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Abstract
Hunting for tumoral material in body fluids, traditionally in blood, the so-called liquid biopsy is set to 
revolutionize the diagnosis and management of oncological patients. However, other biofluids can also be 
considered as alternative sources of biomarkers to provide clinically valuable information for multiple 
diseases. This is the case of bile, a fluid produced in the liver, stored in the gallbladder, and excreted to the 
duodenum, which complex composition is known to change in different pathological conditions. 
Remarkably, different works have demonstrated that the identification of mutations in bile cell-free DNA 
(cfDNA) can outperform blood analysis for the early diagnosis of biliopancreatic tumors causing biliary 
strictures. Here, the literature in which bile has been tested as a liquid biopsy matrix where lipids, 
metabolites, proteins, and cfDNA among other analytes were measured is reviewed. Moreover, the clinical 
situations and procedures where bile can be available, discussing the possible applications and limitations 
of bile analysis are summarized. The scientific relevance and clinical potential of bile harvesting, 
biobanking, and analysis are put forward. All this evidence supports the value of bile as a liquid biopsy 
matrix for the management of patients beyond cancer, and perhaps also beyond “blood, sweat, and tears”.
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Introduction
Liquid biopsy (LB) represents the sampling and analysis of human body fluids including blood, urine, saliva, 
cerebrospinal or pleural fluid, ascites, tears, sweat, and bile as a minimally invasive method for the 
diagnosis and prognosis of different diseases [1]. The rationale implies that biofluids are loaded with a 
variety of analytes (DNA, proteins, metabolites, extracellular vesicles, or cells) where the detection of 
specific biomarkers can distinguish between health and disease or even inform about disease progression 
and response to treatment. Accordingly, the number of clinical trials for LB in different therapeutic areas is 
growing dramatically, with more than 1,500 trials using blood in the oncology field [2] for early disease 
detection, to guide therapy, and to monitor outcome and residual disease [2]. However, sensitivity and 
specificity represent key challenges in the development of LB strategies for cancer screening, and the 
selection of more reliable biomarkers and/or the development of sample enrichment procedures represent 
areas of intense research [1, 3]. In addition, the use of biofluids other than blood could overcome some 
limitations, including blood biomarker concentration and specificity avoiding for instance clonal 
hematopoiesis mutations [4].

In this sense, as recently reviewed [5–10], bile has emerged as a promising LB matrix for the 
management of patients with pancreaticobiliary tumors causing biliary strictures. Here, the most recent 
findings on the utility of bile circulating cell-free DNA (cfDNA) analyses in those oncological conditions are 
reviewed. Moreover, different clinical situations where bile could be available, the current bile collection 
procedures, and the potential clinical applications of bile analyses are presented.

Limitations and advantages of bile as LB in oncology
Bile is constantly produced by hepatocytes, stored in the gallbladder, and secreted into the duodenum 
through the biliary tract. Bile is a complex fluid composed of bile acids, phospholipids, cholesterol, bilirubin, 
proteins, inorganic salts, extracellular vesicles, DNA, and RNA [11–14]. Bile composition can change in 
different pathological conditions; therefore, the identification of these changes can be harnessed into good 
diagnostic tools, can inform about pathological processes, or can even help in directing treatments [5, 9, 14–
16]. Useful analytes include small molecules and metabolites usually analyzed and measured by nuclear 
magnetic resonance (NMR) spectroscopy or liquid chromatography tandem mass spectrometry (LC-MS), 
proteins mainly explored and measured by proteomics and enzyme-linked immunosorbent assay (ELISA), 
and nucleic acids (RNA and DNA) analyzed by next generation sequencing (NGS) or droplet digital 
polymerase chain reaction (ddPCR) [9, 15–18]. In the case of the hepatobiliopancreatic (HBP) tumors, due 
to their anatomical and physiological characteristics, bile may be in direct contact with the lesions, and 
therefore higher concentrations of tumor biomarkers may be present in bile compared to plasma or urine, 
increasing the sensitivity of this LB strategy [19]. Moreover, its relatively confined nature and location 
reduce the possibility of detecting aberrant biomarkers coming from another diseased organ, increasing the 
specificity of the results. In fact, in this context, as a tumor-adjacent fluid, several studies have shown that 
the analysis of bile outperforms that of blood, and in addition has the potential to recapitulate tumor 
heterogeneity [20–23].

However, the use of bile as LB matrix has some limitations, for instance, its availability. LB strategies 
are generally minimally invasive, however, most methods used to obtain bile (see below) cannot have this 
consideration. Nevertheless, accumulating evidence demonstrates that patients undergoing interventions 
for therapeutic or diagnostic purposes in which the biliary tract is accessible can benefit from bile analysis. 
For instance, and as discussed below, the mutational status of bile cfDNA can help to diagnose strictures of 
unknown etiology, identifying and anticipating the presence of malignancies [20]. Thus, given the 
informative potential of bile, its collection should be considered when procedures in which the biliary tract 
is accessed are performed. Accordingly, the Nouvelle-Aquitaine, Euskadi, and Navarre Euroregion funded a 
project for the creation of a bile biobank named Bilebank (https://bilebank.org/) where bile and patients’ 
associated clinical data are available for analytical and research purposes.

https://bilebank.org/
https://bilebank.org/
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Procedures in the clinical practice where bile can be collected
Several approaches, surgical, percutaneous (interventional radiology), or endoscopic [24–26] are used in 
different clinical situations for biliary drainage (Table 1). In those situations, bile could be collected and 
used to perform different analyses to help with the diagnosis, prognosis, and treatment of patients.

Table 1. Clinical approaches for biliary drainage

Method type Specific clinical approaches
Gallbladder puncture
Bile duct puncture

Surgical approaches

Maintained bile drainage (T-tube)
Percutaneous gallbladder drainage (PGBD)
Percutaneous gallbladder aspiration (PGBA)

Percutaneous approaches

Percutaneous biliary drainage (PBD)
Endoscopic retrograde cholangiopancreatography (ERCP)
Endoscopic ultrasound-guided biliary drainage (EUS-BD)
Endoscopic nasogallbladder drainage (ENGBD)
Endoscopic nasobiliary drainage (ENBD)

Endoscopic approaches

Nasoduodenal and nasobiliary intubation

Surgical procedures

Before percutaneous and endoscopic approaches for biliary drainage were developed and extensively 
implemented, surgical management was the predominant method [27–29]. Consequently, in classical 
studies, bile was collected during cholecystectomy (open or laparoscopic), surgery for liver resection and 
transplantation, or surgical duct exploration procedures, using techniques such as gallbladder puncture, 
bile duct puncture, or T-tube placement [29–32]. Nowadays these approaches might be useful to obtain bile 
in patients with early-stage biliopancreatic tumors (BPT) undergoing straight surgery without prior 
drainage requirements.

Gallbladder puncture

At surgery, bile can be aspirated completely from the gallbladder with a sterile needle and syringe. When 
gallbladder has to be removed, sampling should be obtained at the beginning of the operation before 
gallbladder manipulation and cystic artery ligation in order to prevent potential contamination due to 
mucosal healing or ischemia. If gallbladder is not being removed, post-operative bile leak should be 
minimized by using a thin needle, creating a self-sealing tunnel, and suturing the needle hole [33–35].

Bile duct puncture

Samples of hepatic bile are very difficult to obtain if the patient is not undergoing bile duct or gallbladder 
surgery because there is a high risk of bile leak after direct puncture. In gallbladder surgery and stone 
disease, hepatic bile can be obtained through the cholangiogram catheter introduced through the cystic 
duct before contrast injection [36, 37]. In patients undergoing pancreatic surgery involving bile duct 
transection (pancreaticoduodenectomy or total pancreatectomy) biliary swab has been used to detect 
biliary colonization [38].

Maintained bile drainage (T-tube)

Some patients require a temporary bile shunt (T-tube) that diverts part of the bile flowing from the liver to 
a transcutaneous port for external collection [33]. T-tubes allow for partial collection of liver bile during the 
time that the shunt is in place. Nowadays, there is no justification for the routine use of T-tube drainage 
after open or laparoscopic common bile duct exploration in patients with common bile duct stones [39].
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Percutaneous procedures

Percutaneous gallbladder or bile duct drainage is used in patients with cholecystitis or cholangitis, but also 
in patients with BPT, who need a biliary drainage and endoscopic approaches are not clinically indicated, 
technically possible, or available [40–43]. Usually, this drainage is maintained for some days until clinical 
improvement or a more definitive approach is decided. Mainly two percutaneous techniques are used and 
biliary sampling and molecular analysis have been performed in multiple studies [9].

Percutaneous gallbladder drainage (PGBD) or gallbladder aspiration (PGBA)

PGBD or PGBA is traditionally the first-line approach in high-risk surgical acute cholecystitis patients [44].

Percutaneous bile duct drainage (PBD) or bile duct puncture

PBD or bile duct puncture is a minimally invasive method used for treating malignant biliary obstruction. 
Collected bile has been used for instance for culture and antimicrobial susceptibility tests [45] or to assess 
post-hepatectomy liver function in patients with biliary tract disease [31, 32].

Endoscopic procedures

Nowadays, endoscopic retrograde cholangiopancreatography (ERCP) is the first-line intervention for 
biliary drainage in patients with BPT, when it is available and technically possible [24, 25, 46]. ERCP 
achieves success in 90% of cases, but it fails in cases with altered anatomy or when duodenum access is 
obstructed [47]. Therapeutic endoscopic ultrasound (EUS) techniques [48, 49] are indicated when ERCP is 
not feasible, and its use has become more extensive in the last years [50, 51].

Transpapillary ERCP

ERCP is performed with a duodenoscope that permits the wire-guided cannulation of the ampulla of Vater 
and then biliary drainage and bile collection in patients with an obstruction of the bile duct [52, 53]. A 
catheter and a syringe can be used to collect bile, but also other devices [54] have been developed helping 
to collect tissue and cell samples in addition to bile aspiration. In this context, several studies have 
performed molecular analyses of bile collected by ERCP [9, 20, 55, 56].

ENGBD or ENBD is performed by insertion of a temporary nasobiliary tube can be performed in order 
to assure biliary drainage and continuous or intermittent flushing of the bile duct. In patients with 
symptomatic cholelithiasis awaiting cholecystectomy it allows bile collection in different periods before 
gallbladder removal [34]. It has also been used for bile collection in pharmacokinetic studies [57, 58].

Endoscopic ultrasound (EUS)

Nowadays, laparoscopic cholecystectomy is the first-line procedure indicated when cholecystitis occurs. 
However, non-operable patients usually require gallbladder drainage, and the EUS approach through the 
stomach or duodenum EUS guidance gallbladder drainage (EUS-GBD) is recommended [46, 51, 59]. EUS-
assisted and EUS-guided techniques (cholecystoduodenostomy, cholecystogastrostomy, 
hepaticogastrostomy, or choledochoduodenostomy) are also available for biliary drainage in patients with 
unresectable distal malignant biliary obstruction in cases of failed ERCP or PBD because of altered anatomy, 
previous surgery or duodenum obstruction [43, 51, 59–62].

Other possible strategies

Given the important clinical information that different bile analyses can provide, it is possible to envision 
the development of new, or the optimization of old strategies for bile collection in a less invasive or risk-
free manner in a broader spectrum of patients.

Collection of duodenal bile (spontaneous or after stimulation with a choleretic agent)

Pancreatic juice has been collected from the duodenal lumen using the endoscope suction channel or a 
catheter upon secretin stimulation [63]. Both methods could also be used for duodenal bile collection, and 
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choleretic agents such as secretin or cholecystokinin (CCK)-pancreozymin used to perform bile drainage 
tests [64] could be used to stimulate bile secretion.

Clinical applications of the molecular analysis of bile
There are multiple pathological conditions (Table 2) in which bile might be collected and its analysis could 
be clinically relevant (Table 3) [16, 28]. However, in most of these situations, bile composition has not been 
extensively interrogated, and therefore the utility of measuring changes in bile acids, metabolites, 
microbiota, proteins, or nucleic acids remains unknown (Figure 1).

Table 2. Pathological situations where bile is available and its analysis could be helpful

Pathological situations
Benign or indeterminate biliary stenoses
Primary sclerosing cholangitis (PSC)
Chronic cholangitis at risk of developing cholangiocarcinoma (CCA) [repetitive chronic secondary cholangitis, immunoglobulin 
G4 (IgG4)-related cholangitis, etc.]
Chronic pancreatitis with biliary strictures
Pancreatic cysts with biliary strictures
Pancreatic ductal adenocarcinoma (PDAC), CCA, bile duct carcinoma (BDC), hepatocellular carcinoma (HCC), and ampullary 
cancer presenting biliary strictures and/or obstructive jaundice
Pancreatic surgery (pancreaticoduodenectomy or total pancreatectomy)
Acute cholangitis or cholecystitis
Patients with jaundice
Pathologies associated with biliary microcrystals: idiopathic acute pancreatitis, recurrent acute pancreatitis, unexplained biliary 
pain, and post-cholecystectomy biliary pain
Liver surgery: hepatectomy and transplantation

Table 3. Possible applications of bile sampling and analysis

Bile applications Reference(s)
Bile culture and targeted antibiotic testing [16, 45]
Differential diagnosis of patients with jaundice [65]
Early biliopancreatic cancer diagnosis [9]
Diagnosis of indeterminate biliary strictures [10, 20]
Clinical conditions of patients with choledocholithiasis or bile microlithiasis [66]
Pharmacokinetic analyses and biliary excretion studies [67, 68]
Progression/severity of hepatobiliary diseases [28]
Early detection of post-liver resection and transplantation failure [69]
Regenerative medicine [70]

However, different studies already support bile analysis as a valuable tool. Indeed, changes in bile 
composition have been correlated with clinical severity, disease progression, and final outcome in patients 
with different hepatobiliary diseases including choledochal cysts, extrahepatic portal venous obstruction, 
and infantile obstructive cholangiopathy [28]. Moreover, changes in bile composition have been proposed 
to help predict hepatic function and liver failure following liver surgery. For instance, monitoring the levels 
of interleukin 6 (IL-6) in bile could help detect acute rejection after liver transplantation [71] or liver failure 
after resection [32], and the sequential monitoring of bile salt composition has been suggested to be useful 
to discriminate functional versus non-functional grafts during liver transplantation [72].

Biliary crystals are associated with gallstone disease, idiopathic pancreatitis, sphincter of Oddi 
dysfunction, unexplained biliary pain, and post-cholecystectomy biliary pain [73]. Microscopic bile 
examination, especially when EUS is not available, can be useful for the diagnosis of these pathologies.

During cholangitis and biliary infections, bile culture is required to guide antimicrobial choice as in 
intraoperative bile cultures of patients undergoing pancreaticoduodenectomy or total pancreatectomy [38, 
45, 74].
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Figure 1. Schematic representation of the analytes present in bile and the clinical situations where bile molecular analyses 
could be informative. Created with BioRender.com

Biliary excretion evaluation is another field where bile collection would be of interest, as bile is an 
important route of elimination for many drugs, with a relevant impact on pharmacokinetics and drug-drug 
interactions [67, 75].

Further studies are required to elucidate whether bile analysis could also help to diagnose or to 
identify the mechanisms of disease in patients with jaundice, for instance, alterations of bilirubin 
metabolism or hepatocellular dysfunction [65]. In the case of obstructive jaundice, bile LB has 
demonstrated its extraordinary performance in the discrimination between benign and malignant 
strictures caused by BPT [20]. Although a minority of biliary strictures are benign [76], their accurate 
diagnosis is a dilemma and the sensitivity of current diagnostic methods does not exceed 60% [77]. As 
discussed below, the analysis of mutations in the cfDNA isolated from bile obtained during ERCP in patients 
with biliary strictures can diagnose the presence of BPT with 90% sensitivity [20], without the need for 
further explorations, and shortening not only the time for diagnosis but for oncological therapy. BPT have a 
very poor prognosis because they are often diagnosed in advanced stages, mainly due to nonspecific 
symptoms, and have ineffective oncological treatments. Therefore, biliary molecular analyses would benefit 
the management and outcome of these patients. In this context, the increased understanding of 
carcinogenic mechanisms in BPT is leading to new molecular classifications that facilitate the selection of 
targeted treatments and appropriate prognostic guidance. These molecular studies are commonly 
conducted on histological samples [78–81]. The use of bile or pancreatic juice obtained during ERCP, or 
collected after secretin-induced secretion [9, 63] in addition to enhancing diagnostic sensitivity might also 
guide treatment. Similarly, for biliary strictures developing in patients with potentially preneoplastic 
conditions (such as PSC, chronic pancreatitis, or pancreatic cysts) requiring ERCP, molecular analyses of 
bile obtained during the procedure can increase the diagnostic sensitivity for malignancy in cases where 
the anatomopathological study was inconclusive, or even anticipate the presence of tumors, which may 
impact transplant decisions [82].

Informative bile analytes
Informative analytes present in bile include bile acids, lipids, metabolites, proteins, cell-free DNA, cell-free 
microRNAs, extracellular vesicles, and circulating tumor cells. Different recent publications have reviewed 
the utility of these analytes, extracellular vesicles, and cells present in the bile [5–7, 9]. In the last section of 
this review, data regarding the identification of mutations and DNA methylation marks in bile cfDNA and 
the use of bile as a source material for the generation of organoids are summarized.

https://www.biorender.com/
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Lipids and metabolites

Bile acids, phospholipids, and cholesterol are the main lipid components in human bile and different 
strategies have been reported for their analyses [83–87]. Alterations in bile lipids composition have been 
described in different hepatopancreatobiliary diseases, so their eventual analysis in bile might help in the 
management of these patients. For instance, compared with controls, patients with cholangitis and/or 
jaundice with biliary obstruction present a reduction in total bile acids, cholesterol, phosphatidylcholine, 
and inorganic phosphate [88]. Moreover, the level of different lipids and their metabolites such as specific 
oxidized phospholipids (oxPLs) [89], the lipid peroxidation product 4-hydroxynonenal (4-HNE) [90], or a 
panel of ten lipid species [91], have been reported altered in patients with BPT.

Proteins

Changes in the levels of different proteins in bile have been reported to be associated with different 
pathologies [6, 7, 9]. Moreover, protocols to improve the methodology and to increase bile proteome 
coverage have been published over the years [92–95]. Nowadays, a number of reports propose that the 
biliary levels of different proteins may serve as cancer biomarkers, such as neutrophil gelatinase-associated 
lipocalin (NGAL), carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), or proteins of the 
mucin family, among others [9, 96]. Moreover, bile levels of insulin-like growth factor-I (IGF-I) in patients 
undergoing ERCP for biliary obstruction discriminate extrahepatic CCA from either pancreatic cancer or 
benign strictures [97]. The identification in human bile of a combination of five proteins was also able to 
discriminate malignant strictures [91]. As mentioned above, biliary levels of IL-6 or hepatocyte growth 
factor (HGF) have been proposed to predict liver failure after partial hepatectomy in patients with biliary 
tract carcinoma, outperforming serum analyses [31, 32]. Although this is a rapidly growing and changing 
field, the role of biliary proteins as biomarkers in different pathologies remains to be explored in 
prospective clinical studies. This could include for instance, the panel of proteins recently identified in 
serum extracellular vesicles for the prediction, early diagnosis, and prognostication of CCA in PSC patients 
[98], or components of the extracellular matrix which undergoes both quantitative and qualitative 
modifications after biliary damage, including transformation [99]. Therefore, further studies are required to 
demonstrate whether bile can serve as a matrix that enables the study of such changes and whether 
biomarkers in this context can help in the management of patients with hepatobiliopancreatic diseases.

Vesicles and microRNAs

Bile contains microRNAs that are stable and therefore have potential clinical utility as disease marker 
panels [100]. Moreover, bile extracellular vesicles contain abundant microRNA species [100], so could they 
be a source for their analyses. Changes in bile microRNA levels in different hepatopancreatobiliary diseases 
have been described and reviewed [6]. Altered content of microRNAs was reported in the bile from liver 
transplant recipients [101]. Moreover, concentrations of three microRNAs (miR-517a, miR-892a, and miR-
106a*) are increased in the bile of patients with biliary complications (ischemic-type biliary lesions) after 
liver transplantation [102]. Patients with CCA showed a significantly distinct microRNA profile in bile 
compared with patients with benign biliary strictures [103] or with PSC patients [104]. All these findings 
indicate the potential diagnostic value of bile microRNAs.

Bile circulating tumor DNA and BPT

As in other biofluids, DNA molecules circulate freely in the bile of healthy and diseased individuals. In the 
case of cancer patients, a fraction of these cfDNA molecules corresponds to circulating tumor DNA (ctDNA) 
[19, 105]. These molecules released by tumor cells preserve characteristics of the tissue of origin [1] and 
therefore could be used to diagnose the presence of pre-malignant or malignant cells anywhere in the 
biliary tract, or even in the pancreas.

Mutations

Several studies have demonstrated the feasibility and usefulness of detecting genetic mutations in bile 
cfDNA, surpassing the limited sensitivity of other reference diagnostic tools such as cytology or intraductal 
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tissue biopsies. Thus, articles published more than twenty years ago already reported the detection of 
specific mutations in tumor protein 53 (TP53) and Kirsten rat sarcoma (KRAS), the two most prevalently 
mutated genes in patients with BPT, in the bile of patients with malignant strictures [106–110]. Although 
conventional sequencing technologies applied in these studies lacked the sensitivity of current 
amplification and sequencing tools, making sensitivity highly variable between reports, they already 
highlighted the detection of mutations in bile cfDNA samples as a promising strategy to improve the 
diagnosis of malignant diseases. Furthermore, it was also noted that although the presence of KRAS 
mutations could not be used as a diagnosis of CCA in PSC patients, it should be considered as a risk factor 
for malignancy development, which might have implications for the timing of liver transplantation [111].

More recent work has shifted to the use of NGS panels, thus broadening the range of genomic 
alterations studied, and highlighting the inclusion of mutations for which targeted therapies exist. Firstly, in 
2018 Kinugasa and colleagues [56] analyzed 49 genes in bile samples of patients with gallbladder cancer 
using a custom enrichment panel and demonstrated its better performance compared to cytology (58.3% 
versus 45.8%) [56]. Similar results using other commercialized or custom cancer related-gene panels were 
obtained for patients with different pancreato-biliary tumors, reaching sensitivities ranging from 53% to 
96.2% [23, 55, 112–114]. These panels include genes frequently mutated in multiple cancer types, 
including biliopancreatic malignancies such as TP53, KRAS, cyclin-dependent kinase inhibitor 2A (CDKN2A), 
erb-b2 receptor tyrosine kinase 2 (ERBB2), erb-b2 receptor tyrosine kinase 3 (ERBB3), mothers against 
decapentaplegic homolog 4 (SMAD4), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 
alpha (PIK3CA), among others.

Moreover, Arechederra et al. [20] demonstrated that the detection of mutations in bile cfDNA is a very 
sensitive and specific method to early diagnose malignancy in patients with an initial clinical-pathological 
diagnosis of biliary stricture of benign or indeterminate origin. When these patients had their bile cfDNA 
analyzed at the time of initial diagnosis with an NGS panel called the Bilemut assay, a sensitivity of 100% 
sensitivity is achieved. Interestingly, of the four patients that harboured mutations but did not develop 
malignancy after the 1-year follow-up, one of them developed PDAC after extended follow-up and another 
died without a definitive diagnosis [20].

Most of the studies reported above compare the performance obtained with paired tissue and bile 
samples, and all concur in that more genomic alterations could be detected in bile than in the 
corresponding tissue, in agreement with the fact that LB recapitulates tumor heterogeneity better than 
tissue biopsy [22, 55, 56, 112]. In addition, the better sensitivity for cancer detection obtained in bile than 
in plasma is well demonstrated [21, 22, 55]. All in all, the increased sensitivity of new technologies, as well 
as the possibility to assess the presence of druggable-mutations, has boosted the potential utility of bile for 
both diagnosis of malignancy and targeting therapy.

DNA methylations

Together with the genetic landscape of mutations, the rewiring of the epigenomic features is a common and 
early event in carcinogenesis. In particular, the methylation landscape is generally characterized by diffuse 
DNA hypomethylation and a focal CpG island hypermethylation [115]. Importantly, DNA methylation 
patterns show cell type specificity, are highly stable as covalent modifications, and can be detected in cfDNA 
[116–119]. However, to date, few studies have focused on the differential detection of DNA methylation 
markers in bile.

The first report from 2003 showed a high hypermethylation of cyclin-dependent kinase inhibitor 2A 
(CDKN2A) (p16INK4a and p14ARF) promoter region in bile samples from patients with malignant biliary 
diseases compared with those harboring benign biliary disorders (53.5% and 6%, respectively) [120]. Of 
note, this study included 11 patients with PSC and showed a similar prevalence of methylation than in 
patients with malignancy [120]. These results, as those regarding KRAS mutation in PSC patients [111], 
suggest that the presence of these methylations in patients with PSC should be treated with caution as it 
may indicate an increased risk but not a diagnosis of CCA. Shin et al. [121] identified and validated that the 



Explor Dig Dis. 2024;3:5–21 | https://doi.org/10.37349/edd.2024.00037 Page 13

methylation status of five genes [cyclin D2 (CCND2), cadherin 13 (CDH13), glutamate ionotropic receptor 
NMDA type subunit 2B (GRIN2B), runt-related transcription factor 3 (RUNX3) and twist-related protein 1 
(TWIST1)] in bile detected the presence of extrahepatic CCA (eCCA) with a sensitivity of 83%, which was far 
higher than that of bile citology (46%). Similarly, the methylation of dickkopf WNT signaling pathway 
inhibitor 3 (DKK3), p16, secreted frizzled-related protein 2 (SFRP2), dickkopf WNT signaling pathway 
inhibitor 2 (DKK2), neuronal pentraxin 2 (NPTX2) and preproenkephalin (ppENK) was more frequently 
detected in the bile from patients with malignant than in bile from patients with benign biliary strictures 
[122]. We have also recently identified a DNA methylation marker (HOXD8) which accurately detects biliary 
tract cancers both in tissue and bile samples [123]. When combining the detection of mutations in 23 genes 
and methylation levels in 44 genes, an assay named BileScreen, a 90% sensitivity and 80% specificity in 
detecting pancreatobiliary tract cancer was obtained [124]. Finally, Vedeld and colleagues [82] aimed to 
establish a DNA methylation panel for the early and specific detection of CCA in PSC patients. Remarkably, 
these authors reported that the methylation status of cysteine dioxygenase type 1 (CDO1), cannabinoid 
receptor interacting protein 1 (CNRIP1), septin 9 (SEPT9), and vimentin (VIM) reached a sensibility of 
100% for detecting CCA in patients with underlying PSC up to 12 months prior to a confirmed CCA 
diagnosis [82].

Organoids BPT

As from other tissue origins, liver organoids have emerged as a novel in vitro tool with multiple 
applications, from the study of liver pathophysiology to drug discovery, personalized drug 
recommendation, toxicity assessment, or regenerative medicine [125]. Liver organoids can be derived from 
different sources including tissue biopsies, pluripotent stem cells, and even bile samples [125]. Importantly, 
in the context of the biliary tree, the difficulty in accessing healthy cholangiocytes and the limited samples 
from end-stage disease, make this model even more important. In 2019, a detailed protocol to establish 
patients-derived organoids from human bile collected via ERCP of patients with PSC was published [126]. 
The authors demonstrated that these bile-derived organoids could be expanded and maintained long-term 
in vitro and that they retained a biliary phenotype [126]. Shortly after, Roos and colleagues [70] 
demonstrated a successful organoid establishment using bile collected via not only ERCP but also from 
gallbladder after resection and also by percutaneous transhepatic cholangiopathy drainage (PTCD). 
Interestingly, organoids initiating cells in bile are likely of extrahepatic origin and not intrahepatic, and 
although all organoids initiated from these three sources of bile show features similar to cholangiocytes, 
regional-specific characteristics (common bile duct or gallbladder) were highlighted depending on the 
procedure employed to obtain the bile [70]. Importantly, these bile-cholangiocyte organoids were capable 
of repopulating human extrahepatic bile duct scaffolds [70], suggesting their future application in the field 
of regenerative medicine. Shifting to patient-derived organoids, transcriptomic analysis of PSC organoids 
revealed an immune-reactive phenotype compared to non-PSC organoids, demonstrating that these 
organoids preserve disease characteristics [126–128]. Although not much information exists on bile-
derived tumor organoids, when available, they will be a very useful tool for molecular and pharmacological 
studies. In the context of bile collected from patients with cancer, and similar to when working with tissue 
samples [129], a mixture of organoids derived from both normal bile duct epithelium and bile duct cancer 
cells could be obtained. Kinoshita and colleagues [130] established organoids from the bile of biliary cancer 
patients and proposed three protocols to enrich the culture in cancer organoids: by repeat passage, by 
xenografting, or by selection with a TP53 inhibitor when harboring a TP53 mutation.

Conclusions
Many studies and other published evidence, including clinical trials, are demonstrating the potential of LB 
strategies in the management of patients mainly in the oncology field. Although several biofluids are 
initially available as LB matrices, most studies are based on blood, due to its ease of collection and 
informative potential. However, other biofluids such as bile, given its complex and specific composition, 
which has been shown to vary in pathological conditions, and its anatomical location, in a confined and 
lesion adjacent space, can provide increased sensitivity and specificity in different clinical situations.
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Although much remains to be done, evidence compiled in this review demonstrates the potential of bile 
analysis to provide molecular information useful for the diagnosis, prognosis, and therapeutic guidance of 
different diseases, the outcome of pharmacological studies, or the establishment of cellular disease models 
and regenerative medicine strategies.

In this scenario, bile collection could be implemented in clinical practice in those patients undergoing 
procedures in which the biliary tract is exposed or accessible. Furthermore, it is not unreasonable to 
imagine that new strategies might be developed to collect bile in those patients in whom it could be 
informative to improve their management.

In the near future, standardized LB protocols and sensitive methodologies will revolutionize the 
management of cancer patients. Bile analysis may be part of this revolution and contribute also to the 
management of other diseases.
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