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Abstract
As the most prevalent hepatic disorder worldwide, metabolic dysfunction-associated steatotic liver disease 
(MASLD) afflicts over one-third of the global population, representing a significant public health challenge. 
The multifactorial pathogenesis of this condition is principally rooted in metabolic dysregulation. It is 
notable that emerging evidence highlights a critical role for gut microbiota (GM) in disease initiation and 
progression. This comprehensive review elaborates some representative GM species that influence hepatic 
lipid metabolism and elucidates the mechanisms through which GM dysbiosis exacerbates MASLD 
pathogenesis. Importantly, the positive or negative effects of intestinal bacterial communities on MASLD 
are largely dependent on their special metabolites, such as short chain fatty acids, ethanol, and 
trimethylamine N-oxide. Current therapeutic strategies targeting GM modulation, including prebiotics, 
probiotics, fecal microbiota transplantation, specific medicines, and bacteriphages, demonstrate promising 
efficacy that partially restores microbial equilibrium and mitigates hepatic steatosis. Although limitations 
still persist in achieving sustained clinical remission, the expanding frontier of microbiome research 
continues to refine our understanding of host-microbiota crosstalk in MASLD. Future investigations 
integrating multiple approaches and longitudinal clinical data hold potential to unravel complex microbial 
networks, paving the way for innovative therapeutic breakthroughs in metabolic liver disease management.
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Introduction
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease closely related to 
metabolic syndrome, whose prevalence is increasing worldwide due to the pandemic of obesity [1]. The 
development and progression of MASLD is a dynamic process [2]. The incipient phase of MASLD arises 
predominantly from dysregulated lipid metabolism, culminating in pathologic triglyceride accumulation 
within hepatocytes, a precursor state to metabolic dysfunction-associated steatohepatitis (MASH). 
Concurrently, this metabolic perturbation triggers a bidirectional cascade of inflammatory activation and 
hepatocellular injury, wherein these mutually reinforcing mechanisms amplify disease progression [3]. 
Persistent hepatic inflammation and cellular damage further induce activation of quiescent hepatic stellate 
cells [4], initiating excessive extracellular matrix deposition and evolving into liver fibrosis [5]. The 
sustained fibrosis stage may subsequently progress into cirrhosis, a state marked by profound hepatic 
insufficiency and life-threatening complications including esophageal variceal hemorrhage [6], refractory 
ascites [7], and hepatic encephalopathy [8]. Notably, MASLD-induced cirrhosis constitutes a principal 
etiological driver of hepatocellular carcinoma (HCC), with tumorigenesis potentiated through paracrine 
signaling within the remodeled tumor microenvironment [9]. Notably, beyond hepatic pathology, MASLD 
exhibits systemic ramifications through its association with cardiovascular morbidity [10], chronic kidney 
disease (CKD) progression [11], type 2 diabetes mellitus (T2DM) exacerbation [12], and neurocognitive 
impairment [13]. These extrahepatic manifestations substantially contribute to the elevated all-cause 
mortality observed in MASLD cohorts, underscoring its reconceptualization as a multisystem disorder with 
far-reaching clinical implications [14].

The pathogenesis of MASLD arises from a complex interplay of genetic predisposition, environmental 
factors, and lifestyle determinants [15]. Notably, individuals with MASLD frequently exhibit significant 
alterations in GM composition, characterized by reduced microbial diversity and a shift from dominant 
species to non-dominant microbial populations [16, 17]. Emerging evidence suggests that GM dysbiosis 
may directly contribute to MASLD progression through multiple mechanisms, including compromised 
intestinal barrier integrity, sustained inflammatory activation, exacerbated oxidative stress, and 
dysregulated bile acid metabolism [18]. In addition, GM-derived metabolites demonstrate dual roles in 
MASLD pathophysiology. Protective metabolites such as short-chain fatty acids (SCFAs), predominantly 
consist of acetate, propionate, and butyrate, exhibit therapeutic potential by ameliorating hepatic steatosis 
and inflammation [19]. Conversely, deleterious metabolites including endogenous ethanol and 
trimethylamine N-oxide (TMAO) may accelerate disease progression by promoting metabolic dysfunction 
and hepatocellular injury [15]. These mechanistic insights highlight promising therapeutic strategies 
targeting the gut-liver axis. Clinical interventions such as prebiotics, probiotics, fecal microbiota 
transplantation (FMT), traditional Chinese medicine (TCM), and phage therapy are being actively explored 
for MASLD management [20]. Additionally, pharmacological modulation of gut microbiota (GM) metabolite 
production, either through inhibition of harmful metabolites or enhancement of beneficial compounds, 
represents a novel therapeutic frontier in MASLD treatment [21].

In the present review, we primarily searched the PubMed and ScienceDirect databases, retrieving and 
collecting publications relevant to the above topics, including original research articles and review papers. 
Based on these resources, we systematically examined the GM species influencing hepatic lipid metabolism, 
elucidated their mechanistic pathways, and evaluated the therapeutic potential of GM modulation in MASLD 
management. By synthesizing current evidence on these specific mechanisms, this analysis not only 
advances our understanding of the involvement of GM in MASLD pathogenesis, but also establishes a 
conceptual framework to guide future translational research and therapeutic innovation.

GM species that influencing hepatic lipid metabolism
Specific GM species are strongly associated with hepatic lipid metabolism markers, suggesting their 
regulatory role in MASLD. A meta-analysis shows that MASLD patients have less diverse GM than healthy 
people, with more Bacteroidetes and fewer Prevotella [22]. Another study shows that the abundance of 
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Escherichia coli, Prevotella, Streptococcus, Coprococcus, Faecalibacterium, and Ruminococcus is a common 
gut bacterial feature in MASLD [23]. Effenberger et al. [24] revealed that the abundance of 
Enterobacteriaceae, Prevotellaceae, and Lactobacillaceae is associated with increased serum fatty 
apolipoproteins. In contrast, Ruminococcaceae, which helps maintain gut microenvironment homeostasis, 
gradually decreases in MASLD patients as the disease worsens and fibrosis becomes more severe. This 
section synthesizes current evidence on key gut microbial communities implicated in MASLD progression, 
focusing on their mechanistic roles and clinical relevance (Figure 1 and Table 1).

Figure 1. Roles of some gut microbial communities in MASLD initiation and progression. a) Escherichia coli: 1) Produce 
endogenous ethanol→Induce liver inflammation and mitochondrial dysfunction; 2) Boost gut permeability→Enhance LPS 
translocation→Activate inflammasomes. b) Ruminococcus: 1) Boost gut permeability→Enhance LPS translocation→Activate 
inflammasomes; 2) Activate the TLR4 pathway→Worsen insulin resistance and fat deposition; 3) Produce SCFAs→Improve 
insulin sensitivity and inhibit liver fat production. c) Prevotella: 1) SCFA metabolism→Maintain the glucose homeostasis; 2) 
Produce virulence factors→Disrupt immune homeostasis. d) Faecalibacterium: 1) Produce butyrate→Inhibit translocation of 
endotoxins; 2) Activate AMPK pathway→Improve insulin sensitivity→Decrease hepatic lipid deposition. MASLD: metabolic 
dysfunction-associated steatotic liver disease; LPS: lipopolysaccharide; SCFA: short-chain fatty acid; AMPK: AMP-activated 
protein kinase. By Figdraw (ID: WOWIA4e047)

Table 1. The effects of microbial intervention on MASLD

Gut microbiota 
species

Mechanism Clinical status Limitations Refs

Escherichia coli Boosts gut permeability.•
Activates inflammasomes.•
Induces oxidative stress 
and mitochondrial 
dysfunction.

•

Exacerbates fatty liver.•
Causes liver damage.•

Further studies are needed to 
investigate the various effects of 
different E. coli strains on the liver.

[16, 
26–
29]

Ruminococcus Boosts gut permeability.•
Activates TLR4 pathway.•
Produces SCFAs and 
improves insulin 
sensitivity.

•

Induces hepatic steatosis 
and inflammation.

•

Ruminococcus abundance 
positively correlates with 
liver fibrosis severity.

•

Current evidence remains primarily 
correlative, though preliminary 
experimental data suggest potential 
causal mechanisms.

[34–
38]

Participates in 
polysaccharide 
degradation and SCFA 
metabolism.

•Prevotella Positively correlates with 
dietary fiber intake.

•

Children with MASLD have 
higher Prevotella content.

•

The therapeutic protocol 
demonstrates relatively low 
correlation with lifestyle 
interventions and conventional 
medications.

[39, 
40, 
44–
46]
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Table 1. The effects of microbial intervention on MASLD (continued)

Gut microbiota 
species

Mechanism Clinical status Limitations Refs

Disrupts immune 
tolerance and alters host-
microbial balance.

•

Faecalibacterium Produces butyrate and 
inhibits endotoxin 
translocation to the liver.

•

Activates AMPK pathway 
to enhance insulin 
sensitivity.

•

Decreased GM diversity 
and reduced 
Faecalibacterium 
abundance.

• Further research is required to 
determine the optimal dosage 
regimen, administration route, and 
mechanism of action.

[47–
50, 
53, 
54]

MASLD: metabolic dysfunction-associated steatotic liver disease; SCFAs: short-chain fatty acids

Escherichia coli

E. coli is a main pathogenic bacterium causing high lipopolysaccharide (LPS) content in patients with fatty 
liver [25]. The overgrowth of E. coli may boost gut permeability and LPS levels in the portal vein, thus 
activating inflammasomes and causing liver damage [16]. Some E. coli strains can ferment carbohydrates to 
produce ethanol and raise the blood ethanol levels [26]. Endogenous ethanol could induce oxidative stress 
and mitochondrial dysfunction in liver cells, worsening fatty liver [27]. Shen et al. [28] demonstrated an 
increased abundance of intestinal Enterobacteriaceae in MASLD patients with severe fat deposition and 
fibrosis. Importantly, translocation of E. coli exacerbated hepatic steatosis, inflammation, and fibrosis in 
MASLD mice [28]. E. coli has a bidirectional causal relationship with MASLD. The metabolic disorders 
accompanying MASLD, such as obesity and insulin resistance, may alter GM composition and cause E. coli 
proliferation, creating a vicious cycle. Given the strain heterogeneity of E. coli (commensal vs pathogenic), 
its diverse effects on the liver need further strain-specific research [29]. Iannone et al. [30] found that 
aldafermin-expressing E. coli Nissle 1917 combined with dietary changes could improve epididymal 
visceral adipose tissue (eVAT) histology, and alleviate liver steatosis and other MASLD-related pathological 
conditions by improving liver metabolism through eVAT-liver interactions. Thus, therapeutic intervention 
targeting E. coli may be a promising candidate for MASLD therapy.

Ruminococcus

Some Ruminococcus species, such as R. gnavus [31], R. bromii [32], and R. albus [33], could break down gut 
mucus, damage the mucous layer, and increase the risk of leaky gut, which promote the translocation of 
endotoxins like LPS and further lead to liver inflammation [34]. Moreover, certain Ruminococcus-derived 
metabolites may activate the TLR4 pathway, worsening insulin resistance and hepatic fat deposition [35]. 
On the other hand, species like R. bromii could ferment dietary fibers to produce SCFAs, thereby improving 
insulin sensitivity and inhibiting liver fat production [36]. The role of Ruminococcus and related molecules 
in MASLD is largely correlative, yet some experiments hint at potential causal mechanisms. It has been 
shown that transplanting GM enriched in Ruminococcus from MASLD patients into germ-free mice would 
induce liver steatosis and inflammation [37]. Also, clinical studies indicate a positive correlation between 
Ruminococcus abundance and liver fibrosis severity in MASLD patients [38].

Prevotella

Prevotella, a prominent genus within the Bacteroidetes phylum, exhibits context-dependent roles in human 
health. While recognized as a commensal bacterium contributing to polysaccharide degradation and SCFA 
metabolism that is critical for maintaining glucose homeostasis, certain strains display pathogenic potential 
linked to chronic inflammatory disorders [39]. This transition from commensal to pathobiont is driven by 
dysbiosis-induced upregulation of virulence factors, which disrupts immune tolerance and shifts host-
microbe equilibrium [40]. Prevotella also showed inconsistent results in the progression of MASLD. Yuan et 
al. [39] have demonstrated that Prevotella plays a unique role in carbohydrate metabolism. It can also 
produce higher levels of LPS, which stimulate inflammation and promote the development of MASLD [41, 
42]. Clinical studies indicate that Prevotella copri is significantly enriched in MASLD patients and positively 
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correlates with liver fat and plasma/serum alanine aminotransferase (ALT) [16]. Animal experiments show 
that transferring GM from mice with inflammasome defects (Asc or IL-18 knockout) to wild-type mice 
aggravates NASH induced by a methionine-choline-deficient diet. This is seen as increased liver steatosis, 
inflammation, and elevated liver enzymes when Prevotella-rich microbiota is present [43]. Thus, Prevotella 
has a pro-disease association with MASLD. However, some research reveals a protective role in high dietary 
fiber intake individuals, wherein Prevotella is more abundant and liver fat is lower, which may result from 
its propionate production improving metabolism [44]. Michail et al. [45] found that children with MASLD 
have more Prevotella, whereas opposite results were obtained in adult studies. These discrepancies suggest 
that Prevotella’s impact on MASLD is modulated by age, metabolic context, and strain-specific functional 
differences. Regarding Prevotella-targeted therapies, potential strategies include antibiotics that directly 
combat Prevotella and prebiotics/probiotics (e.g., dietary fiber supplements) to modulate GM. Additionally, 
lifestyle changes and traditional medications are mentioned, though their relevance is relatively low [46].

Faecalibacterium

Faecalibacterium, a member of the Firmicutes phylum, is a strictly anaerobic, oxygen-sensitive, gram-
positive bacterium. As a major butyrate producer, it strengthens the intestinal barrier by inhibiting 
translocation of endotoxins to the liver, thereby reducing systemic inflammation and hepatic injury [47]. 
Additionally, it enhances insulin sensitivity via AMPK pathway activation, decreases hepatic lipid 
accumulation [48], and suppresses pro-inflammatory mediators such as tumor necrosis factor-alpha (TNF-
α) [49]. Wang et al. [50] showed that oral administration of either live F. prausnitzii or its extracellular 
vesicles significantly reduced the severity of fibrosis induced by repeated administration of DSS in mice. 
Butyrate-producing bacteria such as F. prausnitzii could reduce bacterial translocation and stimulate mucin 
secretion, thus maintaining intestinal integrity [51]. MASLD patients frequently exhibit reduced GM 
diversity and diminished Faecalibacterium abundance, positioning this bacterium or its derivatives as 
promising therapeutic agents for MASLD-associated intestinal pathologies [52]. FMT from healthy donors is 
often used to introduce beneficial bacteria like Faecalibacterium into MASLD patients’ gut [53]. Also, 
postbiotics derived from Faecalibacterium species, such as cell wall components, exopolysaccharides and 
SCFAs, exert anti-inflammatory, antioxidant, immunomodulatory, and gut barrier enhancing effects, thus 
indirectly improving MASLD [54]. However, further research is required to establish optimal dosing 
regimens, administration routes, and mechanistic pathways to maximize its therapeutic potential.

Pathways and mechanisms underlying the GM regulation of MASLD
Mechanisms underlying the direct role of GM in MASLD

Emerging evidence highlights that GM is a pivotal modulator in the pathogenesis and advancement of 
MASLD [55]. This microbial consortium exerts direct regulatory effects on host physiology through multiple 
interconnected mechanisms: (1) compromising intestinal epithelial integrity through tight junction 
disruption [56]; (2) triggering systemic inflammation via pathogen-associated molecular pattern 
translocation [57]; (3) intensifying redox imbalance through reactive oxygen species (ROS) generation [58]; 
and (4) modifying bile acid enterohepatic circulation [59].

Disrupting intestinal epithelial integrity via tight junctions

GM modulates intestinal permeability through regulation of tight junction complexes (particularly 
occludins and claudins) in epithelial cells, thereby promoting bacterial and metabolite translocation to the 
liver, a process mechanistically linked to MASLD development [60]. Nakajima et al. [61] revealed that 
Porphyromonas gingivalis administration suppresses Tjp-1 and Occludin gene expression, exacerbates GM 
dysbiosis and barrier impairment, which subsequently triggers hepatic inflammatory responses with 
concomitant lipid metabolic dysregulation.
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Triggering systemic inflammation through pathogen-associated molecular pattern translocation

Microbiota-driven immune dysregulation manifests as transcriptional reprogramming of cytokine 
networks, characterized by IL-10 suppression [62] and TNF-α/IL-1β dominance [63], which orchestrates 
intrahepatic inflammasome activation to potentiate MASLD pathobiology. Nakamoto et al. [64] 
demonstrated Klebsiella pneumoniae as a primary driver of PSC-associated dysbiosis, with humanized 
microbiota transfer inducing compartmentalized hepatic Th17 polarization and parenchymal injury 
markers correlating with IL-17A titers. Concurrently, Muñoz et al. [65] established in chemically-induced 
cirrhosis models that microbiota-immune crosstalk disruption directly mediates fibrogenic niche formation 
through STAT3/NF-κB co-activation pathways. Prevotella promotes periodontitis by inducing neutrophil 
recruitment via the Th17 immune response [66]. These findings highlight how alterations in GM abundance 
(including specific bacterial strains) may trigger inflammatory dise. Mechanistic studies revealed GM-TLR4 
synergy in non-hematopoietic hepatic stromal cells as a non-redundant checkpoint for 
hepatocarcinogenesis, with MyD88-dependent signaling constituting > 60% of tumorigenic potential in 
chronic injury milieus [67].

Intensifying redox imbalance with ROS generation

GM-derived oxidative stress exacerbation constitutes a non-canonical pathway in MASLD pathogenesis 
through endotoxin-mediated MASLD oxidase hyperactivation in hepatic macrophages (Kupffer cells), and 
subsequent ROS overproduction exceeding antioxidant defense capacity [68]. Ahmad et al. [69] 
mechanistically demonstrated that dysbiosis-induced microbial translocation elevates circulatory LPS 
levels, triggering TLR4-dependent ROS generation, a key contributor to hepatic lipid peroxidation and 
subsequent TLR-4/NFκB-mediated inflammatory liver injury. Complementary evidence from study [70] 
revealed that rifaximin administration in dietary hepatotoxicity models restores redox homeostasis via 
upregulation of tight junction proteins (TJPs) that reversing microbial translocation, and suppression of 
NOX2-mediated superoxide production, ultimately attenuating F4/80+ macrophage infiltration.

Modifying bile acid enterohepatic circulation

Beyond classical pathways, GM orchestrates bidirectional regulation of MASLD progression through bile 
acid enterohepatic reprogramming. Dysbiosis-induced bile acid metabolism perturbation manifests as 
cytotoxic bile acid accumulation triggering hepatocyte apoptosis via JNK1/caspase-3 activation, and 
suppression of nuclear receptor FXR axis (7α-hydroxylase) that disrupts bile acid homeostasis, forming a 
pathogenic feedback loop [71]. Crucially, bile acid signaling converges on dual metabolic regulators, nuclear 
FXR and membrane-bound TGR5, whose coordinated activation maintains hepatic lipidostasis. MASLD-
associated dysbiosis shifts bile acid pool composition toward FXR/TGR5 antagonistic species, thereby 
impairing β-oxidation capacity and amplifying ROS-mediated mitochondrial dysfunction. Further 
therapeutic validation demonstrates that 3-sucCA-mediated expansion of Akkermansia muciniphila induces 
FGF15/19 hepatic signaling to achieve 58% MASLD amelioration through bile acid-FXR-TGR5 axis 
restoration [72].

Roles of GM metabolites in MASLD

Besides the direct regulation of GM on the gut-liver axis, several GM metabolites have been identified as key 
mediators of microbial influence on hepatic metabolism and function. While beneficial compounds like 
SCFAs alleviate the symptom of MASLD via sustaining lipid metabolism homeostasis and strengthening the 
gut barrier, harmful byproducts, such as endogenous ethanol and TAMO, promote MASLD progression 
through stimulating oxidative stress and inflammatory reactions (Figure 2).

SCFAs

SCFAs are the primary metabolites derived from GM-mediated fermentation of carbohydrates or amino 
acids, which mostly exhibit protective functions for MASLD [73]. SCFAs alleviate metabolic syndrome by 
activating PPARγ-dependent lipid utilization over synthesis, reversing diet-induced obesity and insulin 
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Figure 2. Roles of GM metabolites in MASLD initiation and progression. a) Protective metabolites: 1) SCFAs: Activate 
PPAR-γ→Enhance lipid metabolism homeostasis; 2) SCFAs: Upregulate TJPs→Strengthen gut barrier→Suppress systemic 
inflammation; b) Detrimental metabolites: 1) Ethanol: Induces ROS overproduction→Oxidative stress→Metabolic dysregulation; 
2) TMAO: Activates TLR4/MyD88/NF-κB inflammatory axis→Metabolic dysregulation. SCFAs: short-chain fatty acids; GM: gut 
microbiota; PPAR-γ: peroxisome proliferator-activated receptor γ; TJPs: tight junction proteins; TGF-β: transforming growth 
factor-beta; TNF-α: tumor necrosis factor-alpha; STAT3: signal transducer and activator of transcription 3; ROS: reactive oxygen 
species; TLR4: toll-like receptor 4; TMAO: trimethylamine N-oxide; WNT: wingless / integrated; MASLD: metabolic dysfunction-
associated steatotic liver disease. By Figdraw (ID: TTOYWbbb4b)

resistance through tissue-specific PPARγ modulation in adipose (regulating energy expenditure) and liver 
(reducing steatosis), positioning SCFAs as potential therapeutic PPARγ-targeted agents [74]. Clinical 
investigations by Xiong et al. [75] revealed an inverse correlation between plasma SCFA levels and TNF-α 
concentrations in patients with MASLD, suggesting that SCFA dynamics may serve as biomarkers for 
disease progression. Mechanistically, Yang et al. [76] demonstrated that sodium butyrate dose-dependently 
restored intestinal TJP integrity in 16-week-old db/db mice and ameliorated high glucose-induced barrier 
dysfunction in Caco-2 cell monolayers. Study [77] has shown that consumption of lactucin improves CCl4-
induced hepatic fibrosis in mice via enhancing the levels of acetate and butyrate, further decreasing 
inflammatory responses, and acting on the TGF-β1/STAT3 signaling pathway. Additionally, SCFAs, butyrate 
in particular, play a pivotal role in regulating GM homeostasis. Butyrate improves the pH of the gut and 
feces, which inhibits the growth of potential pathogens and promotes the growth and colonization of 
beneficial bacteria [78].

GM-derived ethanol

Emerging evidence highlights the critical role of GM-derived ethanol in the pathogenesis of MASLD. 
Intestinal bacterial fermentation of carbohydrates generates endogenous ethanol, which has been 
mechanistically linked to hepatic injury through pro-inflammatory signaling activation [79]. Clinical studies 
demonstrate that pediatric MASLD patients exhibit substantially elevated circulating ethanol levels 
compared to healthy controls, suggesting gut-originated ethanol may exacerbate liver pathology by 
modulating inflammatory cascades [27]. Further investigation indicated that MASLD patients displayed 
marked increases in microbiome-derived ethanol within the hepatic portal circulation, and experimental 
models utilizing high-fat diet (HFD)-induced mice revealed that such ethanol exposure potentiates 
oxidative stress through ROS overproduction, thereby compromising intestinal epithelial integrity and 



Explor Dig Dis. 2025;4:100579 | https://doi.org/10.37349/edd.2025.100579 Page 8

facilitating endotoxin translocation [80]. The cumulative evidence establishes a microbiota-ethanol-liver 
axis wherein microbial metabolic activity disrupts both intestinal barrier function and hepatic homeostasis 
through intertwined inflammatory and oxidative pathways.

TMAO

TMAO, a prototypical GM-derived metabolite, contributes to MASLD pathogenesis through dual 
mechanisms involving systemic inflammation and intestinal barrier compromise [81]. Notably, this 
microbial metabolite paradoxically suppresses the cytoprotective WNT/β-catenin pathway, exacerbating 
mucosal vulnerability and disrupting enterocyte homeostasis [82]. It has been revealed that TMAO induces 
structural/functional deterioration of the colonic epithelial barrier while activating pro-inflammatory 
cascades via the TLR4/MyD88/NF-κB axis [83]. These findings establish TMAO as a critical molecular 
mediator linking microbial metabolism to multi-organ dysfunction in MASLD.

Treatment of MASLD in the perspective of GM
Prebiotics and probiotics as therapies for MASLD

Dietary intervention remains the cornerstone therapy for MASLD, necessitating research into gut-liver axis 
optimization through microbial modulation. Current evidence highlights prebiotics and probiotics as key 
targets, demonstrating their therapeutic potential in reshaping GM and mitigating MASLD progression [84] 
(Figure 3a).

Figure 3. Treatment of MASLD from the perspective of GM. a) Effects of prebiotics (inulin and FOS) and probiotics 
(Lactobacillus and Akkermansia) on MASLD treatment; b) Fecal microbial transplantation improves MASLD by correcting GM 
dysbiosis; c) Effects of medicines on MASLD treatment; d) HiAlcKpn-targeted bacteriophages attenuate steatohepatitis via 
multi-omics remodeling. MASLD: metabolic dysfunction-associated steatotic liver disease; GM: gut microbiota; FOS: 
fructooligofructose; TCM: traditional Chinese medicine; CSP: chaihu shugan powder; ECD: erchen decoction; PAC: 
phenylacetylcarnitine; PAG: phenylacetylglutamine; PPARγ: peroxisome proliferator-activated receptor γ; SCD1: stearoyl-CoA 
desaturase 1. By Figdraw (ID: AARIWbb556)
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Prebiotics

Prebiotics, defined as “selectively utilized substrates that confer health benefits through host microbiota 
modulation”, represent indigestible food components that bypass human digestion. While humans lack 
enzymatic capacity to process polysaccharides/oligosaccharides, GM metabolize these compounds, thereby 
regulating microbial composition and functionality [85]. Prebiotics are pharmacologically classified into 
three bioactive categories: non-digestible carbohydrates [fructooligofructose (FOS), inulin, 
galactooligosaccharides, xylooligosaccharides], phenolic compounds (catechins, proanthocyanidins), and 
functional derivatives (resistant starch, lactulose) [86, 87]. Current research prioritizes inulin and FOS due 
to their demonstrated bifidogenic effects.

Inulin demonstrates preventive and therapeutic effects against MASLD primarily through intestinal 
flora modulation, which enriches beneficial gut bacteria (e.g., Bifidobacterium and Lactobacillus) and 
enhances SCFAs production [88]. These SCFAs reduce intestinal pH to suppress harmful bacteria, energize 
gut cells, and regulate systemic metabolism [89]. Mechanistically, inulin lowers hepatic triglycerides and 
improves lipid metabolism, while boosting SCFA-mediated glucagon-like peptide-1 (GLP-1) activation to 
enhance insulin sensitivity, thereby alleviating glucose dysregulation and hepatic lipid accumulation [90, 
91]. Its anti-inflammatory properties involve reducing TNF-α/IL-6 levels via AMPK signaling and 
modulating macrophage polarization (M1 inhibition/M2 promotion) through SCFAs, collectively mitigating 
liver inflammation [92, 93]. These integrated mechanisms highlight inulin’s potential for MASLD 
management (Table 2).

Table 2. The mechanisms and clinical status of microbical intervention for MASLD

Microbial interventions Mechanism Clinical status Refs

Inulin Enriches beneficial gut 
bacteria.

•

Enhances SCFAs production.•
Improves insulin sensitivity.•
Mitigates liver inflammation.•

Inulin reduces hepatic triglycerides, enhances lipid 
metabolism, and demonstrates therapeutic potential.

[88–
93]

Fructooligofructose 
(FOS)

Enriches beneficial bacteria 
and suppress harmful species.

•

Alleviates liver inflammation.•
Strengthens intestinal barrier 
function.

•

Mitigates metabolic disorders.•

FOS serve as prebiotic supplements in food, 
nutraceuticals, and pharmaceuticals.

[94–
97]

Lactobacillus Modulates lipid metabolism.•
Exerts anti-inflammatory 
effects.

•

Enhances gut barrier function.•
Prevents hepatocellular 
carcinoma (HCC).

•

Lactobacillus demonstrates clinical significance as a 
probiotic and therapeutic potential for MASLD 
management.

[103–
107]

Akkermansia Secretes metabolites (SCFAs 
and GLP-1).

•

Modulates immune responses.•
Reprograms metabolic 
pathways.

•

Akkermansia emerges as a next-generation probiotic 
candidate with therapeutic potential for MASLD and 
associated metabolic syndromes.

[108–
112]

Fecal microbial 
transplantation (FMT)

Targets dysregulated gut 
microbiota-hepatic metabolism 
interplay.

•

Mediates effects through 
correcting gut dysbiosis.

•

FMT induces significant microbial composition 
alterations; long-term consequences remain 
understudied, necessitating longitudinal risk-benefit 
evaluation.

[115–
120]

Traditional Chinese 
medicine (TCM)

Restructures microbiota and 
improve metabolism.

•

Restores intestinal barriers and 
protect hepatocytes.

•

Reprograms anti-inflammatory 
pathways.

•

TCM’s “multi-component, multi-target” mechanisms 
exhibit high complexity; advanced omics technologies 
are required for mechanistic insights.

[121–
125]



Explor Dig Dis. 2025;4:100579 | https://doi.org/10.37349/edd.2025.100579 Page 10

Table 2. The mechanisms and clinical status of microbical intervention for MASLD (continued)

Microbial interventions Mechanism Clinical status Refs

Statins Alleviate lipotoxicity.•
Ameliorate inflammation.•
Address gut barrier 
dysfunction.

•

Statins exhibit multi-modal therapeutic effects. [126–
131]

Bacteriophages Normalize hepatic 
transcriptomic profiles.

•

Reduce pro-inflammatory 
cytokines.

•

Restore lipid/carbohydrate 
metabolic flux.

•

Bacteriophage’s therapy (microbiome-targeted 
intervention): insufficient long-term safety validation.

[130–
134]

MASLD: metabolic dysfunction-associated steatotic liver disease; SCFAs: short-chain fatty acids; GLP-1: glucagon-like peptide-
1

Due to its physiological benefits and safety profile, FOS are widely utilized in food, nutraceuticals, and 
pharmaceuticals as prebiotic supplements. The health-promoting effects of FOS primarily arise from GM 
modulation, including enriching beneficial bacteria (e.g., Bifidobacterium and Lactobacillus) while 
suppressing harmful species (e.g., Bacteroidetes and Clostridium) [94, 95]. In MASLD mice fed a HFD, FOS 
alleviates liver inflammation by decreasing intestinal endotoxin production, and reducing hepatic 
expression of IL-6/IL-1β [96]. Additionally, FOS strengthens intestinal barrier function by upregulating 
TJPs (e.g., Claudin-2/Claudin-4), limiting leakage of harmful substances and subsequent inflammatory 
responses [97]. Through the dual microbial restructuring and barrier reinforcement mechanisms, FOS 
effectively mitigates metabolic disorders by reducing inflammatory damage and optimizing gut-liver 
crosstalk (Table 2).

In addition to inulin and FOS, plant polyphenols such as catechins and proanthocyanidins exhibit multi-
target mechanisms in mitigating MASLD. These compounds scavenge free radicals and suppress NADPH 
oxidase activity, reducing hepatic ROS accumulation, disrupting the oxidative stress-lipid peroxidation 
cycle, and preserving mitochondrial function while inhibiting NLRP3 inflammasome activation [98]. A study 
demonstrated that grape seed proanthocyanidin extract (GSPE) modulates hepatic lipid metabolism 
circadian rhythms by activating BMAL1/CLOCK core clock genes, upregulating the fatty acid β-oxidation 
enzyme CPT1A and suppressing SREBP-1c-mediated lipogenesis [99]. Additionally, catechins regulate GM 
composition, enhance intestinal barrier function, and reduce portal vein LPS levels, thereby inhibiting 
TLR4/NF-κB pathway-driven hepatic inflammation [100]. Their synergistic activation of the Nrf2/ARE and 
PPARα pathways provides molecular targets for precision dietary interventions in MASLD.

Probiotics

Probiotics, defined as “live microorganisms that confer health benefits when administered in adequate 
amounts,” require two operational criteria: viability at consumption and dosage sufficiency. Probiotics 
encompass phylogenetically distinct microbial taxa, primarily classified into: lactic acid bacteria 
(Bifidobacterium, Lactobacillus), Saccharomycetic  fungi (Saccharomyces boulardii ,  Saccharomyces  
cerevisiae), Streptococcus (Streptococcus thermophilus), Bacillus (Bacillus licheniformis, Bacillus subtilis), and 
Enterococcus (Enterococcus faecalis). Emerging genera including Akkermansia and Lactobacillus 
demonstrate intestinal microbiota modulation capacity [101, 102]. Current evidence supports Lactobacillus 
and Akkermansia as predominant genera with clinically validated host-beneficial effects.

L. acidophilus, a clinically significant probiotic, mitigates MASLD through multifaceted mechanisms, 
including lipid modulation, anti-inflammatory action, gut barrier enhancement, and HCC prevention [103]. 
Strain YL01 and its extracellular polysaccharide activate AMPK/ACC signaling to suppress hepatic fat 
synthesis, while strain ATCC4356 downregulates NPC1L1 to inhibit cholesterol uptake and steatosis 
progression [104, 105]. L. acidophilus reduces serum IL-6, IL-1β, and TNF-α levels via Th17/Treg cell 
balance regulation, thereby alleviating liver inflammation [106]. L. acidophilus secretes valerate acid and 
strengthens intestinal integrity, curbing endotoxemia linked to MASLD pathogenesis [107]. Additionally, it 
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blocks MASLD-to-HCC progression through valerate-GPR41/43 receptor interactions [108]. These 
synergistic effects underscore L. acidophilus’ therapeutic potential for MASLD management (Table 2).

A. muciniphila emerges as a therapeutic ally against metabolic disorders like MASLD, via mechanisms 
such as metabolite secretion, immune modulation, and metabolic reprogramming [108]. A. muciniphila 
produces SCFAs that bind GPR41/43 receptors to suppress systemic inflammation and barrier disruption, 
and secretes GLP-1 to enhance glucose homeostasis and mitigate hepatic steatosis [109, 110]. The 
phospholipid components in the bacterium activate TLR2/4 and TLR2/1 heterodimeric pathways to 
maintain mucosal immune balance, while the threonine-tRNA synthase targets macrophage polarization to 
resolve inflammation [111]. A. muciniphila could restore gut epithelial function and microbial structure in 
obesity/T2D, with its abundance inversely correlating to metabolic disease severity [112]. These tripartite 
actions position A. muciniphila as a next-generation probiotic candidate for MASLD and associated 
metabolic syndromes (Table 2).

Although preliminary findings demonstrate therapeutic potential, multicenter randomized controlled 
trials are warranted to validate long-term safety profiles and optimal therapeutic parameters (including 
strain specificity and dosage protocols) of probiotic interventions in MASLD management. Concurrently, 
mechanistic investigations are required to elucidate synergistic therapeutic mechanisms between 
probiotics and lifestyle modifications, particularly nutritional metabolic regulation and exercise-induced 
insulin sensitization [113, 114].

FMT in MASLD therapy

FMT is a therapeutic approach that involves transplanting fecal microbial communities from healthy donors 
into a patient’s intestinal tract to reconstruct gut microbial ecology, thereby restoring gut dysbiosis and 
alleviating associated disorders [115]. FMT represents a cutting-edge therapeutic modality for MASLD 
[116], involving the transfer of processed donor microbiota to reconstitute GM homeostasis. 
Mechanistically grounded in the gut-liver axis theory, this approach targets the dysregulated interplay 
between intestinal microbiota and hepatic metabolic pathways. Preclinical studies demonstrate that FMT 
significantly ameliorates MASLD pathology, primarily mediated through correction of gut dysbiosis [117] 
(Figure 3b). Zhou et al. [118] reported reduced hepatic lipid accumulation and inflammatory markers in 
MASLD model mice following FMT. A multi-omics investigation further elucidated FMT’s multi-target 
mechanisms, revealing its capacity to reshape GM profiles (e.g., increased Faecalibacterium prausnitzii and 
Blautia wexlerae abundance), modulate plasma metabolites including PAC and PAG, and normalize hepatic 
DNA methylation patterns [119]. Clinically, a systematic review and meta-analysis confirmed FMT’s safety 
and efficacy, showing significant improvement in NAFLD-associated metabolic parameters without severe 
adverse events [117]. However, given the multifactorial pathogenesis of MASLD involving the interplay of 
metabolic pathways and GM, FMT may induce profound alterations in microbial composition, yet its long-
term consequences remain poorly characterized, necessitating longitudinal studies to comprehensively 
evaluate its risk-benefit profile [120] (Table 2).

Medicines in MASLD therapy

TCM, a holistic medical system rooted in syndrome differentiation and natural herbal formulations, 
modulates host physiology through multi-target and multi-pathway mechanisms. It emphasizes systemic 
regulation and syndrome differentiation-guided therapeutics, formulating individualized treatment 
protocols based on patients’ clinical manifestations and constitutional characteristics [121]. In the context 
of MASLD, TCM primarily targets the remodeling of GM via tripartite regimens, such as microbial 
restructuring and metabolic improvement, intestinal barrier restoration and hepatoprotection, and anti-
inflammatory reprogramming (Figure 3c and Table 2). For example, berberine restores the 
Firmicutes/Bacteroidetes ratio, enriches Bifidobacterium, and ameliorates serum transaminases (ALT/AST) 
and lipid profiles (reduced TG, LDL-C) in HFD mice [122]. Chaihu Shugan powder (CSP) upregulates 
FXR/PPARγ expression, reduces intestinal permeability and LPS translocation, thereby alleviating hepatic 
steatosis, inflammation, and fibrosis in NAFLD rats [123, 124]. TCM formulations suppress TLR4/NF-κB 
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signaling, downregulate TNF-α, IL-1β, and LPS levels, thereby attenuating hepatic inflammation [125]. 
TCM’s synergistic multi-target effects via the gut-liver axis significantly improve MASLD-related metabolic 
dysregulation and inflammation, with components like Berberine validated by randomized controlled trials 
[122]. However, the complexity of TCM’s “multi-component, multi-target” mechanisms necessitates 
advanced omics technologies (e.g., metabolomics, metagenomics) for deeper mechanistic insights, while 
standardization of herbal formulations remains critical to ensure efficacy consistency and clinical 
reproducibility.

Notably, statins also demonstrate pleiotropic therapeutic effects in MASLD through GM modulation. As 
HMG-CoA reductase inhibitors, their mechanisms include: (1) Microbial restructuring and lipid 
homeostasis: Statins enhance colonization of SCFA-producing genera (Faecalibacterium and Bacteroides), 
which regulate hepatic lipid metabolism via GPCRs, reducing lipotoxicity. Concurrently, suppression of 
Clostridium reduces secondary bile acid synthesis, mitigating bile acid-induced hepatocyte injury and 
cholestatic stress in MASLD [126, 127]. (2) Cholesterol metabolism regulation: By enriching Lactobacillus, 
statins promote intestinal cholesterol excretion and alleviate microbiota-mediated inhibition of the 
FXR/PXR pathway on CYP7A1. This restores cholesterol 7α-hydroxylase activity, accelerating cholesterol-
to-bile acid conversion and reducing hepatic cholesterol accumulation, a key driver of MASLD progression 
[128, 129]. (3) Gut barrier restoration: Statins upregulate mucin-degrading Akkermansia, which enhances 
TJP expression (e.g., Occludin, Zonula occludens-1) and reduces LPS translocation. This alleviates hepatic 
inflammation by suppressing TLR4/NF-κB signaling, a critical pathway in MASLD-related hepatocyte injury 
[130] (Figure 3C and Table 2). These mechanisms collectively target MASLD hallmarks, lipotoxicity, 
inflammation, and gut barrier dysfunction, highlighting statins’ multi-modal therapeutic potential.

Bacteriophages could improve MASLD by controlling harmful bacteria

MASLD pathogenesis is mechanistically linked to gut dysbiosis, with alcohol-hyperproducing Klebsiella 
pneumoniae (HiAlcKpn) identified as a key microbial driver through its portal vein-mediated ethanol 
delivery that directly induces hepatocyte steatosis and lipid dysregulation [131]. Bacteriophage therapy 
emerges as a precision antimicrobial strategy, leveraging taxon-specific lysis to selectively eradicate 
pathobionts like HiAlcKpn while preserving commensal microbiota integrity [132]. Preclinical validation 
demonstrates that HiAlcKpn-targeted bacteriophages attenuate steatohepatitis via multi-omics remodeling, 
such as normalizing hepatic transcriptomic profiles (downregulating lipogenic PPARγ/SCD1), reducing pro-
inflammatory cytokines (IL-6, TNF-α), and restoring lipid/carbohydrate metabolic flux [131] (Figure 3d). 
Human-relevant efficacy is further supported by FMT studies where Enterococcus faecalis-specific phages 
significantly reduced serum ALT levels and hepatic steatosis in humanized mice [133]. Bacteriophages 
therapy, as a novel microbiome-targeted intervention, remains insufficiently validated for long-term safety. 
The precision elimination of specific bacterial taxa by phages may induce gut microbial dysbiosis, 
potentially disrupting host-microbiota metabolic crosstalk and exerting multifaceted impacts on MASLD 
progression. This necessitates longitudinal studies to delineate its clinical risk-benefit equilibrium [134] 
(Table 2).

Conclusions
Emerging evidence establishes GM dysbiosis may be fundamental to drive both the initiation and 
progression of MASLD [18, 55]. Not only do specific microbial taxa directly interact with host systems, but 
their metabolic derivatives also demonstrate pleiotropic effects [14–17]. This dual regulatory capacity 
underscores the imperative to investigate microbial species-specific functions at varying quantitative 
thresholds and combinatorial ratios, positioning GM modulation as a promising therapeutic paradigm for 
MASLD management.

Alterations in microbial diversity exert bidirectional effects on hepatic homeostasis. Beneficial 
modifications may enhance immune competence and suppress pro-inflammatory cascades, whereas 
dysbiosis-induced impairment of intestinal barrier integrity and subsequent gut-liver axis 
hyperpermeability could exacerbate hepatic injury. Based on these insights, probiotics and prebiotics could 
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promote the proliferation of beneficial bacteria, thereby optimizing GM composition and effectively 
mitigating MASLD progression [85–89]. Notably, microbial metabolites, including SCFAs, ethanol, and 
TMAO, modulate disease pathogenesis through metabolic pathway interference [80, 83, 84], establishing a 
critical role for metabolite-targeted interventions.

Moreover, it is worth noting that there are close associations and synonyms effects of GM in 
cardiovascular disorders (CVD) as well,  which is integrally also related to MASLD and 
inflammation/endothelial dysfunction. Meanwhile, there is a close interaction between inflammation and 
endothelial dysfunction. Inflammation is an important cause of endothelial dysfunction, while endothelial 
dysfunction further exacerbates the inflammatory response, creating a vicious cycle. Bartlett et al. [135] 
indicate that oxidative stress in MASLD occurs independently of obesity, and patients with MASLD may 
have an elevated future risk of CVD. Study [136] has shown a specific association between GM metabolites 
and the left ventricular mass index (a marker reflecting CVD), demonstrating that GM and its metabolites 
not only influence MASLD occurrence but are also closely related to cardiovascular disease development. 
Kipp et al. [137] found that the bilirubin reductase bacterial enzyme and its expressing bacterial strains 
elevate plasma bilirubin levels while inhibiting production of the GM-derived secondary metabolite 
urobilin, thereby effectively preventing MASLD and CVD occurrence.

Despite these advances, significant challenges persist. For instance, notable differences have been 
observed in the composition of GM between pediatric and elderly MASLD patients, accompanied by 
variations in the rates of steatosis and fibrosis progression. Similarly, in populations with distinct metabolic 
backgrounds, the progression speed and pathological patterns of MASLD are not entirely consistent. These 
discrepancies indicate that probiotic and prebiotic therapies might not comprehensively address the needs 
of all patient subgroups. Moreover, innovative strategies such as FMT and phage therapy currently remain 
largely confined to preclinical stages in animal models, with unresolved issues concerning differences in 
drug metabolism and the complex interplay of multiple factors when translating to human applications. In 
clinical practice, rigorous control over donor-recipient matching, routes of administration, and treatment 
duration is imperative. Therefore, further exploration into the standardized application and personalized 
intervention of these therapies should be emphasized as a critical focus for the future clinical translation 
and nursing practice of MASLD treatments.
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