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To the Editor,

In their recent review on metabolic dysfunction-associated steatotic liver disease (MASLD), Habib and 
Johnson [1] provide an overview of the condition’s risk factors and complex pathophysiological processes.

In this regard, Helicobacter pylori infection (Hp-I), affecting over 4.4 billion people worldwide is 
connected with the high global burden of metabolic syndrome (MetS). Both disorders contribute to the 
pathogenesis of MASLD by various mechanisms [2]. Clinical studies, using the histological diagnostic “gold 
standard” for active Hp-I and MASLD, confirmed that active Hp-I was independently connected with MASLD 
severity in morbidly obese patients undergoing bariatric surgery [3]. This connection was evident in 
patients with MetS-related components, including insulin resistance (IR), dyslipidemia, and arterial 
hypertension [3]. Robust comparable results were also reported by additional small- and large-scale clinical 
data, signifying that eradicating Hp-I may contribute to a reduction in metabolic indices and the risk of 
developing MASLD [4].

Several pathophysiological mechanisms appear to explain this connection between Hp-I and MASLD. 
One key pathway relates to the ability of Hp-I to promote IR. Chronic infection induces proinflammatory 
cytokines [interleukin (IL)-1, IL-6, tumor necrosis factor-alpha] and plasminogen activator inhibitor-1 (PAI-
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1), all of which contribute to IR and its negative downstream consequences in the liver [5]. In this context, 
prolonged IR supports ectopic fat deposition, propagates oxidative stress, and promotes hepatic steatosis. 
Dyslipidemia triggered by Hp-related inflammatory cascades may further aggravate hepatic fat 
accumulation.

Research on the impact of Hp-I on adipokines and novel biomarkers adds another dimension to this 
setting. High leptin levels are linked with severe MAFLD, whereas MetS-related adiponectin improves liver 
histology in MAFLD [6]. In addition, studies have shown an association between Hp-I and elevated serum 
fetuin A, a glycoprotein involved in transporting free fatty acids. Increased fetuin A levels are connected not 
only with IR but also with the progression of MASLD, suggesting that fetuin A could be an underrecognized 
player in linking Hp to the metabolic dysfunction that characterizes MASLD. Likewise, the overexpression of 
galectin-3 associated with both Hp-I and MetS-related inflammation may amplify fibrogenic activity and 
worsen disease severity.

Systemic hypertension and hyperhomocysteinemia in the context of Hp-I and MetS have also been 
described, potentially indicating a broader atherogenic state that promotes hepatic injury, MASLD-related 
cardiovascular complications [6], and neurodegenerative diseases, such as Alzheimer’s disease (AD) [7]. In 
this respect, hyperhomocysteinemia is an increased risk factor for MASLD [8], and MASLD is linked with 
cardiovascular disease (CVD) [9]. There is an association between Hp-I and MetS-related parameters and 
CVD. For instance, myocardial infarction (MI), a potentially lethal CVD event, is strongly associated with 
MetS, and Hp is a risk factor for acute coronary syndrome including MI [10]. There is a potential connection 
between Hp-related CagA and MI, with the likelihood of MI being twice as high in Hp-positive individuals. 
Similarly, MetS, a key risk factor for MI, more than doubles the risk of adverse CVD events, while recovery 
from MetS significantly reduces the risk of major cardiovascular events, including MI. Additionally, Hp-I is 
considered a risk factor for atrial fibrillation (AF) [11], and there is a bidirectional association between Hp-I 
and MetS-related AF and MI; the incidence of MI is approximately 50% higher in patients with AF.

Hp-I and MetS-related galectin-3, and gut dysbiosis are also involved in the pathophysiology of CVD 
and its adverse outcomes [11]. Likewise, Hp-I and MetS are strongly connected with activation of mast cells 
(MC) [12], involved in the pathogenesis of CVD [13].

Moreover, MASLD is an independent risk factor for AD [14]. MASLD-related hyperhomocysteinemia 
plays a significant role in the pathophysiology of mild cognitive impairment, a strong predictor of AD 
progression [15]. This condition contributes to the AD pathway by triggering amyloid beta (Aβ) and tau 
pathologies, along with synaptic dysfunction, neuroinflammation, and memory decline, highlighting a 
potential therapeutic target for at-risk patients. There is a notable connection between Hp-I and AD-like Aβ 
and phospho-tau pathology, suggesting that Hp eradication may help prevent tauopathy. Additionally, Hp is 
an independent risk factor for long-term AF [11], which, beyond its association with MASLD [16], is also 
strongly linked to AD and cognitive decline. Thus, eliminating Hp may lower the risk of AF-related AD, 
warranting further investigation.

Hp is also associated with galectin-3, a key factor in the severity of MASLD [17] and a marker of 
memory loss and AD progression. Galectin-3 inhibitors suppress microglial activation, presenting a 
promising therapeutic target for neurodegenerative diseases, including AD.

Moreover, Hp induced gut dysbiosis contributes to the pathophysiology of MASLD [11, 18] and AD by 
driving neuroinflammation and disease progression. Therapeutic interventions including probiotics, 
prebiotics, synbiotics, and fecal microbiota transplantation display potential benefits in managing MASLD 
[19] and AD.

Hp eradication has a beneficial impact on patients with AD, potentially improving their long-term 
survival [20]. Furthermore, clinical evidence points to the role of the mentioned MC activation in the 
progression of MASLD, and heightened MC activity has been reported in both Hp-I and MetS. Inhibition of 
MC activation or Hp eradication could produce benefits for patients at increased risk of advanced liver 
disease and systemic disorders. These potential mechanisms illustrate the broad inflammatory and 
metabolic consequences of Hp-I and indicate that further research is warranted to clarify the precise 
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pathogenic interactions. Confirmatory large-scale and prospective studies are needed to determine 
whether eradicating Hp-I could serve as a practical adjunct strategy in preventing MASLD progression or its 
cardiovascular and neurodegenerative risks.

In conclusion, accumulating evidence suggests that Hp-I may amplify MetS components such as IR and 
dyslipidemia, both of which lie at the core of MASLD pathogenesis and its complications including CVD and 
neurodegeneration. Recognition of Hp-I as a contributing factor to MASLD underscores the necessity to 
explore targeted research on whether eradication of Hp—in appropriate clinical settings—may alter the 
disease’s natural history. Enhanced understanding of these complex pathways could eventually guide 
strategies for risk stratification and management in MASLD and its systemic complications.
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