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Abstract
Yu JW et al. (World J Gastroenterol. 2025;31:105188. DOI: 10.3748/wjg.v31.i16.105188) used male 
Sprague-Dawley rats fed a high-fat diet for 8 weeks to recapitulate metabolic dysfunction-associated 
steatotic liver disease (MASLD) experimentally. MASLD rats were randomized to receive either the 
duodenal mucosal ablation (DMA) using irreversible electroporation (IRE) during laparotomy or sham 
DMA. Data have shown that DMA was associated with duodenal thickening compared to the control group, 
crypts were narrower and shallower crypts and villi slimmer than sham DMA group. Moreover, the DMA 
group exhibited improved liver histology compared to the sham group though accompanied by inconsistent 
variations in blood lipid values and statistically non-significant variations in surrogate indices of MASLD. 
Thirdly, DMA rats had lower serum concentrations of gut hormones with crucial metabolic functions, lower 
lipopolysaccharide serum level, increased duodenal expression and immunofluorescence staining intensity 
of gut hormones expression, and higher expression of zonula occludens-1 and claudin than sham-rats. The 
study by Yu, et al. has innovative findings and is properly designed to illustrate the pathomechanisms 
underlying improved MASLD histology after DMA with IRE. However, this paper also has some 
methodological limitations that prompt additional studies in animal models and, ideally, in humans to be 
conducted as soon as safety and feasibility are demonstrated.
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Background
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty 
liver disease, defines steatotic liver disease (SLD) in the presence of at least one cardiometabolic risk factor 
without any harmful alcohol intake [1]. The MASLD spectrum comprises simple steatosis, metabolic 
dysfunction-associated steatohepatitis [(MASH), previously known as nonalcoholic steatohepatitis (NASH)], 
fibrosis, cirrhosis with or without hepatocellular carcinoma [1, 2]. Collectively, MASLD poses a heavy 
clinical and epidemiological burden against which limited therapeutic strategies are available [2–4]. The 
pathogenesis of MASLD is complex and multi-factorial, with various noxious stimuli interacting in parallel 
to contribute to liver injury in the context of systemic metabolic dysfunction [5]. Among such noxious 
stimuli, type 2 diabetes (T2D) plays a major role given that T2D facilitates development and progression of 
MASLD and that MASLD, in turn, worsens glucose homeostasis [6]. Therefore, MASLD is a systemic 
condition and requires a holistic approach [4, 7]. Sex differences and liver fibrosis are major determinants 
of the whole spectrum of hepatic and extrahepatic manifestations of MASLD [4, 8, 9], accounting for the 
importance in this field of sex-specific analysis of data and of animal models faithfully recapitulating 
fibrosing disease such as seen in human disease.

Various organs comprising not only the liver but several extrahepatic organs such as the pancreas and 
the adipose tissue, kidneys, the skeletal muscle, and duodenum regulate metabolic physiology and 
participate in the development of systemic metabolic dysregulation. Among these, the duodenum is not 
universally appreciated as a key metabolic organ. Instead, several lines of evidence fully support its role in 
the physiopathology of metabolism. Evidence has shown that prolonged fasting will induce atrophy of 
duodenal mucosa with severe ultrastructural changes in a proportion of cases [10] and that, conversely, 
obesogenic diets rich in simple sugars and lipids will promote hyperplastic changes of proximal small 
bowel mucosa in rodents associated with fewer enteroendocrine cells [11].

Figure 1 summarizes the role of duodenum in the regulation of insulin sensitivity and development of 
metabolic dysfunction [12].

Figure 1. Metabolic role of duodenum. Duodenal mucosa regulates insulin sensitivity through its secreted hormones 
cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1) that govern satiety as well as the release of pancreatic hormones 
directly or per vagal route. Similarly, the glucose-dependent insulinotropic peptide (GIP) increases the secretion of insulin and 
glucagon and decreases the hepatic glucose output (HGO). Additional mechanisms potentially involved in down-regulation of 
insulin resistance comprise altered bile acid (BA) response in the post-prandial phase and variations in the composition of the 
intestinal microbiota. Finally, metabolic dysfunction in type 2 diabetes and other conditions is associated with a marked increase 
in the intestinal transporters sodium-glucose co-transporter-1 (SGLT1), glucose transporter 2 (GLUT-2), and glucose transporter 
5 (GLUT-5) which will potentially result in increased nutrient absorption and ongoing metabolic dysfunction. Original illustration 
provided by or modified from Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/)
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Collectively, these findings provide the rationale for manipulating the duodenal mucosa to modify the 
absorption of nutrients in the context of metabolic disorders [12]. Various surgical and endoscopic 
approaches may be used to this end [13–15].

With this intriguing backset, next, we summarize and comment on a recent study by Yu et al. [16] by 
pinpointing novel findings, and highlighting points of strength and methodological limitations of this 
investigation.

Summary of the study
Yu et al. [16] utilized male Sprague-Dawley rats fed a high-fat diet for 8 weeks to recapitulate MASLD 
experimentally. MASLD rats were randomly categorized into the Duodenal mucosal ablation (DMA group, 
n = 6) and the sham-control group (non-DMA group, n = 6). DMA was carried out using irreversible 
electroporation (IRE) obtained with a three-electrode ablation catheter (diameter: 2.5 mm) ending with a 
temperature sensor, and a square-wave pulse generator to generate a burst of electric pulses. The ablation 
catheter was positioned intraduodenally through pylorus. After the duodenum was ablated, the electrode 
catheter was withdrawn, and the abdominal incision was sutured. Postoperatively, rats were injected with 
buprenorphine and cefuroxime intraperitoneally and sacrificed after 2 weeks.

Three principal lines of results were documented after DMA.

Firstly, as regards the duodenum, 2 weeks after DMA, the duodenal mucosa was macroscopically 
healed both macroscopically and histologically, without any inflammatory, ulcerative, or stenosing 
complications. Moreover, although DMA was associated with significant thickening of each duodenal layer 
compared to the control group (P < 0.05), crypts were significantly narrower and shallower crypts and villi 
significantly slimmer (P < 0.05 for all comparisons) vs. non-DMA group.

Secondly, while the sham group exhibited SLD, with lipid droplets of different sizes and disorganized 
hepatocyte structure, liver histology was significantly improved in the DMA group. However, these 
histological improvements were accompanied by inconsistent variations in blood lipid values (serum total 
cholesterol and low-density-lipoprotein cholesterol being significantly lower whereas serum triglycerides, 
free fatty acids, and high-density-lipoprotein cholesterol were higher in the DMA than in the sham-control 
group) and statistically non-significant variations in surrogate indices of MASLD such as transaminases and 
total bile acids.

Thirdly, the DMA group exhibited significantly lower serum concentrations of gut hormones [glucagon-
like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (CCK)] 
with crucial metabolic functions (e.g., intake and absorption of nutrients, regulation of glucose homeostasis, 
secretion of pancreatic juice, and gastric and gallbladder emptying) than those in the control group (P < 
0.05). Moreover, the DMA animals had significantly lower lipopolysaccharide serum levels and significantly 
increased duodenal expression and immunofluorescence staining intensity of GLP-1, GIP, and CCK, and 
higher expression of zonula occludens-1, and claudin than in the sham-control group. Collectively, these 
findings suggest decreased intestinal permeability after DMA.

Novel findings in the context of MASLD treatment
In humans, individuals with T2D, the prototypic metabolic disorder, which is often associated with obesity, 
have jejunal mucosa hypertrophy, hyperplasia of enteroendocrine cells, and increased numbers of 
enteroendocrine cells and enterocytes compared to nondiabetic individuals; moreover, variations in 
glucose transporters, enteric nerves, and intestinal microbiota composition have also been reported [12]. 
Clinically, the best-studied endoscopic procedure is duodenal mucosa resurfacing (DMR) which is based on 
the principle that resurfacing the mucosal interface after endoscopic resection will reset and correct any 
abnormal signaling from the duodenal mucosa and will, therefore, result in improved pancreatic endocrine 
function and glucose tolerance owing to restored normal mucosa surface [12]. The endoscopic procedure of 
DMR is safe and well tolerated. However, additional studies are needed to demonstrate its validity 
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irrespective of concurrently administered antidiabetic medications to obtain the reversal of T2D and 
improvement in liver histology [12]. MASLD is tightly and bi-directionally associated with T2D and it is 
therefore logical to speculate that DMR may also be useful in MASLD treatment irrespective of how it is 
implemented, namely with thermal ablation or with IRE.

Strengths and limitations
The study by Yu et al. [16] has innovative findings regarding the safety and effectiveness of DMA with IRE to 
contrast MASLD in an experimental rat model. This is a conceptually intriguing and potentially clinically 
relevant research avenue. Moreover, the study by Yu et al. [16] is properly designed to illustrate the 
changes in gut hormones and intestinal permeability underlying this improved liver histology. However, 
this paper also has some methodological limitations that prompt additional studies.

One fundamental research question is whether (and to what extent) murine MASLD models faithfully 
recapitulate human disease. It is now clear that these models rarely show MASH with significant fibrosis (≥ 
F2), which typically requires protracted observations, diets including high cholesterol content, and, often, 
also the use of genetically engineered animals [17]. Furthermore, in the study by Yu et al. [16] only male 
animals have been used, which conflicts with recommendations to characterize sex differences in MASLD 
pathobiology and treatment [18].

Additionally, no information is provided regarding the temperature of the housing. This is important 
given that thermoneutral housing (i.e., a temperature where mice do not need to expend energy to maintain 
their core body temperature) exacerbates MASLD in mouse models, leading to more severe liver histology 
and even enabling female mice to develop obesity and MASLD [19].

It is also pinpointed that the procedure of DMA with IRE reported by Yu et al. [16] is extremely invasive 
which raises ethical concerns pertaining to the causation of unnecessary suffering to animals. Moreover, the 
surgical procedure involves the utilization of drugs (e.g., antibiotics and analgesics) which may potentially 
alter the physiology of the gastrointestinal tract by modifying the eating habits of rats owing to satiety, 
anorexia, vomiting, and potentially altering intestinal microbiota diversity in these animals.

Research agenda
All these limitations may be overcome by using animal models in which DMA with IRE may be performed 
endoscopically [20]. However, considering the many limitations in MASLD animal models, it will be 
important to study endoscopic IRE in humans as soon as sufficient evidence of safety and feasibility is 
obtained in preliminary studies.
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