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Abstract
It is generally accepted that eradication of Helicobacter pylori (H. pylori) infection may reduce the risk of the 
development of gastric cancer. Recommendations for global generalized tests and treat all individuals 
detected positive for H. pylori infection are currently proposed. However, the bacterium is commensal and 
harmless for the vast majority of the infected population. Moreover, eradication may have detrimental 
consequences in several groups of patients. In the present review, the current epidemiological data and 
recommendations for eradication in connection with the possible beneficial effects of the colonization with 
H. pylori in diseases such as asthma and allergies or chronic gastro-intestinal disorders such as 
inflammatory bowel disease and Barrett’ esophagus are presented the problems with increasing antibiotic 
resistance were also examined. Specific groups of patients where eradication of H. pylori may be necessary 
and endoscopic surveillance is advised were identified. Finally, based on the paradox of high H. pylori 
prevalence and low gastric risk as reported for areas of Africa, Asia, South America, and Greece, alternatives 
that may replace the widespread eradication of H. pylori with equal if not better results and more prudent 
use of the available financial resources are proposed. Mediterranean diets and alcohol and smoking 
reduction are among the well documented alternatives.
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Introduction
Gastric cancer (GC) remains one of the leading causes of cancer death worldwide, despite the considerable 
decline in developed countries. Eradication of Helicobacter pylori (H. pylori), a class 1 human carcinogen, 
has been strongly recommended as an efficient and cost-effective policy to reduce the risk of GC among 
asymptomatic individuals by establishing population-based test-and-treat programs. The damage of the 
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gastric epithelium caused by H. pylori may evolve to gastric adenocarcinoma. Corpus atrophy, intestinal 
metaplasia (IM), and mucosal dysplasia are considered as pre-neoplastic lesions and are associated with H. 
pylori colonization. However, the different levels of GC risk and different clinical situations are unclear. 
New, updated data on the global epidemiology of H. pylori infection and GC are accumulated and there is a 
strong concern that target populations should be identified and treated instead of the universal eradication. 
There is a need for eradication confirmatory tests including identification of individuals for endoscopy and 
endoscopic surveillance. However, the extensive use of antibiotics for eradication of H. pylori has raised 
concerns, and the possible harmful consequences after eradication have also been expressed.

The purpose therefore, of this review was to present recent data on the relation of H. pylori with GC and 
the current recommendations of eradication. More importantly, we analyzed the arguments against the 
widespread global eradication programs and proposed the groups that may be benefited from H. pylori 
eradication. Moreover, an alternative approach to GC prevention was presented.

An overview of H. pylori epidemiology and pathogenesis
H. pylori is a gram-negative, spiral-shaped bacterium belonging to the Proteobacteria, order Campylobac-
terales, family Helicobacteriaceae.

Epidemiological data

Its extensive prevalence in the general population reaching up to 80% is characterized by geographical 
distribution and the socio-economic status of the population [1]. Prevalence of H. pylori infection is 
decreasing not only in developed countries but also in the Russian Federation where a prevalence of 78% 
was reported in 2017 [2] and only 40% in a recent publication [3]. High H. pylori prevalence was found in 
countries of Latin America. In Chile, high prevalence was identified in newborns during the first month after 
birth. In Canada, the indigenous populations in the Arctic were found to have higher infection rates 
compared to non-indigenous inhabitants [4]. The same was true in the city of Amsterdam, in the 
Netherlands. Ethnic minority groups were significantly more infected with H. pylori compared to the 
indigenous Dutch population [5].

Large geographical variance in prevalence was reported in a meta-analysis with data from 62 
countries. The highest pooled prevalence of 70% was found in Africa and the lowest of 24.4% in Oceania. 
Among countries, the lowest prevalence of 18.9% was found in Switzerland and a very high 87.7% was 
reported for Nigeria. Based on these findings, it was estimated that almost 4.4 billion individuals were 
infected by H. pylori. The global prevalence in adults has declined from an overall 50–55% to a recent 43%. 
However, this is not the case in Asia, Latin America, and the Caribbean [2, 6, 7].

It is generally accepted that H. pylori infection is a life-long event, when individuals are infected. 
However, spontaneous clearance of 15.5% was reported in children during a 20-year follow-up. 
Interestingly, strain concordance was detected in 56% between mother and offspring and 0% between 
father and offspring [8–10].

The most serious problem with H. pylori infection is the association with the development of GC. Non-
cardia adenocarcinomas have been linked to H. pylori with a very high odds ratio (OR) up to 21.0 [11]. In 
general, H. pylori is estimated to be associated with 36.8% of GCs out of the 2.2 million cancers linked to 
infections. In 2018, 89% of the 850,000 cases of non-cardia GC cases and 73% of non-Hodgkin gastric 
lymphomas were associated with H. pylori infections [12]. A recent meta-analysis [13] reported data from 
32 countries on the prevalence of GC in H. pylori-positive patients. The highest prevalence was observed in 
America (18.06%) and the lowest in Africa (9.52%). Among countries, Japan had the highest pooled 
prevalence (90.90%) whereas in Sweden the lowest prevalence (0.07%) was observed. The overall risk of 
GC development from birth to old age is 1.87% in males and 0.79% in females while the incidence for GC 
have considerably decreased over the last 75 years. However, the mortality remains high in countries such 
as Japan, China, and Chile [14]. Environmental and genetic factors also modify the lifetime risk of GC [6, 15–
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17]. Genetic factors, housing conditions, and dietary habits may be responsible for the increased risks in 
East Asian populations [18–20].

A global average annual percentage reduction of 2.1% has been reported. The incidence rates of GC are 
expected to constantly decline through 2030 in most countries except Ecuador and Lithuania [21]. It should 
be noted however, that even in countries such as the UK where GC is not a major problem any more, it is 
one of the leading causes of cancer-associated death [22, 23].

Pathogenetic mechanisms in GC development

H. pylori infection is responsible for chronic destruction of the acid-secreting glands of the stomach, 
evolving to atrophic gastritis (AG) and IM [24, 25]. However, only 2–3% of infected patients develop GC, 
and 0.1% will develop mucosa-associated lymphoid tissue (MALT) lymphoma [26, 27]. Most investigators 
accept that there is a point of no return during gastric carcinogenesis independent of H. pylori status. This is 
reported to be associated with IM and dysplasia [28]. The penetration of H. pylori penetration into the 
epithelial mucus layer activates the phagocytic cells macrophage and neutrophils of the mucosa. They 
produce reactive oxygen species (ROS) and nitric oxide (NO) to defend against the invaders [29]. However, 
all H. pylori strains are capable of detoxifying ROS, producing catalase and superoxide dismutase. And 
arginase that reduces NO production [30]. In addition, the bacterial survival is increased by inducing 
mitochondria-dependent apoptosis of macrophages.

It has been suggested that certain strains of H. pylori are more dangerous than others to initiate GC. 
These strains are producing proteins such as vacuolating cytotoxin A (VacA) and cytotoxin-associated gene 
A (CagA) [11, 31, 32]. The effects of VacA on cells include induction of vacuoles, induction of apoptotic cell 
death, induction of autophagy, and effects on several immune cells [33]. CagA on the other hand, has a 
direct oncogenic effect leading to AG and GC [34, 35]. CagA is responsible for aberrant activation of several 
oncogenic proteins such as rat sarcoma protein (Ras), β-catenin, phosphatidylinositol 3-kinase (PI3K), and 
others [36] triggering thus the oncogenic stress response (OSR). One of the central regulators of the OSR is 
the ADP-ribosylation factor (ARF) protein. ARF protein induces apoptosis and permanent cell cycle arrest 
by increasing stability and activation of p53 protein [37, 38]. Ubiquitin ligases such as apoptosis regulatory 
protein Siva (SIVA1) that controls ARF protein degradation is inhibited by H. pylori [39, 40]. Interestingly, 
in contrast to VacA, CagA inhibits apoptosis activating several antiapoptotic pathways. Importantly, CagA 
impairs the antiapoptotic activity of the tumor suppressor factor p53 through degradation of the p53 
protein [38, 41]. CagA phosphorylation also regulates the degradation of ARF tumor suppressor (p14ARF).

Additional proteins that increase the risk of GC development, are the outer membrane proteins (OMPs) 
such as the blood-group antigen-binding adhesin (BabA) and the outer inflammatory protein A (OipA). 
BabA binds to epitopes that increase production of cytokines involved in cell proliferation. OipA activates β-
catenin and the PI3K-protein kinase B (AKT) signaling pathway [20, 42].

An additional mechanism of H. pylori pathogenicity is the release of outer membrane vesicles (OMVs) 
by certain strains, consisting of a variety of cellular constituents. OMVs, may be either harmful or defensive 
[43]. OMVs from H. pylori induce the secretion of interleukin-8 (IL-8) by gastric epithelial cells and activate 
the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein 
kinase (MAPK), and extracellular signal-regulated kinase (ERK) pathways, modulating thus cell 
proliferation and cancer initiation [44]. This hypothesis was supported by the finding that the presence of 
OMVs is significantly increased in the gastric juice of GC patients compared to normal controls [45]. The 
biologically active compounds of OMVs also, promote apoptosis of gastric epithelial and immunocompetent 
cells such as macrophages [46]. Furthermore, H. pylori-induced oxidative stress activates the intrinsic 
pathway of apoptosis leading to cell death. As mentioned before, VacA also promotes apoptosis. Thus, 
excessive apoptosis will result in cell mass loss, as observed in gastric ulcers [47] being therefore the 
background of the association of H. pylori with peptic ulceration.

Additionally, H. pylori activates the innate immune response. At the initial stages of the infection H. 
pylori releases several pathogens associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) 
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and flagellin that are recognized by several innate pattern recognition receptors (PRRs). H. pylori PAMPs 
are weak activators of the host receptors allowing a chronic infection. Some other PAMPs such as ADP-
heptose, nucleic acids, and OMVs are not yet fully studied in detail [48].

Apoptosis inhibition is an important element in carcinogenesis. Equally important is the process of 
autophagy. Autophagy is a survival mechanism at the initial stages of cellular insult. Autophagy 
polymorphisms were associated with GC in Chinese patients, and 28 autophagy related genes (ATGs) were 
down-regulated in H. pylori-infected gastric cells. The presence of the ATG16L1 rs2241880 increased the 
risk of GC while the presence of the immunity-related GTPase M (IRGM) rs4958847 decreased the GC risk 
[49]. The ATG16L1 rs2241880 G-allele is associated with the progression of gastric premalignant lesions 
and cancer possibly due to the modulation of H. pylori-induced endoplasmic reticulum (ER) stress [50–52]. 
Experimental evidence suggests that at the initial stages of H. pylori infection autophagy regulation is 
different during evolution of the infection [53, 54]. It has been shown that during the acute infection, 
autophagy is initiated through secretion of VacA and in turn degrades VacA and CagA. However, at the 
chronic stage VacA and CagA restrict autophagy inhibiting their degradation, and increasing the damage of 
the epithelial cells [55].

Arguments in favor of H. pylori eradication and GC
Multidrug resistant H. pylori strains are constantly emerging worldwide [56, 57]. Therefore, it is important 
to demonstrate to what extent GC can be prevented by H. pylori eradication. Many studies have addressed 
this point.

In a recent meta-analysis [58], there was evidence that eradication of H. pylori reduces the incidence of 
GC and death rates from GC in otherwise healthy asymptomatic individuals, but there was no adequate 
evidence to indicate a reduction in all-cause mortality. No extrapolation to other populations can be made, 
since six out of seven trials were conducted in Asian populations. A further meta-analysis from the same 
group included data from 10 randomized trials with more than 8,000 H. pylori-infected patients. It was 
calculated that over 8 million disability-adjusted life-years were gained after H. pylori eradication. Moderate 
evidence suggested that eradication reduced the incidence of GC and GC-related mortality in East Asia [59]. 
These findings were corroborated by an additional meta-analysis from the same area [60, 61]. Treatment 
for H. pylori infection should be attempted after endoscopic resection of early GC to prevent metachronous 
GC [62, 63]. This has been verified by a recent meta-analysis where the occurrence of metachronous GC 
after H. pylori eradication was similar to an H. pylori-negative group [64].

One of the problems facing the eradication regimens in the prevention of GC is that most studies are 
either retrospective or meta-analyses. A prospective, randomized controlled trial from Korea on 
participants with a first-degree relative with GC showed that H. pylori eradication resulted in a 55% 
reduction in GC appearance. When eradication failed a 27% higher risk of GC was found [65].

Treatment of H. pylori infection in AG

Asymptomatic individuals with H. pylori-positive AG are the most important source for Helicobacter 
transmission [66]. According to certain guidelines [67–69], all H. pylori-positive individuals should receive 
eradication treatment including therefore AG positive patients. The rationale is that eradication will reverse 
the atrophic and metaplastic changes and stop the Correa cascade of evolution to the point of no return [61, 
70, 71]. However, GC appears even after successful eradication, leading to a debate for the point of no 
return. The presence of IM is the current point beyond which the eradication strategy may not prevent GC 
compared to earlier stages of the infection [28]. The potential benefits of eradication are probably 
dependent on the degree of atrophic damage already present at the time of eradication [67, 68]. This is 
supported by a recent single-center retrospective study, where diffuse-type GC development was 
associated with the degree of gastric atrophy at the time of the initial diagnosis after a long follow-up (mean 
7.1 years). The standardized incidence ratio for diffuse GC was negligible in mild gastric mucosal atrophy 
and 10.9 in moderate atrophy. GC developed more frequently in the second decade of follow-up, suggesting 
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that endoscopic surveillance should be continued for at least 10 years after H. pylori eradication in high-risk 
areas [72].

The reversibility of AG after H. pylori eradication is still debatable [73]. The most objective way to 
answer the question requires histological confirmation preferably by using the histological staging systems 
of operative link for gastritis assessment (OLGA) and operative link for gastric IM assessment (OLGIM) [74, 
75]. Endoscopic scoring systems such as the proposed by Kimura and Takemoto can be used, but they 
require considerable experience and cannot substitute for histological confirmation [76]. A recent meta-
analysis of 12 studies showed that eradication improved AG in the corpus but not in the antrum. Moreover, 
there was no evidence for a significant resolution of IM either in the corpus or in the antrum [77]. Two 
other meta-analyses reported significant improvement of gastric atrophy after eradication, but no 
improvement of IM [28, 78]. Controversial results were obtained in a long-term follow-up study where IM 
in the antrum and corpus improved after successful eradication [79]. A very recent study with 69 
participants from arctic territories of Canada reported that compared to baseline precancerous gastric 
pathology was substantially lower at follow-up. Eradication of H. pylori led to reduction of severity of active 
and AG. No data on IM is reported in this study [80].

Recurrence after eradication of H. pylori is an important problem in GC prevention. The recurrence rate 
is higher in countries with higher prevalence of H. pylori infection and lower socio-economic conditions [81, 
82]. High recurrence rates were reported in areas such as Alaska, Vietnam, and Bangladesh [83–85]. The 
overall annual recurrence rates after H. pylori treatment, but without mass eradication policies, was 4.3%, 
according to a meta-analysis [81]. There are many reasons for recurrence [81, 82]. Recurrence can be due 
to the reappearance of the original strain or to the reinfection by a different strain [86, 87]. The recurrence 
is also dependent on the pattern of eradication program. In a study without mass eradication, the annual 
recurrence was 7% per person-year [88], but only 1% in the small community in the Matsu Islands, where 
almost 82% of the population participated in the eradication program [89].

An additional problem with H. pylori eradication is the administration of antibiotic-based regimens in 
children as children very rarely suffer serious consequences particularly in the west. The matter is still 
open to debate [90]. An interesting possibility for children is the hypothesis that administration of 
probiotics reduces H. pylori adhesion to gastric epithelial cells and prevents colonization. Further clinical 
trials are needed [91]. Probiotic co-supplementation to antibiotic therapies is reported in several studies in 
adults. A substantial reduction in resistance genes for several antibiotics was reported for Saccharomyces 
boulardii supplementation during H. pylori eradication [92]. Furthermore, a meta-analysis showed that 
probiotic administration increased the H. pylori eradication rate [93]. However, the significance of gut 
microbiota alterations after probiotic administration is not clear. Long-term follow-up studies to clarify 
possible detrimental consequences of the probiotic intervention in H. pylori eradication are required before 
recommendations can be made [94].

The recommendations for testing for the presence of H. pylori are intimately connected to eradication 
recommendations. A Chinese consensus panel suggested screening and eradication in all high-risk 
populations [95]. On similar grounds, it was suggested that test and eradication should be applied to all 
individuals with IM although the suggestion is based on moderate quality of evidence. The authors also 
urge for more widespread availability of antimicrobial susceptibility tests in the United States [96, 97]. 
Patients with peptic ulcers are regularly tested as part of the standard of care recommendations. However, 
nearly 20% of all hospital admissions with bleeding peptic ulcers were not tested for H. pylori particularly 
those who were admitted in an ICU. Failing to test and eradicate resulted in twice as high re-bleeding or 
death rates when compared to tested patients [98].

Symptomatic improvement as a surrogate indication for successful eradication should not be 
advocated and there is a strong recommendation that a non-invasive test should be used particularly in 
those where eradication has been administered for GC prevention [27].
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H. pylori eradication costs

The quality-adjusted life year (QALY) is the quantification of the disease burden including both the quantity 
and quality of life (QoL). However, a number of questions on the interpretation of derived QALY remain 
unresolved [99]. This is particularly true for studies in children where the relative cost-effectiveness (cost 
per QALY gained) in many diseases and populations, should be faced with extreme caution [100]. The 
derivative of the cost divided by QALY gained is called incremental cost effectiveness (ICER). It is also used 
for assessment of the cost of diseases but its use is not without problems [101].

There have been several attempts to estimate the cost of eradication strategies in H. pylori infection. 
Only recent papers were reviewed, as financial situations are changing rapidly over time. A previous 
consensus report has estimated that it would need 125 individuals to be treated to prevent one case of GC 
in countries with high GC incidence. A higher number would be needed in countries with low incidence 
making eradication possibly not necessary in these populations. Yet, the consensus recommendation was in 
favor of the test-and-treat policy [68].

The cost-effectiveness of population-wide eradication strategy has produced controversial results in 
different populations. In Denmark, a country with low incidence of H. pylori prevalence neither 
improvement of QoL nor cost-effectiveness were demonstrated [102]. Markov models from a high 
prevalence country such as China, showed that the population-wide screening was cost-effective in 
prevention of GCs in asymptomatic individuals [103, 104]. As the majority of H. pylori infections is acquired 
during childhood, eradication policies in young adults are now implemented in Japan [105]. A meta-analysis 
based on eight studies reported that the lowest ICER calculated was 1,230 US dollars per life-year gained 
and 1,500 US dollars per QALY. However, the cost-effectiveness analysis was dependent on many factors 
that make direct comparisons difficult [106]. A recent study from China compared the ICERs of three 
treatment strategies, namely the annual, triennial, and five-yearly H. pylori screening, and concluded that 
screening for H. pylori in asymptomatic populations is cost-effective. The significance of the frequency of 
screening was inferior compared to increased participation [107]. In Japan, an eradication strategy was 
more cost-effective compared to endoscopic screening provided acceptance to pay a threshold of 50,000 US 
dollars per QALY gained according to Monte Carlo simulations. They concluded that over a lifetime, an 
eradication strategy, may prevent 4.47 million GC cases, and may save 319,870 lives from GC [108]. In the 
special population of eradicated H. pylori, it was suggested that biennial endoscopy is the cost-effective 
screening for mild to moderate atrophy and annual endoscopy for those with severe atrophy compared to 
no screening [109].

There are two points that should be commented on when costs are concerned. The first is that all 
estimations are based on mathematical Markov models and Monte Carlo simulations. However, acceptable 
these methods may be, they are based nonetheless on many assumptions that may prove to be erroneous in 
real-time evaluations. The second point is that no model has taken into account the consequences of the 
recent SARS-CoV-2 pandemic that crippled many health systems and may have changed spending priorities 
and the willingness to pay thresholds in many countries.

Is H. pylori the only pathogen responsible for GC?
There is evidence that H. pylori may not be the only microbe responsible for the development of GC as 
suggested by the fact that H. pylori is reduced in areas of tumor tissue. [110–112]. The normal gastric 
microbiota has extensive diversity. Proteobacteria, Firmicutes, Actinobacteria, Bacteroides, and 
Fusobacteria are the most prevalent phyla. In H. pylori colonization of the gastric mucosa, the most 
abundant organism, accounting for 40–90% of the gastric microbiota is H. pylori [113]. H. pylori 
colonization interferes with the gastric microbiota and a crosstalk between H. pylori and gastric commensal 
bacteria may be involved in H. pylori-related carcinogenicity [114]. H. pylori inhibits the colonization of 
other bacteria, decreasing the diversity of gastric microbiota. H. pylori-positive individuals have a higher 
abundance of Proteobacteria, while there is a lower abundance of Actinobacteria, Bacteroidetes, and 
Firmicutes [115, 116]. Additionally, some species, such as Stenotrophomonas maltophilia, Chryseobacterium, 
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Pedobacter, Stenotrophomonas, Variovorax, and Pseudomonas stutzeri, have been associated with the 
presence of H. pylori infection [117].

H. pylori is abundant in the gastritis stage, but as the carcinogenesis cascade progresses other 
pathogenic microbial strains predominate. Transgenic mice models showed that more severe gastritis and 
earlier appearance of neoplastic lesions develop in animals with mixed colonization of H. pylori and 
commensal flora, compared to H. pylori infection in germ-free animals [118, 119]. Increased abundance of 
Achromobacter, Citrobacter, Lactobacillus, Clostridium, Rhodococcus, and Phyllobacterium was reported in 
the GC flora [120]. Similarly, abnormalities of the gastric microbiota were identified in a cohort of GC 
patients followed by validation in a second cohort. Increased abundance of Peptostreptococcus stomatis, 
Streptococcus anginosus, Parvimonas micra, Slackia exigua, and Dialister pneumosintes was crucial to the GC 
occurrence [121]. These are strong indications that gastric microbiota is associated with GC pathogenesis.

Clinical approaches of the role of bacteria other than H. pylori have produced diversified results with 
individual bacterial flora possibly influenced by the different populations studied having different dietary 
habits. Thus, gastric biopsies from a high-risk GC area were compared with biopsies from an area with a 25-
fold lower risk of GC in Colombia. The high-risk region patients showed an increased abundance of 
Leptotrichia wadei and Veillonella spp. While Staphylococcus spp. was more increased in the low-risk region 
[122]. Biopsies from GC patients had considerably decreased diversity and overrepresentation of non-
Helicobacter Proteobacteria compared with patients with chronic gastritis only [123]. H. pylori, Prevotella 
copri, and Bacteroides uniformis were less prevalent, whereas Prevotella melaninogenica, Streptococcus 
anginosus, and Propionibacterium acnes were more abundant in the tumor microenvironment [124].

The eradication of H. pylori induces considerable changes in the diversity of the gastric microbiome 
supporting the hypothesis that the presence of H. pylori provides various microbiome changes contributing 
to GC development. An analysis of biopsies taken before and after H. pylori eradication demonstrated that 
Roseburia and Sphingomonas were reduced in patients with persistent inflammation one year after H. pylori 
eradication. Persistent gastric atrophy and IM one year after H. pylori eradication were associated with an 
abundance of oral bacteria including Peptostreptococcus, Streptococcus, Parvimonas, Prevotella, Rothia, and 
Granulicatella [125]. A recent study demonstrated that most phyla were similar between successful and 
failed eradication but the microbial diversity was decreased in the failure group with lower species 
abundance. H. pylori eradication was associated with the presence of Rhodococcus, Lactobacillus, and 
Sphingomonas [126].

Bacteria other than H. pylori have been identified in conditions of hypochloridria with an oncogenic 
potential due to the increased secretion of N-nitroso compounds [127, 128]. Thus, Nitrospirae were found 
in H. pylori-negative patients. Nitrospirae containing nitrite-oxidizing bacteria were present only in the 
gastric mucosa of all patients with GC but not chronic gastritis [129]. A possible role of mycobacteria has 
also been suggested but not clearly proven. Interestingly, Mycoplasma hyorhinis has been shown to activate 
the β-catenin signaling pathway and promote the motility of GC cells a fact that could influence the 
metastatic potential of GC [130].

Profound alterations of the gastric microbiota were also reported in children. Lower gastric bacterial 
diversity and significantly different microbial compositions were demonstrated compared to those without 
H. pylori infection. Decreased abundance of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, 
Gemmatimonadetes, and Verrucomicrobia were significantly decreased in H. pylori infected children. At the 
genus level, Achromobacter, Devosia, Halomonas, Mycobacterium, Pseudomonas, Serratia, Sphingopyxis, and 
Stenotrophomonas were more abundant in the H. pylori-negative group [131, 132].

H. pylori infection is associated with alterations not only of the gastric microbiota, but with changes in 
the gut microbiota as well. They include a decreased abundance of Parasutterella and increased levels of 
Haemophilus and Pseudoflavonifractor. The H. pylori antigen load was negatively correlated with the 
abundance of Bacteroides, Fusicatenibacter, Alistipes, and Barnesiella [133]. The influence of H. pylori is 
direct but in most instances is mediated through drug-based eradication treatments [134].
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Other studies have demonstrated additional alterations in the gut microbiota of H. pylori-infected 
patients. The genus Succinivibrio, and the families Coriobacteriaceae, Enterococcaceae, and Rikenellaceae 
were dominant. Candida glabrata and other unclassified fungi were also found in abundance. It was 
suggested that these H. pylori-associated changes might impair the integrity of the intestinal barrier and 
interfere with the development of colorectal carcinoma [135]. Interestingly, gut microbial vitamin B12 
biosynthesis was significantly lower in H. pylori-positive individuals [136]. A 7 days antibiotic eradication 
regimen disturbed the oral and colonic microbiota that persisted for up to 4 years [137]. A 14 days of 
quadruple eradication treatment reduced diversity for 6 weeks post-treatment [138]. Phylum alterations 
were only transient and lasted for 2–3 months. Transient decrease of Firmicutes, Bacteroidetes, 
Verrucomicrobia, and Lentisphareae, and an increase in Proteobacteria and Cyanobacteria were observed 
[138]. Treatment regimens combined with probiotics reduce the negative effects of antibiotic therapy on 
the gut microbiota [139].

In view of the above evidence several authors have suggested that H. pylori sets the stage of a 
premalignant pathology of AG and IM resulting in H. pylori substitution by a cancer-prone microbiota. 
These later shifts in gastric microbiota composition play an important role in gastric tumorigenesis itself 
[140–144].

Arguments against H. pylori eradication
H. pylori is living with humans over innumerable millennia, and may be a harmless bacterium [145]. It has 
been suggested that this co-evolution may be beneficial for humans, but this is still debatable [114, 146, 
147]. In the previous subsections, we presented the rationale for mass eradication regimes. However, there 
are several reasons for concern including the increasing antibiotic resistance and the relatively unknown 
consequences of gut microbiota alteration [148, 149].

The first problem with eradication is the development of antibiotic resistance that varies in different 
countries. European resistance to clarithromycin is around 20%, to levofloxacin is 11.0–16.3%, and to 
metronidazole may reach 56% [150] with an increase in these numbers in Southern Europe compared to 
the North [151]. In the USA, resistance to clarithromycin is around 10% [152]. The numbers for clarithro-
mycin, metronidazole, and levofloxacin in China and South Korea are estimated at 28.9%, 63.8%, and 
28.0%, respectively [153, 154]. Particularly alarming is the fact that in children in southeast and southwest 
China, the resistance rates were 32.8%, 81.7%, and 22.8% in the southeast and 55%, 71%, and 18% in the 
southwest for the three antibiotics respectively. Double resistance was found in 28.7%, and triple 
resistance in 9.0% of cases [155, 156]. Equally alarming is a study from Jordan, where 82.7% of patients 
had not received a prior treatment for H. pylori eradication. The resistance was 25.9% for clarithromycin, 
50% for metronidazole, and 6.9% for levofloxacin [150]. High resistance to clarithromycin at 23.2% not 
related to gender or age, was also detected in Northern Greece. Common mutations were A2142G and 
A2143G [157]. One of the consequences of increasing resistance is the observed reduction of treatment 
success. It has been suggested therefore, that empiric use of clarithromycin, metronidazole, and 
levofloxacin triple therapies should be abandoned [158].

A second problem with eradication strategies is the effects on microbiota. As mentioned before, the 
current guidelines suggest an unconditional eradication based on the “test-and-treat” strategy [68]. 
However, an alternative attitude has emerged viewing H. pylori as a commensal symbiont [159, 160]. 
Already in 1998, it was proposed that H. pylori can be regarded as part of the commensal flora, acquired 
within the first few years of childhood and retained for a lifetime [159]. In contrast to most other bacteria, 
H. pylori colonization of infants is facilitated by T helper 2 immune response leading to the development of 
immune tolerance [161] as H. pylori is not considered a pathogen by the immune system. This is in concert 
with the fact that α1,2-fucosylated glycans of the gastric epithelium, which normally protect against 
pathogens, help the adhesion of H. pylori and successful colonization [162]. Early colonization of H. pylori 
can have beneficial effects such as the regulation of the hormone leptin and protection against some 
diseases [161, 163]. Moreover, H. pylori may inversely regulate pro-inflammatory or pro-carcinogenic 
bacteria as reported in several studies.
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Therefore, eradication of H. pylori will profoundly change the total microbiota. Indeed, H. pylori 
eradication, apart from the stomach, will additionally modify the intestinal microbiota leading to dysbiosis 
[164]. Dysbiosis after H. pylori eradication may be due to the use of antibiotics or proton pump inhibitors 
(PPIs) or the loss of H. pylori itself [138, 165]. Long-term (≥ 6 months) changes in the gastric microbiota 
after H. pylori eradication have been described. Two studies have shown that eradication led to enrichment 
of the corpus with the pro-inflammatory Acinetobacter and a decrease in microbial diversity of more than 
50% of patients with endoscopic follow-up for > 1 year [125, 166]. Importantly, several bacteria in the 
gastric mucosa such as Actinomyces, Granulicatella, Parvimonas, Peptostreptococcus, Prevotella, Rothia, and 
Streptococcus, originally coming from the oral cavity were related to the precancerous lesions of AG and IM, 
one year after eradication [125, 167]. As mentioned before, short-term changes including reduction of 
Actinobacteria and increase of Proteobacteria and Enterobacteriaceae that returned to baseline levels have 
also been described [114]. Disturbance of microbiota occurs not only with triple antibiotic eradication, but 
also with the bismuth quadruple therapy that may lead to short-term dysbiosis with an increased 
abundance of Proteobacteria and decreased abundance of Bacteroidetes and Actinobacteria [168]. Bismuth 
quadruple eradication was also associated with significant changes in the gut microbiota that did not 
recover 6 weeks after treatment [138]. It should be noted however that another study reported beneficial 
effects on gut microbiota, including increased probiotic Bifidobacterium and downregulation of drug-
resistance mechanisms after H. pylori eradication [143]. Butyricimonas spp., including Butyricimonas virosa, 
[169] as well as Bacteroides coprophilus [170], which are associated with several diseases were enriched in 
H. pylori-positive individuals [138]. Pro-inflammatory Prevotella copri, related to rheumatoid arthritis and 
microscopic colitis as well as Enterobacter cloacae and Klebsiella pneumoniae usually associated with 
hospital infections, were also abundant in H. pylori-positive individuals [136].

A third reservation for the general eradication of H. pylori refers to the increased body weight after 
eradication. A recent study generally confirmed the incomplete restoration of microbial diversity after one 
year and noticed a significant increase in body mass index (BMI) [171] in agreement with a previous report 
[172]. Various mechanisms have been proposed such as the improvement of postprandial dyspepsia [172] 
alterations in the regulation of leptin and ghrelin [173] and the imbalance between bacterial production of 
lactate and acetate [174]. So far, the data are contradictory indicating weight gain, weight loss, or the 
absence of an effect obviously due to the differences in populations, dietary habits, and composition of the 
intestinal microbiota [175].

However, a direct consequence of these findings is that the wealth of papers reporting on the normal or 
abnormal gut microbiota should take into account the presence or eradication of H. pylori. In contrast, 
several other beneficial effects are mostly well-documented.

H. pylori and reduced risk of inflammatory bowel disease

The potential protective effect of H. pylori in inflammatory bowel disease (IBD) may be related to its 
influence on the gut microbiota and the modulation of the immune response [176]. The microbiota 
modulation is supported by an inverse association between H. pylori and several pro-inflammatory 
microbes such as Fusobacterium varium, Rhodococcus, and Sphingomonas, while the activation of colonic 
mucus production by H. pylori via the NLR family pyrin domain containing 3 (NLRP3)/caspase-1/IL-18 axis 
argues in favor of the immunomodulation effect [177, 178]. An additional possibility was proposed 
suggesting a non-causal relationship between H. pylori and IBD. Individuals with a defective fucosyl 
transferase 2 (FUT2) gene cannot secrete fucosylated glycans in the GI mucosa. They are susceptible to 
pathogens such as Escherichia coli, Neisseria meningitidis, and Candida albicans. The FUT2 non-secretors are 
more susceptible to Crohn’s disease (CD), ulcerative colitis (UC), and other so-called autoimmune diseases 
but at the same time, they are protected against H. pylori adhesion in the gastric mucosa [162, 179–181]. 
Patients with UC and CD had decreased FUT2 expression in the colon [182]. The increased susceptibility to 
IBD was possibly associated to increased production of microbial lysophosphatidylcholine that promotes 
the secretion of pro-inflammatory cytokines, damaging the tight junctions and the intestinal epithelial 
barrier [182]. These deleterious effects were reversed by upregulation of FUT2 [183]. However, even this 
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theory cannot rule out that H. pylori is in fact the mediator of the protection offered by fucosylation against 
IBD modulating either the gut microbiota or the immune system [178].

From the clinical point of view, epidemiological studies revealed that IBD is more prevalent in areas 
with low prevalence of H. pylori infection while several meta-analyses reported a negative correlation 
between H. pylori infection and IBD attributing a protective role to H. pylori [184–186]. H. pylori infection 
seems to provide more protection against UC than CD, and in East Asian populations compared to 
Mediterranean ones [185]. A meta-analysis involving 13,549 patients with IBD and 50,654 controls [187] 
reported that the prevalence of H. pylori infection was 22.8 % in patients with IBD and 36.3% in controls, 
finding a significant negative association (pooled OR = 0.45). Another meta-analysis also demonstrated a 
strong negative correlation between H. pylori prevalence and IBD. The odds of colonization were 0.36 for 
CD and 0.54 for UC. Most importantly, H. pylori eradication could lead to IBD flares, while patients had a 
higher probability of relapse after the eradication (OR = 1.41) [188].

H. pylori and esophageal diseases

The absence of H. pylori, mostly after eradication, has been linked to some esophageal diseases including 
gastro-esophageal reflux disease (GERD), Barrett’s esophagus, and adenocarcinoma of the 
gastroesophageal junction [14, 189–191] as the incidences of these diseases have risen in developed 
countries and are negatively associated with H. pylori prevalence [192–195].

Explanations for the protective effect of H. pylori include the reduction of acid secretion and the 
colonization with other organisms. There is a reduced production of acid by the infected stomach and the 
microbiota of the distal esophagus is probably affected when reflux occurs [145] a situation similar to 
protracted administration of PPIs [196, 197]. A protective H. pylori effect has been also proposed for the 
new entity of eosinophilic esophagitis, but this conclusion is controversial [198].

From the clinical point of view, an earlier prospective study with endoscopic assessment demonstrated 
that eradication therapy in duodenal ulcer patients will increase the prevalence of reflux esophagitis 
compared to those without H. pylori eradication. Risk factors were the corpus atrophy and weight gain 
[199].

It was also reported that H. pylori presence can considerably reduce the risk of esophageal adenocar-
cinoma in Western populations. On the other hand, esophageal squamous cell carcinoma (ESCC) risk was 
not affected for the combined populations from East and West. However, when populations were separated, 
there was an association with decreased risk of ESCC in populations in East Asia [200]. This observation is 
difficult to be attributed only to H. pylori eradication as ESCC is related to several dietary and lifestyle 
factors such as alcohol consumption, cigarette smoking, and hot-temperature food [200, 201]. Different 
genetic background cannot be excluded as well [202]. A study from Greece, reported an inverse association 
of H. pylori infection with both esophageal adenocarcinoma and Barrett’s esophagus, suggesting a 
protective role of H. pylori. On the contrary, no association with ESCC could be established [203]. A cross-
sectional study in a large Japanese population found that seropositivity for H. pylori was related to a lower 
rate of long-segment Barrett’s esophagus and a higher rate of short-segment Barrett’s esophagus [204], 
findings that are difficult to reconcile. Another study confirmed that the presence of H. pylori in the stomach 
was associated with a significantly decreased risk of Barrett’s esophagus, and esophageal adenocarcinoma 
[205]. The OR for the association between H. pylori and Barrett’s esophagus after controlling for age and 
white race was 0.55 with an even higher inverse association (OR = 0.28) among participants with corpus 
atrophy or anti-secretory drug use more than once per week. Although the authors imply that these factors 
are the reason for the negative association, it should be noted that H. pylori infection is the main reason for 
corpus atrophy. By contrast, no inverse association was found in patients without these factors [206]. A 
recent meta-analysis also observed an inverse relationship between H. pylori and Barrett’s esophagus (OR = 
0.70) [207]. However, these inverse associations are still debatable [208], and evidence for positive [195, 
203, 209, 210] and negative associations exist [208, 211]. It should be noted however, that in the recent 
negative study, almost 50% of patients had only 1–2 years follow up and only 15% of them had a maximum 
follow-up of 5–7 years [211]. A recent meta-analysis found an inverse association between H. pylori 
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infection and erosive gastritis but no association with Barrett esophagus [212]. At present, the most recent 
recommendations have chosen to ignore the alarming positive studies, which made no impact on the 
management of the H. pylori infection [213].

This attitude was influenced by a recent large retrospective study in the USA that reported no 
association of H. pylori infection or eradication with the development of either esophageal cancer or 
proximal gastric adenocarcinoma. Despite the large number of patients enrolled, there are substantial 
drawbacks in the study. Only gender, age, race, and smoking habits were considered as covariates. Critical 
risk factors such as dietary habits and alcohol use were not included possibly due to the retrospective 
nature of the study. Moreover, smoking was tested on the yes or no situation without any attempt to 
categorize patients on the basis of pack/years. More importantly, only 30% of treated patients had a 
confirmed outcome while almost 70% were categorized as unknown outcomes. Probably these are the 
explanations for the somewhat curious finding that Asians and native Hawaiians were protected from the 
future cancers [214].

H. pylori and protection from asthma and allergy

Earlier reports from Europe and the USA have demonstrated a significant inverse association between 
asthma and H. pylori infection [146, 147, 215–218]. Protection from childhood-onset asthma, hay fever, and 
cutaneous allergies by the presence of H. pylori infection has been confirmed by several reports [219–223] 
including a recent report from Greece [224] and a meta-analysis of 24 reports where it was shown that H. 
pylori infection, especially CagA-positive infection, is inversely associated with the risk of asthma [225]. 
Therefore, there is considerable evidence to support the hypothesis that the rise in asthma prevalence may 
be related to the reduced prevalence of H. pylori and the protective immunological functions elicited by its 
presence [145, 223, 226]. Murine studies reported that H. pylori protects from allergic asthma by 
modulating effector T-cells and T regulatory cells (Tregs) and by limiting dendritic cell (DC) function [226–
229].

Additional rodent experiments showed that mothers infected by H. pylori during pregnancy initiate a 
tolerogenic immunity response to their offsprings that mitigated the development of allergic diseases later 
in life [230]. In a murine study of mice sensitized with house dust mite, it was shown that extracts of H. 
pylori were an effective treatment to reduce mucus production and features of inflammation when re-
challenged with dust several months after rest [231]. In a similar model, a very recent report demonstrated 
that treatment with H. pylori-derived VacA reduced several asthma indicators such as inflammation and 
goblet cell metaplasia. An induction of tolerogenic DCs and regulatory T cells were observed after VacA 
administration. Depletion of regulatory T cells, reversed the CagA suppression of allergic airway disease 
[232, 233]. VacA targets DCs and macrophages of the gastric lamina propria [234] promoting the secretion 
of anti-inflammatory molecules such as IL-10 and transforming growth factor-β, and modulating the 
development of Tregs [234]. Moreover, naive human DCs incubated with VacA increased the expression of 
programmed death-ligand 1 (PD-L1), a molecule that is strongly associated with amelioration of T cell 
reactions [235, 236]. In addition, VacA also initiated the expression of immunoglobulin-like transcript 3 
(ILT3), an inhibitory receptor that is found in tolerogenic DCs [237].

Interestingly, the effect of H. pylori may be dependent on ethnicity as demonstrated in a multiethnic 
study of children. Children of European ancestry colonized with CagA-negative H. pylori had an increased 
prevalence of asthma in contrast to children of non-European origin. In addition, only positive children with 
H. pylori-negative mothers had an increased risk of asthma suggesting again that, in agreement with the 
previously mentioned animal data, infection of the mother may protect the H. pylori-positive children [238]. 
In a case-control study, abdominal obesity and H. pylori infection were associated with reduced risk of 
asthma and allergy. H. pylori infection was associated with a considerable reduction odd of asthma and 
allergic diseases in individuals with abdominal obesity [219]. This is in concert with the change in BMI after 
eradication [173]. A significant increase in BMI and body weight after eradication of H. pylori has been 
reported which possibly due to the restoration of ghrelin secretion and the relief of dyspepsia, as 
mentioned before [171, 239, 240].
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Negative studies have also been published [241]. However, they included only adults [242] and/or a 
specific Hispanic/Latino population of 18–74 years old [243]. In the last recent cross-sectional the 
diagnosis of asthma was only based on self-reported information, while the significant co-variate of 
smoking was reported as current, past, and never smokers without further quantification according to 
pack/years of smoking.

Despite these negative reports, the overwhelming evidence supports the protective role of H. pylori 
infection in asthma and other allergic diseases.

Coeliac disease

Coeliac disease affects approximately 0.5–1% of the global population. Increasing evidence of H. pylori 
involvement has been proposed [244] based on a previous large meta-analysis of 25 studies and more than 
140,000 participants. The infection rate of H. pylori infection of celiac disease patients was almost 50% 
lower compared to controls with an OR of 0.57 [245].

Other putative protective effects

H. pylori infection was also proposed to protect from pathogens that cause diarrhea, but this observation is 
not consistent and may be associated with recent changes in other factors [246, 247]. Moreover, this 
protection may be related to the improvement of sanitation in the industrialized West, rather than to H. 
pylori [145]. Individuals infected by H. pylori also show a negative association with tuberculosis. More 
plausible is the reported reduction of latent tuberculosis re-activation of individuals with H. pylori infection 
in West Africa [145]. It was proposed that H. pylori infection may interfere with T-cell signaling pathways 
that enhance the innate response of the host and reduce the risk of active tuberculosis [145, 248].

Other reasons for abandoning the “test-and-treat” suggestion

A well-known paradox in the relationship between H. pylori and GC, is the low incidence of GC in Africa, 
Asia, and Latin America associated with a high prevalence of H. pylori infection even with high virulence 
strains. This is called the African [249] or Asian/Indian enigma [250]. The very existence of this paradox 
has been disputed [251], but the genetics of the host population, their dietary habits, smoking, alcohol 
consumption, and co-infection with parasites should be examined as they may initiate the protective Th2 
immune response [249, 250]. The expected GC incidence is 5.7 in African countries, 7.0 in Asia and Oceania, 
16.0 in America, and 26.0 in Europe, considering the alcohol and tobacco availability and the consumption 
of fruit and vegetables. The interaction between H. pylori and cigarette or alcohol consumption and dietary 
habits may explain the so-called African and Asian enigmas [252]. Dietary differences were also proposed 
to explain a similar enigma in Chile. They studied two areas with similar prevalence of H. pylori colonization 
and similar prevalence of VacA and CagA factors but with different GC prevalence. Chilly consumption was 
much higher in the high GC incidence area and daily non-green vegetable consumption was more common 
in the low incidence area [253].

An additional explanation for the enigmas was recently proposed linking them with the co-evolution of 
H. pylori and humans. It was demonstrated that the African human ancestry adapted well to the co-
evolution with H. pylori, while the European ancestors failed to do so. The Asian ancestry was closer to the 
African adaptation [254]. Certainly, this cannot be the explanation for the Cretan enigma where in Crete 
(Greece) a dissociation between GC rates and H. pylori infection was reported. In Crete, there is a 
prevalence of H. pylori colonization of over 70% for individuals over 50 years of age associated with the 
lowest mortality from GC among participants from 17 populations in 13 countries [255]. And this is not due 
to a low prevalence of CagA, as its prevalence is high in the Greek population [256].

Is QoL improved?

The last point that should be examined is the unequivocal evidence that generalized eradication of H. pylori 
improves the QoL. Several different questionnaires have been used to assess QoL in H. pylori associated 
diseases before and after eradication. The results have been controversial. Eradication of H. pylori was 
reported to either improve [257] or have no effect on QoL. A large randomized controlled study of QoL 
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using a validated dyspepsia reported no effect on QoL following eradication [258], a finding confirmed by a 
later smaller study [259]. By contrast, reports from Hungary, Croatia, and Rwanda showed improved QoL 
[260–262]. However, a study also from Rwanda reported reduced quality [263]. No conclusive comments 
can therefore be made.

Is there a viable alternative?
The Mediterranean diet (MD) attracted interest after extensive studies indicated that mortality from 
cardiovascular disease in the Mediterranean countries was lower than that in northern Europe [264, 265]. 
This advantage has been reduced but not lost over the years [266] possibly due to changes in dietary habits.

It is now fairly established that MD can protect from GC. Earlier studies confirmed the beneficial effect 
of MD in GC prevention. A Greek case-control study showed that a low consumption of fruit and vegetables 
was associated with an increased risk of GC [267]. Similar findings were reported from Italy [268, 269]. 
Although no specific information on infection by H. pylori was available in the Italian studies, it is probable 
that both cases and controls were equally infected as this Italian population has a 45% prevalence of H. 
pylori colonization [270, 271]. Studies from Uruguay and Canada also found a significant reduction of GC 
after consumption of fruit and vegetables [272, 273]. Furthermore, a meta-analysis of dietary patterns 
found a two-fold increased GC risk between a diet rich in fruit and vegetables and a diet rich in meat and 
fats [274]. The protective effect of the MD in risk reduction of GC were confirmed by large more recent 
studies. Adherence to the MD considerably reduced the risk of GC in parallel with the degree of MD 
adherence. Importantly, risk estimates were consistent when co-variates such as smoking, BMI, and family 
history of GC were taken into account [275]. In the large Netherlands cohort study, higher MD adherence 
was associated with reduced risks of ESCC carcinoma and adenocarcinoma, gastric cardia adenocarcinoma, 
and gastric non-cardia adenocarcinoma. It seems though that the decreased ESCC carcinoma risk might be 
limited to men [276]. A large recent meta-analysis based on 117 studies with more than 3,000,000 
participants conclusively showed that the highest adherence to MD was inversely associated with cancer 
mortality and specifically with GC mortality [277]. Eleven studies were included in another meta-analysis 
and revealed that adherence to the MD was inversely associated with GC risk (OR =0.43) [278]. In a large 
case-control study from Spain, an adherence to MD was protected from GC. Risk reduction was 48–68% for 
high adherence and 16–57% for medium adherence to MD and applied to both gastric cardia and non-
cardia GC. Histology confirmed a significant protective effect for IM between 41% to 72% for high 
adherence versus low adherence. However, in the diffuse type of cancer, only one of the five indices used to 
verify adherence to MD was associated with a protective effect [279]. These findings were confirmed by a 
very recent report from Afghanistan a country with a very high prevalence rate of H. pylori infection. A 
greater adherence to MD was associated with a lower odd of GC [280]. Interestingly, the potential benefits 
for the health care system are savings of 55 billion dollars (range 41.8 billion to 68.2 billion) annually in the 
USA alone [281, 282].

In addition to the protective effects of MD, there are other factors that interfere with an increase of GC 
prevalence. Tobacco smoking and alcohol consumption are prevalent among them. Thus, a study on GC 
mortality demonstrated a decrease in GC incidence rates more evident in males. This may be due to the fact 
that smoking consistently decreased in men rather than in women in most countries [283]. Smoking was 
linked to all precancerous lesions of the stomach such as AG, IM, and dysplasia. The risks were dose-
dependent [284].

The important associations between risks of GC and alcohol consumption, use of salt-preserved foods, 
and increased body weight were reported in a meta-analysis of 49 studies. Heavy (> 42 g/day) alcohol 
consumption, salted fish, and increased BMI were significantly associated with an increased GC risk. An 
inverse association was associated with a healthy lifestyle index with a risk reduction of approximately 
40% [285]. A meta-analysis of 38 case-control studies confirmed the strong positive association between 
high salt intake and GC [286]. The increased positive association between excess body weight and the risk 
of GC seems to be more important in women than men and in non-Asian compared to Asian populations 
[287]. A recent review has corroborated all the above findings [288].
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In view of the problems of antibiotics used in H. pylori eradication, a promising review was recently 
published reporting the results of traditional Chinese medications on H. pylori-associated gastritis. 
Significant therapeutic benefits were demonstrated that may justify a more detailed investigation on this 
subject [289].

However, the best choice in the elimination efforts of H. pylori is the development of vaccines. A 
complex oral vaccine was tested in a mouse model of H. pylori infection for immunogenicity and therapeutic 
efficacy. A reduction of colonization was observed in connection with an induction of Th1/Th17 immune 
responses that may overcome the immune evasion caused by H. pylori [290]. An intranasal vaccine has also 
been tested with promising results [291].

Additional problems
Are all metaplasias similar?

IM is classified into three distinctive types: the small intestinal phenotype, the complete type, or type I, 
where cells secrete sialomucins and the incomplete types, or types II and III, where goblet cells secrete 
neutral and acid sialomucins in type II and sulfomucins in type III. It has been reported that type III IM has 
an increased risk of malignant transformation compared to types I and II [292, 293]. Specifically, in type I, 
the expression of the mucin MUC2 is dominant, while mucins MUC1, MUC5AC, and MUC6 are decreased. 
Instead, in type II/III, there is co-expression of MUC2 with the other mucins [294, 295]. Moreover, in IM, the 
presence of a metaplastic mucous cell lineage called spasmolytic polypeptide-expressing metaplasia 
(SPEM) is very important. It strongly expresses trefoil factor 2 (TFF2), formerly known as spasmolytic 
polypeptide. The name pseudopyloric metaplasia was used in the past to indicate the presence of SPEM. 
SPEM is more closely associated with the development of GC compared with IM [296]. Interestingly, IM is 
usually spotty or multifocal, but SPEM is diffuse throughout the body and corpus of the stomach in patients 
that will develop GC [293]. The connection between IM and SPEM and the relationship between SPEM and 
GC requires further investigation [297]. SPEM appearance is probably due to acute injury or inflammation 
of the gastric mucosa and the overproduction of IL-33 by macrophages. Gastric glands with lineage mixture 
such as incomplete IM intermixed with SPEM metaplasia are at particular risk for progression to dysplasia 
and cancer. The connection of H. pylori with SPEM malignant evolution is under investigation [298–300].

An additional problem with the interpretation of studies corelating H. pylori with the GC is the role of 
pathological reports. Pathologists’ agreement is very poor in the evaluation and categorization of atrophy 
with kappa coefficients varying from 0.08 and 0.29 [301, 302]. In a more recent study, the interobserver 
agreement was very good for IM (κ = 0.81), not so good for dysplasia (κ = 0.42), and poor for AG (κ < 0) 
[303].

The extent of the problem of GC

It is a common practice in all studies on H. pylori and GC to declare their connection based on epidemiolo-
gical and experimental research. The exact quantification of this relationship is not always clear. A large 
study from a cohort in the Netherlands reported that 24% of patients were diagnosed with AG, 67% with 
IM, 8% with mild-to-moderate dysplasia, and only 0.6% with severe dysplasia. A re-evaluation after 5 years 
showed that the annual incidence of GC was 0.1% for patients with AG, 0.25% for IM, 0.6% for mild-to-mod-
erate dysplasia, and 6% for severe dysplasia. Risk factors for GC development were severe dysplasia, old 
age, and male gender [304]. A recent study endoscopically assessed the evolution of the Correa’s cascade 
after H. pylori eradication. Correa’s steps III–V, but not I–II, were at risk of GC after H. pylori eradication. 
Age, OLGA stages I, and OLGIM stages were also independent factors of GC development. Eradication of H. 
pylori decreased Correa’s step progression (relative risk = 0.66), but it did not regress OLGA and OLGIM 
[305]. Moreover, as was already mentioned, the results between the prevalence of H. pylori infection and 
the actual appearance of GC are not linear. Even European countries have high H. pylori colonization and 
low GC [252].
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Problems with eradication studies

The vast majority of the trials are retrospective. Most of them do not take into account the three funda-
mental risk factors in the development of GC namely, smoking, alcohol consumption, and salted food 
consumption. Even those that use it as a co-variate either smoking or alcohol do it in a crude way. Smoking 
is not categorized according to pack/years, and alcohol is not reported according to various levels of daily 
or weekly consumption.

Meta-analysis is considered the holy grail of evidence-based medicine considered superior to any other 
form of study. However, meta-analyses have an inherent problem. They end up analyzing a few studies after 
rejecting hundreds of others for various reasons. For example, in a systematic meta-analysis, the authors 
initially identified 8,061 papers and finally included only 24 [61]. Another study started with 17,438 
reports screened and finally included only 149 [13].

An additional problem with this type of report is the fact that conclusions may have a different 
approach. As an example, two systematic studies conclude that there is a strong relationship between H. 
pylori infection and GC prevalence. However, in the majority of included studies, the statistical significance 
is doubtful as the 95% confidence intervals in the forest plot cross the significance line [61, 306].

As a consequence of the unresolved problems of heterogeneity, almost all studies manipulate statistics 
as they try to incorporate as many confounding factors as possible. This is a perfectly accepted practice, but 
may end up with precarious results. Two decades ago, a very illuminating observation was reported in the 
field of hepatology, but it is relevant in other fields as well. The authors investigated the 20-year survival of 
the scientific truth according to the type of publication. They found that there was no difference between 
randomized controlled trials and nonrandomized studies. Unexpectedly, the lowest truth survival was 
observed in the meta-analyses and the conclusions founded on good methodology remained true for similar 
periods as those based on poor methodology. This rather unorthodox view should be seriously taken into 
consideration when assessing papers heavily based on statistical adjustments [307, 308].

Finally, the multi-national studies of mixed populations should be scrutinized as the evolution of H. 
pylori infection is heavily dependent on geographical and genetic criteria as suggested in a real-world 
report from Japan [309].

Reinfection is another problem in this group of patients

Most studies on eradication results, including studies on the relevant costs, do not evaluate the effects of re-
infections. Recent studies reported on the reinfection rates of H. pylori. In a cohort from South Korea of over 
10,000 eradicated individuals, reinfection of H. pylori was calculated to be 3.06% per person-year [310]. In 
a prospective, observational study in China the annual reinfection rate was 1.5% [311]. The oral cavity is 
considered as an extra-gastric source of H. pylori, because of the presence of H. pylori DNA in certain areas 
of the oral cavity. Bacteria from the oral cavity may therefore be responsible for eradication failure, and 
reinfection [312]. The annual reinfection rate after successful eradication is low (< 2%) in the developed 
countries, where eradication may not be the first health priority, but is considerably higher (5–10%) in 
developing countries and children [6, 171]. A meta-analysis showed that a strategy of family-based H. pylori 
screening and treatment may be more effective than a single-patient approach [313].

Recommendations again

Despite the previously described problems and reservations, it is somewhat odd that most recent 
recommendations still support that eradication therapy should be offered to all individuals infected with H. 
pylori on the test-and-treat strategy [6]. Some reservations are related to substantial health costs and risks 
of the massive use of antibiotics. Although the generalized elimination is still on, the identification of 
population subsets with a higher-than-average risk of GC is also considered [213].

The American College of Gastroenterology (ACG) recommends extensive testing, including all peptic 
ulcer patients, patients with uninvestigated dyspepsia under the age of 60, patients on long-term non-
steroidal, anti-inflammatory drugs, and patients with unexplained iron deficiency anemia [69]. The Taipei 
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consensus [6] and the Houston conference [96] support similar recommendations with the inclusion of 
first-generation immigrants from high prevalence areas or populations with a high incidence of GC [314]. 
Gastroenterologists from China in their consensus report also recommend a population test-and-treat 
policy adding that eradication of H. pylori is a cost-effective measure to prevent cancer in high-risk areas 
despite the fact that the evidence they refer to is rather obsolete and a recent robust study with proof of 
cost-effectiveness is lacking. They also suggest that no adverse consequences should be expected [95]. The 
last notion is at least very doubtful. The prevalence of antibiotic resistance to H. pylori is rising in Asia 
[315]. The primary resistance in Asia is approximately 17% for clarithromycin, 44% for metronidazole, and 
18% for levofloxacin and rising [152] as mentioned before.

Adding a one to two-week course of H. pylori eradication therapy is suggested in the above 
recommendations to treat and prevent recurrence of peptic ulceration. However, this is not supported by 
current evidence. There is no evidence supporting the idea that H. pylori eradication is an effective 
treatment for people with gastric ulcer or that it is more effective in the prevention of recurrence of 
duodenal ulcer compared to traditional drugs such as PPIs. When observing the forest plots of a Cochrane 
systemic review this is evident and only a slight advantage is present in duodenal ulcer [316]. This is 
further supported by a recent review indicating that H. pylori is not the main cause of peptic ulceration so 
empirical eradication should not be used in these patients [27]. Moreover, the old practice of biopsy all 
gastric ulcers to check for malignancy and to repeat endoscopy after PPI treatment to check for ulcer 
healing is still imperative [317]. It is now evident that there are several causes of peptic ulceration in 
addition to H. pylori infection [318]. Peptic ulcers are detected without an obvious etiological agent, so they 
are called true idiopathic peptic ulcers and account for approximately 10% of the total [319]. Therefore, the 
traditional practice of empirical eradication in patients with duodenal ulcers is no longer justified.

Another important problem with the current recommendations is the age when test-and-treat should 
start. It is rationale that treatment should be given before dysplasia has been reached, but no reliable 
marker exists to detect premalignancy on time. Serum pepsinogen assay has been proposed as a screening 
test but a mass scale implementation may not be feasible [320]. Extensive validation studies are also 
required. On the other hand, the prevalence of H. pylori infection has significantly reduced in recent years, 
and screening for the very young is probably not cost-effective. The suitable age for screening therefore is 
still open to debate [321].

Who really needs eradication?
It is generally accepted that no disease can be eradicated with methods based on treatment regimes. Only 
yaws, was eliminated because of its presence in a localized area and use of inexpensive drugs [322]. Even 
significant reductions of harmful consequences, such as GC after H. pylori eradication, are very hard to 
achieve. Effective affordable vaccines are indispensable. However, vaccine development for H. pylori is not, 
a priority of the pharmaceutical industry for the time being [323].

In view of the evidence presented before, we believe that the population-based test-and-treat policies 
of eradication in every individual tested positive is not useful as H. pylori is a harmless commensal in the 
vast majority of cases [160]. Moreover, eradication may have detrimental consequences in several groups 
of patients [191]. On the contrary, the current attitude in H. pylori eradication should be reserved for 
specific groups of patients. This is the case for first-degree relatives of patients with GC or even in family 
members living in the same household as the index patient in world regions with high GC incidence [324]. 
This approach is proposed even from the supporters of the global eradication policies [213]. This is also the 
case in extensive AG or the type III IM with SPEM presence, diagnosed after gastroscopy performed for 
other reasons. These patients deserve surveillance endoscopy as well. Needless to say, classification of 
gastritis and metaplasia according to OLGA and OLGIM systems should be encouraged [27]. Additionally, H. 
pylori should be eradicated after endoscopic resection of early GC to prevent future metachronous lesions 
[64]. The rare cases of patients with MALT lymphomas [325] and individuals at high hereditary risk of GC 
should also be eradicated [65].
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Patients with diseases negatively associated with H. pylori eradication should be treated only if they 
belong to the previously described groups [326]. A special group is the old people with multiple eradication 
failures. The American Gastroenterological Association recommends that after several failures of 
eradication, the potential risks of adverse effects should be judged against the benefits of eradication. [327]. 
This is because these patients may easily develop severe Clostridioides difficile-associated diarrhea and 
colitis [328] and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca [329].

An interesting subpopulation that may warrant a priori eradication of H. pylori has emerged after the 
introduction of check point inhibitors in the immunotherapy of various cancers. A worse survival has been 
reported after immunotherapy in H. pylori-positive patients with melanoma, non-small-cell lung cancer and 
advanced GC [330–332].

Conclusions
Evidence suggests that the population-based test-and-treat policies of eradication in every individual tested 
positive may be not useful and eradication may have detrimental consequences in several groups of 
patients. Eradication should be reserved for specific groups of patients such as the first-degree relatives of 
patients with GC and family members living in the same household as the index patient in geographical 
areas with high GC incidence. Eradication should be performed in cases of extensive AG or the type III IM 
with SPEM presence. Classification of gastritis and metaplasia according to OLGA and OLGIM systems 
should be encouraged. Additionally, H. pylori should be eradicated after endoscopic resection of early GC 
and in the rare cases of patients with MALT lymphomas and individuals at high hereditary risk of GC. Old 
people with multiple eradication failures should be eradicated only when the potential benefits outweigh 
the potential risks. A priori eradication of H. pylori may be indicated in patients treated with check point 
inhibitors in the immunotherapy for various cancers.

These comments leave only one question to be answered. In the end, should we establish population-
based extensive eradication programs at least in countries with very high prevalence of H. pylori 
colonization? The African-Asian-Greek paradox strongly argues against a generalized recommendation. 
Most importantly, we believe that there is now overwhelming evidence that adoption of the Mediterranean 
type of diets, and promotion of policies against alcohol, smoking, and obesity will obtain equal if not much 
better results with drug treatments of H. pylori. Several additional diseases, such as cardio-vascular disease 
and steatotic liver disease, will be benefited in parallel with GC. It should also be stressed that endoscopy 
and detailed histologic examination should be the basis for any treatment decision.
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