciencesACC inhibitor
MK-4074 NCT01431521 Merck Sharp & Dohme LLC

FASN inhibitor Denifanstat NCT04906421 Sagimet Biosciences Inc.
MPC inhibitor MSDC-0602K NCT02784444 Cirius Therapeutics, Inc.

Bempedoic acid NCT06035874 Medanta - The Medicity

Inhibitors

ACLY inhibitor
BGT-002

Phase III

CTR20230344 The First Hospital of Jilin University
ACC inhibitor

DGAT2 inhibitor

PF-05221304

PF-06865571

NCT04321031

NCT03248882

NCT03776175

Pfizer

ASK1 inhibitor

ACC inhibitor
FXR agonist

Selonsertib

Firsocostat
Cilofexor

NCT02781584 Gilead Sciences

FXR agonist

HMGCR 
inhibitor

Obeticholic acid

Atorvastatin

NCT02633956 Intercept Pharmaceuticals

Combination 
therapy

FXR agonist
GLP-1R agonist

Cilofexor
Semaglutide

Phase III

NCT03987074 Gilead Sciences

MASLD: metabolic dysfunction-associated steatotic liver disease; THRβ: thyroid hormone receptor β; PPARα/δ/γ: peroxisome 
proliferator-activated receptor α/δ/γ; FXR: farnesoid X receptor; GLP-1R: glucagon-like peptide-1 receptor; FGF: fibroblast 
growth factor; SCD-1: stearoyl-CoA desaturase-1; CCR2/CCR5: C-C chemokine receptor type 2/5; ASK1: apoptosis signal-
regulating kinase 1; ACC: acetyl-CoA carboxylase; FASN: fatty acid synthase; MPC: mitochondrial pyruvate carrier; ACLY: ATP-
citrate lyase; DGAT2: diacylglycerol O-acyltransferase 2; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase

The potential of receptor (ant)agonists is further amplified when integrated with EV therapy and ECM 
hydrogels. EVs—natural carriers of proteins, lipids, and RNAs—facilitate targeted communication between 
cells and have been shown to modulate fibrosis and support tissue repair. When embedded in ECM 
hydrogels, which provide mechanical support and biochemical cues, EVs can more effectively propagate 
regenerative signals across damaged hepatic regions. This integrated approach creates a supportive niche 
analogous to a social safety net, enabling liver cells to resume cooperative functions and self-organize 
toward recovery.
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Ultimately, systemic remodeling aims not merely to suppress individual pathological pathways but to 
reestablish a functional and collaborative cellular ecosystem. By treating the liver as a dynamic, self-
regulating system—much like a society recovering from systemic breakdown—therapeutic strategies that 
rebuild intercellular cooperation hold significant potential in addressing the complex, multifactorial nature 
of MASLD.

Restoring axis integrity through multi-organ coordination

Acknowledging these inter-organ axes demands a therapeutic strategy that transcends hepatocentric 
approaches. Receptor agonists, EV therapies, and ECM scaffolds must be evaluated not only for their 
intrahepatic effects but for how they modulate systemic physiology. Targeting the gut microbiome, 
restoring endothelial function, modulating neuroimmune signaling, and reducing pulmonary inflammation 
represent coordinated interventions—akin to inter-ministerial policies aimed at restoring national 
coherence. Viewing MASLD as a systemic disorder opens new pathways for organ-crossing therapies and 
diagnostic frameworks.

Conclusions
The concept of sustainable cooperation, widely studied in sociology, provides a compelling framework for 
understanding liver homeostasis and its breakdown in MASLD. Just as societies rely on resource sharing, 
communication networks, and conflict resolution to maintain stability, the liver depends on cooperative 
interactions between hepatocytes, LSECs, HSCs, KCs, and cholangiocytes to function effectively. When this 
cooperation fails, due to metabolic stress, inflammation, and fibrosis, MASLD progresses, resembling 
sociological models of systemic collapse.

Moreover, the failure in MASLD extends beyond hepatic disintegration. The liver’s cooperative function 
is embedded in a network of inter-organ axes, including the liver–cardiovascular, liver–gut, liver–brain, 
liver–lung, liver–kidney, and so on. These axes represent critical lines of metabolic, immune, and 
neuroendocrine communication. Disruption along these pathways mirrors the collapse of interdependent 
institutions within a society, where dysfunction in one domain precipitates cascading failures across the 
whole system. For instance, gut dysbiosis, cardiovascular inflammation, and neuroimmune signaling 
disruptions not only influence liver pathology but are also amplified by it, creating feedback loops of 
escalating dysfunction.

By applying sociological theories to liver biology, we gain new perspectives on disease progression and 
potential interventions. Viewing MASLD as a failure of cellular cooperation shifts the therapeutic focus from 
merely targeting isolated pathological features to restoring intercellular communication and metabolic 
balance. Strategies such as EV therapy, ECM hydrogels, and receptor (ant)agonist, which reestablish liver 
cell interactions, mirror policy interventions in sociology, where external support can stabilize failing 
systems.

This interdisciplinary perspective—linking systems biology, network theory, and cooperative game 
theory with sociological models of governance and collapse—opens new avenues for research. Future 
efforts should prioritize restoring cooperative equilibrium not only at the cellular level but also across the 
organ axes that define the body’s systemic integrity. In doing so, we may move closer to therapies that don’t 
just treat liver disease, but reestablish the inter-organ harmony essential to long-term health.
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