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Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive 
form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver 
fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic 
disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney 
disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which 
plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-
chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal 
cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into 
proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver 
sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in 
liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear 
factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential 
targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic 
inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the 
development and progression of NAFLD and NASH, as well as the associated treatments.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is a complex and multifactorial disease with clinical 
manifestations ranging from hepatic steatosis to an advanced form of non-alcoholic steatohepatitis (NASH), 
which can progress to cirrhosis and hepatocellular carcinoma (HCC) [1]. NAFLD is the most common 
chronic liver disease. It is commonly associated with the development and progression of many chronic 
metabolic diseases, including type 2 diabetes mellitus (T2DM) [2], cardiovascular disease (CVD) [3], and 
chronic kidney disease (CKD) [4]. Multiple genetic, epigenetic, and environmental factors are involved in 
the pathogenesis of NAFLD [5, 6]. Hepatic steatosis is characterized by abnormal liver lipid accumulation, 
which is mainly caused by impaired fatty acid metabolism, continuously circulating fatty acids from adipose 
tissue lipolysis, and de novo lipogenesis (DNL) [3]. Dyslipidemia is also often accompanied by liver 
inflammation and metabolic disorders, such as insulin resistance [7, 8]. A panel of experts has suggested a 
new name for NAFLD, metabolic dysfunction-associated fatty liver disease (MAFLD) that is defined by the 
evidence of hepatic steatosis with one of the following three criteria: overweight or obesity, presence of 
T2DM, or evidence of metabolic dysregulation [9]. In this review, the terminology of NAFLD will be used in 
the context.

Liver inflammation promotes the progression of hepatic steatosis to NASH and liver fibrosis. Both 
innate and adaptive immune cells are involved in liver inflammation during NAFLD progression, including 
monocytes [10], macrophages [11], neutrophils, myeloid-derived suppressor cells (MDSCs) [12], natural 
killer (NK) cells [13], natural killer T (NKT) cells [14], and B and T lymphocytes [15, 16]. Chemokine 
receptors such as C-C motif chemokine receptor 2 (CCR2) and C-X3-C motif chemokine receptor 1 (CX3CR1) 
play important roles in the recruitment of these cells [17]. Pro-inflammatory cytokines and growth factors 
secreted from activated immune cells can promote the progression of NAFLD/NASH, such as interferon-γ 
(IFN-γ), interleukin (IL)-1β, and granulocyte-macrophage colony-stimulating factor (GM-CSF) [13]. For 
example, metabolically activated macrophages in NASH livers can secrete proinflammatory cytokines and 
chemokines [e.g., IL-1β and C-C motif chemokine ligand 2 (CCL2)] to trigger the activation of hepatic stellate 
cells (HSCs) and infiltration of more inflammatory cells, resulting in the aggregation of liver inflammation 
and fibrosis [18]. Abnormal hepatic lipid accumulation, inflammation, and fibrosis, as well as the 
subsequent cell death, promote the progression of NAFLD to NASH and advanced liver disease, including 
cirrhosis and HCC [19]. Given the important roles of liver inflammation in liver diseases, treatment with 
anti-inflammatory drugs, either alone or in combination with metabolic signaling pathway regulators, is a 
potent strategy to prevent NAFLD progression [20].

In this review, we first summarize the role of extrahepatic and intrahepatic inflammation and 
inflammation-induced factors in the pathogenesis of NAFLD or NASH. Then, we discuss how systemic and 
local metabolites can regulate liver inflammation and hepatic cell responses and dig out the underlying 
molecular linkers or signaling pathways. Importantly, we explore the potential treatment options that can 
regulate abnormally metabolic and inflammatory pathways in NAFLD/NASH.

Metabolic diseases-associated extrahepatic inflammation and gut 
microbiota dysbiosis as an important linker
Extrahepatic inflammatory factors can contribute to the onset and progression of NAFLD, such as 
adipokines [21] and gut hormones [22]. For example, pro-inflammatory cytokines secreted from adipose 
tissues and intestinal epithelium cells, such as IL-1β and tumor necrosis factor (TNF)-α can transfer into the 
liver to induce immune cell activation [23, 24]. In this section, we discuss the roles of metabolic diseases 
and gut microbiota dysbiosis in extrahepatic and hepatic inflammation during the development and 
progression of NAFLD.

Obesity

The National Health and Nutrition Examination Survey (2003–2018) showed that the visceral adiposity 
index (VAI), which is calculated based on waist circumference (WC), body mass index (BMI), triglyceride 
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(TG), and high-density lipoprotein (HDL) cholesterol levels, was increased in the U.S. adults with NAFLD 
[25]. In subjects with obesity, increased fat deposition and chronic low-grade inflammation are typical 
features of adipose tissue dysfunction, which play important roles in the pathogenesis of NAFLD, including 
hepatic steatosis, inflammation, and liver fibrosis [26]. Multiple mechanisms are implicated in obesity-
induced NAFLD development, including insulin resistance, ectopic fat accumulation, the metabolism of free 
fatty acids (FFAs), and inflammatory adipokines secreted from adipose tissues. Adipose tissue insulin 
resistance contributes to the accumulation of intrahepatic TG associated with the upregulation in the 
production of FFAs [27]. The circulating FFAs are increased in subjects with obesity, which can induce 
insulin resistance in the liver and contribute to NAFLD development [28]. In addition, adipokines derived 
from obese tissues (e.g., brown adipose tissues) can be delivered into the liver to cause hepatic 
inflammation [26]. For example, an increase in circulating leptin levels and a decrease in adiponectin levels 
are associated with the increased severity of NAFLD [21]. Inflammatory cytokines and chemokines secreted 
from adipose tissue can impact systemic inflammation, including liver tissues. IL-23 expression in adipose 
tissues was increased in individuals with high low-density lipoprotein cholesterol (LDL-c) compared to 
subjects with low LDL-c. The increase of IL-23 expression was positively correlated with the expression 
levels of macrophage markers (e.g., CD11c, CD68, and CD86), pro-inflammatory cytokines (e.g., TNF-α, IL-
12, IL-18), and chemokines [e.g., C-X-C motif chemokine ligand 8 (CXCL8), CCL5, and CCL20] [29]. The 
expression of IL-2 in adipose tissues was also found to be significantly increased in obese persons 
compared to lean subjects, as well as the levels of fasting blood glucose (FBG), hemoglobin A1c (HbA1c), TG, 
and C-reactive protein (CRP). In addition, IL-2 expression was concomitant with the expression of cytokines 
IL-8 and IL-12a and chemokines and their receptors, such as CCL5, CCR2, and CCR5 [30]. Overall, adipose 
tissue metabolic disorder and inflammation play important roles in extrahepatic and hepatic inflammation.

Insulin resistance

The hormone insulin controls blood glucose levels. In the liver, insulin regulates glucose storage in the form 
of glycogen to avoid postprandial hyperglycemia. However, the loss of liver glycogen synthesis and aberrant 
lipid metabolites in metabolic disorders, such as obesity and NAFLD, can impair hepatic insulin action and 
cause insulin resistance [31, 32]. A study showed that BMI, fasting plasma glucose (FPG), TG, total 
cholesterol (TC), LDL-c, alanine aminotransferase (ALT), and the homeostasis model assessment of insulin 
resistance (HOMA-IR) index were significantly increased in NAFLD patients with T2DM compared to 
patients with T2DM alone [33]. Insulin resistance can downregulate the expression of oxysterol 7α-
hydroxylase (CYP7B1) to increase toxic cholesterol accumulation in hepatocytes, resulting in liver 
inflammation [34]. Insulin resistance can directly contribute to NAFLD by increasing DNL and indirectly 
suppress lipolysis by increasing the delivery of FFAs to the liver [35, 36]. The function of insulin signaling 
pathways will be illustrated in the section of DNL.

T2DM

T2DM is a chronic metabolic disease characterized by continual hyperglycemia. T2DM can also be induced 
by obesity and inflammation [37, 38], two contributing factors to NAFLD and NASH. Compared to patients 
with simple T2DM, T2DM patients with NAFLD had higher BMI and insulin resistance index and increased 
levels of TG [39]. Studies have shown that the prevalence of NAFLD in patients with T2DM is around 70% 
[40]. Insulin resistance is commonly a contributing factor for T2DM, promoting the development of NAFLD 
in patients with T2DM [41]. In addition, genetic factors such as patatin-like phospholipase domain-
containing protein 3 (PNPLA3)-I148M variant [42, 43], gut microbial metabolites [44], and adipocyte 
dysfunction [45] in T2DM patients can promote NAFLD development, and vice versa.

CKD

Inflammation plays a pivotal role in the development and progression of CKD. An increase in the 
neutrophil-to-lymphocyte ratio (NLR), a systemic inflammation marker, contributes to the risk of CKD in 
overweight or obese women and men, but not in individuals with normal weight [46]. In addition to a 
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higher NLR, patients with CKD at stages 1–2 have increased circulating levels of IL-6 and tumor necrosis 
factor receptor 2 (TNFR2) compared to controls [47]. Plasma biomarkers of tubular injury [e.g., kidney 
injury molecule-1 (KIM-1)] and inflammation (e.g., TNFR1 and TNFR2) are independently associated with 
CKD progression in children [48]. A higher prevalence of CKD has been shown in patients with NAFLD 
compared to that in subjects without NAFLD [49]. It has been shown that NAFLD is an independent risk 
factor for CKD [50]. However, the correlation between NAFLD and CKD may be interactive, as they share 
common causing factors such as unhealthy diets, dyslipidemia, gut microbiota dysbiosis, platelet activation, 
and aging [51, 52].

CVD

Pro-inflammatory cytokines such as IL-1β, IL-17, and TNF are commonly increased in the pathogenesis of 
CVD (e.g., coronary artery disease, myocardial infarction, and heart failure) and atherosclerosis [53–55]. 
CVD is the most common cause of mortality in patients with NAFLD, which is largely induced by abnormal 
lipid and lipoprotein metabolism [56]. Plasma hypertriglyceridemia and increased LDL-c, inflammatory 
cytokines, and extracellular vesicles are major contributing factors to CVD in patients with NAFLD [56, 57]. 
In addition, these two diseases share some risk factors, including obesity, insulin resistance, and T2DM. 
Several factors, including low-grade systemic inflammation, lipotoxicity, oxidative stress, adipokines, 
endoplasmic reticulum (ER) stress, microbiota dysbiosis, and other factors such as genetic and epigenetic 
variations, have been suggested to link CVD and NAFLD [58, 59]. However, the risk of CVD patients 
developing NAFLD and the associated mechanisms remain to be studied.

Dysbiosis of gut microbiota

The liver is anatomically and functionally connected with the intestine. The gut-liver axis is defined as the 
bidirectional relationship between the gut, along with gut microbiota, with the liver [60]. This axis delivers 
the signals from bile acids (BAs), immunoglobulins, and gut-microbiota-derived products and metabolites 
to regulate intestinal homeostasis and liver function [60, 61]. Dysbiosis of gut microbiota and increased 
intestinal permeability result in NAFLD progression by increasing the transportation of gut-microbiota-
derived components and metabolites into the liver [62]. For example, gut-microbiota-derived metabolite 
trimethylamine N-oxide (TMAO) from dietary choline, carnitine, and L-carnitine can aggravate hepatic 
steatosis in NAFLD by regulating BA metabolism through the regulation of farnesoid X receptor (FXR) 
signaling pathway [63]. In vitro treatment of TMAO together with pro-inflammatory cytokine TNF-α can 
increase the proliferation (detected by the cell-counting Kit-8 assay), migration (detected by the wound 
healing assay and the transwell assay), and invasion [detected by the expression levels of periostin, 
integrin-linked kinase (ILK)/RAC-α serine/threonine-protein kinase (AKT1), and the mammalian target of 
rapamycin (mTOR)] of mouse liver cancer cell line Hepa1–6 cells and human liver cancer cell line Huh7 
cells [64]. In addition, TMAO-induced exosomes from hepatocytes can impair endothelial cell function and 
promote inflammation [65]. Gut microbiota can synthesize the secondary BAs (e.g., ursodeoxycholic acid) to 
regulate liver inflammation and hepatocyte apoptosis [66].

Gut microbiota also plays important roles in obesity [67], insulin resistance [68], T2DM [69], CKD [70], 
and CVD [71]. The underlying cellular and molecular mechanisms of gut-microbiota-mediated functions in 
metabolic disorders are highly similar. These actions mainly include (1) the activation of innate and 
adaptive immune cells through bacterial components [e.g., CpG-rich oligonucleotides, lipopolysaccharides 
(LPSs), lipoteichoic acids (LTAs)], (2) energy metabolism [e.g., the production of short-chain fatty acids 
(SCFAs)], (3) the synthesis of secondary BAs, (4) other byproducts derived from potentially harmful 
bacteria (e.g., TMAO) [72–74].

Overall, systemic metabolic disorders and inflammation contribute to the development and 
progression of NAFLD (Figure 1). Some specific examples are listed in Table 1. The above-mentioned 
diseases and metabolic syndromes are commonly associated with NAFLD and liver inflammation.
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Figure 1. Inflammation contributes to the development and progression of NAFLD. Chronic metabolic diseases including 
obesity, type 2 diabetes, CKD, and CVD, as well as gut microbiota dysbiosis, can induce liver inflammation to promote the 
development and progression of NAFLD. LSEC: liver sinusoidal endothelial cell. Created with BioRender.com

Table 1. Extrahepatic inflammation and metabolic disorders contribute to NAFLD development

Metabolic 
diseases

Factors or regulators Hepatic inflammation and 
steatosis

References

Production of adipokines (e.g., increase of leptin levels and 
decrease of adiponectin levels)

Induce hepatic inflammation [21]

Adipose tissue insulin resistance Increase hepatic TG 
accumulation

[27]

Obesity

Production of FFAs Increase hepatic steatosis [28]
High levels of FPG Increase liver DNL [33, 36]Insulin 

resistance Downregulation of CYP7B1 expression Increase hepatic cholesterol 
accumulation

[34]

Continual hyperglycemiaT2DM
Insulin resistance 

Cause hepatic liver 
accumulation

[39, 41]

CKD High circulating levels of IL-6 and TNFR2 Cause liver inflammation [47]
Increased levels of proinflammatory cytokines such as IL-1β 
and TNF

Cause liver inflammation [53–55]CVD

Dysregulation metabolism of lipids and lipoproteins Increase hepatic steatosis [58, 59]

Hepatic inflammation and causal factors
Hepatic injury, inflammation, and metabolism dysfunction play important roles in NAFLD development. 
Meanwhile, cell activation and death, liver inflammation, and fibrosis aggregate and accelerate NAFLD 
progression to NASH and HCC [75, 76]. In this section, we review some cellular processes that cause and 
promote liver inflammation and NAFLD progression.
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Hepatic DNL

Hepatic DNL contributes to fat accumulation in the fatty liver during the development and progression of 
NAFLD. Several transcriptional factors are involved in this process, such as sterol regulatory element-
binding transcription factor-1c (SREBF-1c) [77] and peroxisome proliferator-activated receptor γ (PPARγ) 
[78], which can be regulated by non-coding RNAs (e.g., miR-615-5p and miR-130a). For example, in mice 
with fructose-induced NAFLD, hepatic SREBF-1c activation upregulated the expression of fatty acid 
synthase (FAS) an acetyl-coenzyme A carboxylase (ACC) to increase hepatic lipid accumulation [79]. In 
contrast, the expression levels of messenger RNAs (mRNAs) encoding enzymes of fatty acid and TG 
synthesis, such as ACC and FAS were decreased in the liver tissues of sterol regulatory element-binding 
protein-1c (SREBP-1c)-deficient mice with a normal diet [80]. The binding of SREBP-1c with sterol 
regulatory elements (SREs) of target lipogenic genes can be regulated by insulin and insulin-like growth 
factor signaling pathways [81]. Elevated hepatic DNL promotes NASH progression by inducing liver 
inflammation and fibrosis, which can be suppressed by inhibition of adenosine triphosphate-citrate lyase 
(ACLY), an enzyme in charge of generating acetyl-coenzyme A (CoA) and oxaloacetate from citrate [82].

Hepatocyte death

Apoptosis is a form of programmed cell death. Hepatocyte apoptosis is often shown in cell or animal models 
and patients with NAFLD. Both the extrinsic (death-receptor-mediated) and intrinsic (organelle-initiated) 
pathways are activated during hepatocyte apoptosis [83]. For example, oleic acid (OA) can cause lipid 
accumulation in hepatocytes and their apoptosis by inducing mitochondrial membrane dysfunction and 
upregulating death receptor 5, the ligand of tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) [84, 85]. Lysophosphatidylcholine (LPC), a metabolite derived from palmitic acid (PA), can directly 
cause hepatocyte cell rounding by reducing cellular extracellular matrix adhesion and cell-cell junction to 
cause hepatocyte apoptosis [86].

Pyroptosis is a programmed cell death accompanied by the activation of inflammasomes [87]. PA as a 
saturated FFA can induce pyroptosis in HepG2 cells by activating the expression of NOD-like receptor 
family pyrin domain-containing 3 (NLRP3) [88]. The release of extracellular NLRP3 inflammasome 
particles from injury hepatocytes can activate HSCs to express IL-1β and α-smooth muscle actin (α-SMA) 
proteins, leading to liver inflammation and fibrosis [89].

Ferroptosis, a non-apoptotic form of programmed cell death, has been exhibited in NAFLD and HCC 
[90]. An increase in iron accumulation and lipid peroxidation is shown in ferroptosis. Currently, the 
underlying mechanism of ferroptosis in NAFLD is not fully understood. Several genes have been shown to 
play important roles in ferroptosis in the case of NAFLD, such as glutathione peroxidase 4 (GPX4) [91], 
enolase 3 (ENO3) [92], tripartite motif-containing 59 (TRIM59) [93], and period circadian regulator 2 
(PER2) [94].

Hepatocytes can also undergo necroptosis, a regulated process of necrotic cell death in NAFLD and 
NASH [95, 96]. The signaling pathway of receptor-interacting protein kinase (RIPK)/mixed lineage kinase 
domain-like protein (MLKL) is activated during hepatocyte necroptosis in NAFLD [95, 96]. The clearance of 
necroptotic hepatocytes by macrophages is impaired in NASH due to the upregulation of the CD47/signal 
regulatory protein α (SIRPα) axis [97].

Hepatic fibrogenesis

Activated HSCs are the main cells that differentiate into myofibroblasts during liver fibrosis [98], and small 
parts of myofibroblasts are derived from portal fibroblasts and mesenchymal stem cells (PMSCs). Myeloid 
differentiation primary response 88 (MyD88) plays a pivotal role in HSC activation and the expression of 
extracellular matrix proteins, including α-SMA and collagen I [99]. Activation of MyD88/CXCL10 signaling 
pathway in HSCs can promote macrophage M1 polarization through CXCR3 by activating Janus kinase 
(JAK)/signal transducer and activator of transcription 1 (STAT1) signaling pathway. On the contrary, 
inhibition of CXCL10 secretion can reduce macrophage M1 polarization and decrease liver fibrosis [99]. 
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Overexpression of some key genes such as ubiquitin-specific protease 33 (USP33) can regulate HSC 
activation and metabolic programming (e.g., glycolysis) to promote liver fibrosis [100]. Inflammation can 
further promote the activation of HSCs. For example, IL-18 is not only involved in the signaling pathway of 
NLRP3 inflammasome-mediated HSC activation, but also it can induce the trans-differentiation of HSCs into 
myofibroblasts by interacting with its receptor [101].

Injury of liver gatekeeper cells

LSECs, hepatic gatekeeper cells, play multiple roles in chronic liver diseases [102], including NAFLD, NASH, 
and HCC. Gut-microbiota-derived components and metabolism (e.g., LPS and palmitate) can induce the 
capillarization of LSECs to promote NASH, liver fibrosis, and HCC development via the products such as 
mitogenic factor sphingosine-1-phosphate (S1P) and vascular cell adhesion molecule-1 (VCAM-1) [103, 
104]. In addition, injury LSECs can secrete many proinflammatory cytokines (e.g., IL-6 and TNF-α) and 
chemokines (e.g., CCL2 and CXCL9) to mediate liver inflammation [102].

Ductular reaction and biliary epithelial cell injury

Hepatic ductular reaction (DR), a reactive bile duct hyperplasia, is involved in the proliferation and 
differentiation of cholangiocytes and hepatocytes or hepatic progenitor cells [105]. Feeding C57BL/6J mice 
a choline-deficient, amino acid-defined diet with 60% fat by calories for eight weeks can induce hepatic DR 
and advanced liver fibrosis [106]. The presence of centrilobular DR may predict the progression of liver 
fibrosis in patients with NASH [107]. The molecular signaling pathways in DR during NASH were reviewed 
in a literature report [105]. Angiogenic factors such as vascular endothelial growth factor and angiopoietin 
2 play an important role in DR during NASH [108].

Biliary epithelial cells can differentiate into hepatocytes in chronic liver injury or severe liver disease 
[109, 110]. Cholangiocytes are a heterogenous population of epithelial cells that line bile ducts. 
Cholangiocytes can be activated to participate in hepatic inflammation and regulate liver fibrosis by 
interacting with myofibroblasts [111]. For example, cholecystokinin (CCK) released by duodenal 
enteroendocrine I-cells in response to dietary lipids and proteins can activate CCK receptors on 
cholangiocytes to promote NASH progression. Treatment with a CCK inhibitor proglumide can ameliorate 
choline-deficient, ethionine-supplemented (CDE) diet-induced NASH by activating FXR signaling pathway 
and altering gut microbiota profiles [112]. An accumulation of yes-associated protein (YAP)-positive 
reactive-appearing ductular cells (RDCs) in NAFLD/NASH has also been shown during liver fibrosis and 
hepatocyte injury [113]. In addition, senescent cholangiocytes can express pro-inflammatory cytokines, 
such as IL-1β, IL-6, and TNF-α, to promote liver inflammation and fibrosis [114]. Angiotensin-converting 
enzyme 2 (ACE2) is highly expressed in cholangiocytes within the liver, which may accelerate the impact of 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in NAFLD or NASH patients [115, 
116].

Inflammation of liver innate and adaptive immune cells

The innate immune cells, including monocytes, liver macrophages or resident Kupffer cells (KCs), dendritic 
cells (DCs), neutrophils, NK cells, and NKT cells, play pivotal roles in liver inflammation during NAFLD and 
NASH [117, 118]. Accumulating evidence shows that liver macrophages or KCs play an essential role in liver 
metabolism and inflammation [119]. KC cells can be further differentiated into two populations including a 
major CD206lowendothelial cell-selective adhesion molecule negative (ESAM–) population (KC1) and a 
minor CD206highESAM+ population (KC2) [120]. The KC2 population is increased in fatty livers in obese 
mice with upregulation of the gene expression of carbohydrates and lipid metabolisms [120]. This study 
also found that KC2 cells function on hepatic lipid peroxidation and oxidative stress, with a relatively high 
expression of CD36 as fatty acid transporter. In contrast, KC1 cells express genes for the immune response 
and immune system process under the analysis of the Gene Ontology (GO) category [120]. Pro-
inflammatory cytokines (e.g., TNF-α and IL-6) and M1 macrophages markers (e.g., CD11c) were 
significantly increased in the livers of hyperglycemic mice expressing hepatocyte-specific glycerol-3-
phosphate phosphatase (G3PP) that hydrolyzes glycerol-3-phosphate (Gro3P) to glycerol [121]. 
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Accumulating data reveal that an elevated NLR ratio is a risk factor for NAFLD and NAFLD-related HCC 
[122, 123]. However, a mouse study indicated that the depletion of neutrophils at the resolution phase of 
NASH can impair the repairing and remodeling processes due to the imbalance in the ratio of pro- and anti-
inflammatory cytokines and macrophage phenotypic switching [124]. In addition, DCs [125, 126], NK cells 
[13], and NKT cells [127] play diverse roles in the pathogenesis of NAFLD and NASH.

In addition to innate immunity, adaptive immune cells also play critical roles in liver inflammation in 
NAFLD and NASH-related progression of HCC [128, 129]. T cells can secrete proinflammatory cytokines and 
profibrotic mediators to promote liver inflammation and fibrosis in NAFLD/NASH, including CD4, CD8, and 
γδ T cells [130]. For example, the ratios of regulatory T cells (Tregs) with T helper 1 (Th1) cells, Th17, and 
CD8 T cells are increased in the pathogenesis of NAFLD, NASH, fibrosis, and NASH-associated HCC [16, 131]. 
Recent studies have also demonstrated that CD4‒CD8‒ double negative T cells make an important 
contribution to NAFLD and NASH [132, 133]. B cells play dual roles in diet-induced NAFLD by secreting 
cytokines and antibodies, a phenomenon that was reviewed in a recent literature report [134]. Overall, both 
innate and adaptive immunities are implicated in NAFLD/NASH-related inflammation.

Aberrant energy metabolism in the liver
Interactions between diet and gut microbiota play an essential role in NAFLD pathogenesis, including the 
resulted metabolites of amino acids, glucose, and lipids, as well as gut-microbiota-associated products [135, 
136]. The alteration of gut microbial metabolites such as SCFAs, secondary BAs, and choline metabolites can 
induce the development and progression of NAFLD [137]. Aberrant energy metabolism in the liver can also 
contribute to hepatic inflammation, fibrosis, NASH, and HCC [138]. This section discusses the metabolism of 
amino acids, BAs, glucose, lipids or lipoproteins, and SCFAs in the pathogenesis of NAFLD or NASH.

Amino acids

Both essential (e.g., histidine and threonine) and non-essential (e.g., alanine, glycine, and serine) amino 
acids play important roles in liver metabolism, such as lipid and nucleotide syntheses [139]. Circulating 
levels of amino acids impact both systemic and liver inflammation [140, 141]. Serum baseline levels of 
leucine, valine, and total branched-chain amino acids (BCAAs; including leucine, isoleucine, and valine) are 
significantly increased in patients with NAFLD compared to non-NAFLD controls [142]. In addition, serum 
leucine and total BCAAs are independent risk factors for the onset of NAFLD [142]. It has been shown that a 
decreased BCAA metabolism rate in the adipose tissue contributes to the increased levels of circulating 
BCAAs [143]. The catabolism of BCAAs is mainly regulated by PPARγ in inguinal white and brown adipose 
tissues in mice [144]. The impaired catabolism of BCAAs and downregulated BCAA metabolism gene sets in 
liver tissues have been shown in the pathogenesis of NAFLD and NASH [145, 146]. Studies also show that 
circulating BCAAs levels are negatively correlated with hepatic and peripheral insulin sensitivity and an 
increased valine level predicts an increase in hepatic fat [147]. Supplementation of BCAAs in a high-fat diet 
(HFD) by replacing carbohydrate calories not only can aggravate hepatic inflammation, fibrogenesis, and 
mitochondrial dysfunction but can decrease DNL [141]. Intake of a high-methionine diet (HMD) containing 
2.58% of methionine can increase NAFLD development in mice by inhibiting hepatic H2S production. HMD 
treatment inhibits lipid catabolism and glycolysis metabolism and reduces adenosine triphosphate (ATP) 
production, resulting in mitochondrial dysfunction, oxidative stress, and inflammation in the liver [148]. 
Treatment of a high-protein (HP) diet significantly reduces HFD-induced hepatic steatosis in mice, causing a 
reduction in the plasma concentration of BCAAs and hepatic concentration of monomethyl branched-chain 
fatty acids (BCFAs) [149].

Glucose

Glucose metabolism plays an important role in the pathogenesis of NAFLD [135, 150]. Insulin resistance 
can elevate blood glucose levels and increase DNL in the liver [151]. A study showed that about 40% of 
obese children had NAFLD with higher BMIs and fasting glucose, but lower insulin sensitivity indices 
compared to children without NAFLD [152]. In fatty liver, lipids such as diacylglycerols (DAGs) and 
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ceramides can induce hepatic insulin resistance [153]. Hepatic levels of glycogen were decreased in HFD-
fed mice, whereas mRNA expression levels of glycolysis rate-limiting enzymes hexokinase 2, 
phosphofructokinase, and pyruvate kinase were increased [154]. In addition, this study also showed that 
inhibiting glycolysis using 2-deoxy-D-glucose can reduce liver inflammation and fibrosis in liver-specific 
geranylgeranyl diphosphate synthase (GGPPS) knockout mice [154]. The levels of pyruvate are increased in 
the plasma and liver due to enhanced glycolysis of hepatocytes in the fatty liver. Pyruvate can be converted 
to oxaloacetate through anaplerosis to generate citrate through the tricarboxylic acid (TCA) cycle to 
enhance DNL [155]. Some key genes play important roles in hepatic glucose metabolism and steatosis. For 
example, one study showed that deletion of NOD-like receptor X1 (NLRX1) in mice can protect western diet-
induced hepatic steatosis, fibrosis, obesity, insulin resistance, and glycosuria by decreasing glycolysis and 
increasing fatty acid oxidation in hepatocytes [156].

Lipoproteins or lipids

An excessive accumulation of lipids in hepatocytes is a typical feature of NAFLD. NAFLD is defined as > 5% 
of hepatocytes with fatty accumulation in patients without excessive alcohol consumption (< 20 g/day for 
women and < 30 g/day for men) [157, 158]. In NAFLD and NASH, lipid uptake and DNL in the liver are 
increased, whereas fatty acid oxidation is not sufficient to metabolize lipids, resulting in lipid accumulation 
and liver injury with oxidative stress and mitochondrial dysfunction [159]. Lipid-sensitive nuclear 
receptors, such as FXR, liver X receptor (LXR), and PPARs are involved in hepatic lipid metabolism and DNL 
[160, 161]. For example, FXR activation can decrease hepatic levels of monounsaturated fatty acids by 
repressing the expression of stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol O-acyltransferase 2 
(DGAT2), and lipin 1 (LPIN1), and reduce the liver polyunsaturated fatty acids via decreasing lipid 
absorption [162]. LXR plays an important role in hepatic lipogenesis by upregulating the expression of 
SREBP-1c [163] and FFA uptake transporter CD36 [164].

SCFAs

SCFAs are fatty acids produced by gut microbiota via the fermentation of polysaccharides. Acetate, 
propionate, and butyrate are three major SCFAs produced by the gut microbiota, which have 
immunomodulatory functions by regulating the expression of G protein-coupled receptors (GPCRs) [165] 
and can activate histone deacetylases and enzymes involved in post-translational modification [166]. A 
growing amount of evidence shows that SCFAs play important roles in health and disease, including NAFLD 
and NASH [167, 168]. For example, probiotics can increase the production of SCFAs (e.g., butyrate) to 
reduce systemic inflammation in NAFLD rats by activating GPCRs (e.g., GPR109a) [169]. Fermentation of 
dietary fiber can produce acetate, propionate, and butyrate [170]. Dietary fiber treatment can improve 
NAFLD and NASH pathogenesis by reducing liver inflammation, oxidative stress, lipid accumulation, and 
cell death [171, 172].

Treatment with inulin, a digestive fiber, can significantly reduce liver lipid accumulation and fibrosis in 
NAFLD/NASH by regulating the free fatty acid receptor 2 (FFAR2)-mediated signaling pathway [173]. In 
addition, inulin consumption increases the concentration of acetate with a concomitant enrichment of gut 
microbial genera Bacteroides and Blautia.

Proteolytic metabolites

Proteolytic metabolites including amines, ammonia, indoles, phenolic compounds, hydrogen sulfide, and 
BCFAs play significant roles in metabolic diseases [174], including NAFLD. For example, the concentration 
of plasma iso-heptadecanoic acid (iso-C17:0), a monomethyl BCFA, has been found to decrease in the livers 
of children with steatosis [175]. Indole supplementation can decrease methionine- and choline-deficient-
diet (MCD)-induced hepatic steatosis, inflammation, and fibrosis in mice by suppressing HSC activation and 
hepatocyte inflammation [176]. Indole-3-acetic acid (I3A), a gut-microbiota-derived metabolite from 
dietary tryptophan, can improve oxidative stress and hepatic steatosis by increasing mitochondrial 
oxidative phosphorylation in a PPARγ-coactivator-1α-dependent manner [177].
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Molecular targets for NAFLD treatment
Many molecules are involved in the regulation of hepatic metabolism and inflammation. Here, we discuss 
some important proteins that can be used as targets for NAFLD treatment.

ACC

ACCs are important rate-limiting enzymes in DNL, which are in charge of the synthesis of malonyl-CoA from 
acetyl-CoA and control fatty acid β-oxidation in hepatocytes [178, 179]. Dual inhibitors of ACC1 and ACC2 
can reduce liver fat accumulation, lipotoxicity, and TGF-β-induced activation of HSCs [179, 180]. In addition, 
the selective inhibition of ACC1 can inhibit malonyl-CoA content, hepatic TG content, and liver fibrosis 
[178].

AMP-activated protein kinase

The AMP-activated protein kinase (AMPK) signaling pathway plays an essential role in the regulation of 
lipid metabolism in NAFLD, as well as in alcoholic fatty liver disease (AFLD). For example, AMPK activation 
can prevent the synthesis of fatty acids and cholesterol by upregulating the expression of genes involved in 
fatty acid oxidation and lipid decomposition, such as peroxisome proliferator-activated receptor γ 
coactivator 1 (Pgc1) and adipose triglyceride lipase (Atgl), and by down-regulating the expression of 
adipogenesis genes such as FAS and ACC [181]. Activation of the AMPK/ACC and AMPK/FAS signaling 
pathways can increase fatty acid oxidation and inhibit lipid synthesis to ameliorate steatosis in NAFLD 
pathogenesis [182]. Another study also shows that upregulation of the phosphorylation of AMPK or 
activation of AMPK/SIRT1 signaling pathway can significantly decrease hepatic TG content and ameliorate 
serum levels of LDL-c and ALT [183, 184].

FXR

Intestinal FXR activation can increase the production of ceramide in the ileum, which transfers into the liver 
and subsequently activates SREBP-1c to increase fatty acid production, resulting in hepatic steatosis [185]. 
In contrast, inhibiting intestinal FXR signaling can decrease diet-induced ileal ceramide production in cases 
of obesity, and ameliorate NAFLD. For example, the bioactive compound caffeic acid phenethyl ester works 
to inhibit FXR signaling by inhibiting bacterial bile salt hydrolase (BSH) to increase levels of tauro-β-
muricholic acid (T-β-MCA) in the intestine [186]. In the liver, FXR activation can suppress hepatic 
lipogenesis by reducing the expression of SREBP-1c, while FXR can also increase the expression of PPARα 
to promote FFA catabolism via β-oxidation [187].

Fibroblast growth factors

Fibroblast growth factors (FGFs) play essential roles in liver fibrosis and NASH progression. As a liver 
metabolic hormone secreted in response to various nutritional challenges, FGF21 plays a critical role in 
controlling liver fat and glucose metabolism, dietary protein intake, and body fat loss [188, 189]. The 
concentration of FGF21 can be regulated by the consumption of sugars regardless of their types, such as 
glucose, fructose, and sucrose [190]. The function of FGF21 is highly impacted by obesity-induced TNF-α in 
HFD-induced NAFLD by suppressing the expression of the FGF21 receptor, resulting in a decrease in FGF21 
sensitivity [191]. Lysophosphatidic acid (LPA) produced from LPC by a liver enzyme autotaxin can suppress 
the PPARα/FGF21 axis to exacerbate NAFLD [192]. Secreted FGF21 can activate its receptor FGFR2 to 
suppress the expression of SREBP-2 to suppress cholesterol biosynthesis [193]. Treatment with curcumin 
increases the expression of FGF15 and suppresses HFD-induced insulin resistance, glucose intolerance, and 
hepatic TG accumulation by regulating gut microbiota [194].

GPCRs

As receptors for BAs and FFAs, GPCRs have been shown to play essential roles in metabolic disorders, 
including NAFLD and NASH [195]. The FFARs/GPCRs signaling pathways are involved in the pathogenesis 
of NAFLD and NASH. For example, GPR40-deficient mice with a low-fat diet (LFD) show metabolic 
abnormalities, including an increase in body weight, insulin resistance, and levels of cholesterol and ALT 
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[196]. The hepatocyte-specific deletion of cannabinoid receptor 1 (CB1) can inhibit HFD-induced insulin 
resistance in mice [197]. Knockout of GPR40 in low-density lipoprotein-receptor (LDLR)-deficient mice 
increases HFD-induced plasma levels of cholesterol and FFAs, hepatic steatosis, inflammation, and fibrosis, 
potentially through activation of CD36-mediated signaling pathway [198].

Regulator of G protein signaling (RGS) proteins negatively regulate GPCR signaling. For example, RGS5 
in hepatocytes can inhibit TAK1 phosphorylation and the subsequent activation of the c-Jun-N-terminal 
kinase (JNK)/p38 signaling pathway to reduce NAFLD [199].

Hypoxia-inducible factor-1

Hypoxia-inducible factor-1α (HIF-1α) is ubiquitously implicated in the development of various chronic liver 
diseases, such as NAFLD and HCC [200, 201]. High trans-fat diet-induced weight gain, liver inflammation 
evidenced by an increased expression of TNF-α and IL-1β, and liver collagen production are decreased in 
mice with hepatocyte-specific deletion of gene Hif1a compared to wild-type mice [202]. On the contrary, 
silencing Hif1a promotes OA- and PA-induced lipid accumulation in HepG2 cells in vitro. Meanwhile, loss of 
HIF-1α increases the expression of pro-inflammatory cytokines IL-6 and TNF-α and lipid-metabolism-
related proteins, such as apolipoprotein E (APOE) and SREBP-2 [203]. Exposure to intermittent hypoxia 
accelerates lipid accumulation in hepatocytes (human L02 cell line), which can be suppressed by silencing 
Hif2a or by treatment with a PPARα agonist. In contrast, hypoxia-induced overexpression of HIF-2α induces 
the suppression of fatty acid β-oxidation and promotes lipogenesis in the liver by suppressing PPARα 
expression [204].

Insulin-mediated signaling pathway

The binding of insulin with its receptor (IR) can regulate the phosphoinositide-3-phosphate kinase (PI3K)/
AKT pathway to induce glycogen synthesis by inhibiting the expression of glycogen synthase kinase 3 [205]. 
In addition, suppression of both AKT1 and AKT2 in the liver can cause insulin resistance and inhibition of 
lipid synthesis. In DNL, increased production of DAG can induce the translocation of protein kinase Cε 
(PKCε) to cell membranes to inhibit insulin/IR signaling [206].

Nuclear factor erythroid 2-related factor 2

In NAFLD, oxidative stress is commonly and significantly increased in liver inflammation, which is 
accompanied by the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression [207]. 
Nrf2 is a transcription factor, which can induce the expression of antioxidant response element-dependent 
genes to display antioxidant activity [208]. The expression of Nrf2 in liver tissues of patients with NAFLD/
NASH has been shown to correlate with the grade of liver inflammation but not the grade of steatosis [209]. 
Pharmacologic activation of Nrf2 using TBE-31 decreased hepatic inflammation, apoptosis, fibrosis, 
oxidative stress, and ER stress in mice with high-fat plus fructose, which was abrogated in Nrf2-deficient 
mice [210]. Another study showed that food-derived compound apigenin, a modulator of PPARγ, can 
increase Nrf2 nucleus translocation to inhibit the expression of lipid metabolism-related genes and increase 
the expression of oxidative stress-related genes, resulting in amelioration of HFD-induced NAFLD [211]. 
However, one study showed that, compared to Nrf2-LoxP mice, hepatocyte-specific Nrf2-knockout mice 
with HFD had significantly less liver size, inflammation, and steatosis, which was not shown in mice with 
macrophage-specific Nrf2-knockout [212]. A molecular mechanism study showed that knockout of Nrf2 can 
diminish the expression of PPARγ and its downstream lipogenic genes in primary hepatocytes [212]. 
Therefore, the role of Nrf2 in NAFLD may be cell dependent.

PPARs

There are three PPAR isoforms expressed in various tissues, including PPARα, PPARβ/δ, and PPARγ. PPARα 
is ubiquitously present in different tissues but highly expressed in the liver, while PPARβ/δ is mainly 
expressed in skeletal muscle and PPARγ is highly expressed in adipose tissue [213]. Pparα-deficient mice 
with a HFD have aggravated liver and adipose tissue inflammation compared to wild-type mice [214]. Both 
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hepatic and whole-body deficiency of Pparα in mice can promote HFD-induced liver inflammation and 
NAFLD [215]. Hepatic Pparα-deficient mice with a standard diet can develop NAFLD during aging. In 
addition, PPARα can regulate hepatic and plasma FGF21 expression in mice with NASH [216]. Treatment 
with the PPARα agonist Wy-14643 can decrease hepatic steatosis, hepatocyte ballooning, and liver 
inflammation by suppressing nuclear factor-κB (NF-κB) and JNK signaling pathways and inhibiting the 
infiltration of macrophages and neutrophils in NASH livers [217]. The PPARα signaling pathway also 
contributes to the protective effects of torularhodin, a β-carotene-like compound from yeast Sporidiobolus 
pararoseus, on liver dyslipidemia and inflammation via up-regulating fatty acid β-oxidation, cholesterol 
excretion, and anti-inflammation gene expression [218]. The latest preclinical studies in diet-induced 
murine models also show that PPARα is a sexually dimorphic treatment target for NAFLD [219].

N-stearoylethanolamine (NSE), a bioactive lipid amine, can bind with PPARγ to inhibit the nuclear 
translocation of NF-κB in LPS-stimulated peritoneal macrophages and to reduce the expression of PPARγ-
regulated genes solute carrier family 27 member 1 (SLC27A1) and interleukin-1 receptor antagonist 
(IL1RN) in insulin-resistant rats to suppress inflammation [220]. The roles of PPARβ/δ in the regulation of 
hepatic lipid and glucose metabolism and NAFLD development have been reviewed in another report, 
which is not discussed here [221].

Sodium-glucose co-transporter 2

The expression of sodium-glucose co-transporter 2 (SGLT2) is upregulated in liver samples from patients 
with steatosis and NASH compared to liver samples from individuals without NAFLD [222]. Treatment with 
SGLT2 inhibitor suppressed hepatic lipid accumulation, inflammation, and fibrosis in mice with diet-
induced NASH by decreasing hepatocellular glucose update [222]. SGLT2 inhibitors are anti-hyperglycemic 
drugs that have been applied to treat diabetes [223], as well as other metabolic disorders such as CVD and 
renal dysfunction [224]. The effects of SGLT2 inhibitors on hepatic steatosis and fibrosis in patients with 
NASH and T2DM have been summarized in a review paper [225].

SREBPs

SREBP-1 consists of two isoforms, SREBP-1a and SREBP-1c. Specific SREBP-1a knockout in both 
hepatocytes and macrophages can exacerbate MCD-induced liver injury, while fatty liver disease is 
significantly worsened in mice with SREBP-1a knockout in hepatocytes compared to that in mice with 
SREBP-1a knockout in macrophages and wild-type mice [226]. Downregulation of SREBP-1c expression in 
HFD-fed rats with the treatment of Capparis spinosa can decrease hepatic steatosis and fibrosis by 
regulating the genes in DNL and β-oxidation signaling pathways [227].

In summary, the above-mentioned proteins play important roles in the regulation of hepatic 
inflammation and energy metabolism. A graphic figure summarizes the roles of some of these proteins in 
liver inflammation and lipid metabolism during NAFLD development and progression (Figure 2).

NAFLD or NASH treatments by regulating inflammation and metabolic 
disorder
Appropriately inhibiting liver inflammation and regulating metabolic signaling pathways can decrease 
hepatic steatosis, fibrosis, and cell apoptosis to ameliorate NAFLD/NASH progression. Many molecular 
inhibitors and drugs, such as antidiabetic and anti-obesity drugs, antibiotics, pre/probiotics, caspase 
inhibitors, and CCR2/5 antagonists, are currently under clinical investigation for NAFLD or NASH treatment 
[228].

In this section, we review different classes of treatment agents undergoing clinical trials (Table 2), 
including vitamins [229, 230], FGF21 agonist antibodies or analogs [231, 232], diets [233], combined 
metabolic activators (CMAs) [234], anti-T2DM drugs [235], PPARγ agonist [236], regulation of lipogenesis 
[237], bacterial alteration [238], hormone therapy [239], and C-C chemokine receptors antagonist [240].



Explor Dig Dis. 2023;2:246–75 | https://doi.org/10.37349/edd.2023.00029 Page 258

Figure 2. Molecular signaling pathways involved in NAFLD development and progression. Activation of AMPK/ACC signaling 
pathway can inhibit lipogenesis. The PPARα/FGF21 signaling pathway can be activated to increase fatty acid β-oxidation and 
suppress cholesterol biosynthesis. The activation of CD36 and fatty acid transport proteins (FATPs; e.g., FATP2) can promote 
the uptake of fatty acids (FAs), causing lipid steatosis. In contrast, HIF-1α can upregulate free-fatty-acid-induced lipid 
accumulation in hepatocytes and increase the expression of the pro-inflammatory cytokines IL-6 and TNF-α. In addition, FXR 
activation can increase the synthesis of ceramides in the intestine, which translocate into the liver to activate SREBP-1c, 
promoting lipogenesis or inducing hepatocyte death. Arrows and stop arrows indicate activation and repression, respectively. 
Created with BioRender.com

Table 2. Clinical trials for NAFLD or NASH treatments

Treatment Class Target Trial number References
δ-tocotrienol and α-
tocopherol

Vitamin E A combined treatment of two compounds 
improved hepatic steatosis, oxidative stress, 
and insulin resistance in patients with NAFLD. 
δ-tocotrienol was more effective than α-
tocopherol in decreasing body weight, 
inflammation, and apoptosis

SLCTR/2019/038# [229]

Fish oil plus vitamin 
D3

Fish oil and 
vitamin D3

The supplementation of two products reduced 
biomarkers of hepatocellular damage and 
plasma TAG levels in patients with NAFLD, 
which had additional benefits for insulin levels 
and inflammation compared to fish-oil-treated

ChiCTR1900024866* [230]

Efruxifermin A long-acting 
Fc-FGF21 
fusion protein

Treatment with efruxifermin significantly 
decreased hepatic fat fraction measured by 
magnetic resonance imaging-proton density 
fat fraction in patients with NASH and fibrosis 
(F1–F3 stages)

NCT03976401 [231]

Pegbelfermin A PEGylated 
human FGF21 
analog

The subcutaneous administration of 
pegbelfermin significantly reduced the hepatic 
fat fraction in patients with NASH

NCT02413372 [232]

https://www.biorender.com/
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Treatment Class Target Trial number References
Mediterranean diet 
(MD) and LFD

Diets A 12-week consumption of MD and LFD in 
adolescents with obesity and NAFLD reduced 
the BMI, fat mass, hepatic steatosis, and 
insulin resistance, decreased high 
transaminase levels, and improved 
inflammation and oxidative stress

NCT04845373 [233]

L-carnitine tartrate, 
nicotinamide riboside, 
L-serine, and N-acetyl-
l-cysteine

CMAs CMA significantly reduced hepatic steatosis 
and levels of aspartate aminotransferase, 
ALT, uric acid, and creatinine

NCT04330326 [234]

Tofogliflozin and 
glimepiride

An inhibitor of 
SGLT2 and 
anti-type 2 
diabetes drug

Hepatic steatosis, hepatocyte ballooning, and 
lobular inflammation were decreased post-
tofogliflozin treatment, whereas only 
hepatocellular ballooning was improved after 
the glimepiride treatment. In addition, the 
expression of genes related to energy 
metabolism, inflammation, and fibrosis was 
overturned after the tofogliflozin treatment

NCT02649465 [235]

Lifestyle intervention 
(LSI) + pioglitazone 
(PGZ)

Lifestyle + 
PPAR-γ 
agonist

A combined PGZ and LSI treatment 
significantly decreased liver fat in both 
women and men compared to the LSI 
treatment alone, but it proved less effective in 
men than in women

NCT00633282 [236]

Diacylglycerol 
acyltransferase 2 
inhibitor (DGAT2i) and 
acetyl-coenzyme A 
carboxylase inhibitor 
(ACCi)

Inhibition of 
intrahepatic TG 
synthesis and 
blockade of 
DNL

A combined treatment of DGAT2i, PF-
06865571, and ACCi (PF-05221304, 
clesacostat) was applied to treat NASH with 
liver fibrosis

NCT04321031 [237]

Helicobacter (H.) pylori 
eradication treatment

Bacterial 
alteration

H. pylori eradication significantly decreased 
FBG, glycosylated hemoglobin, HOMA-IR, 
TGs, BMI, and inflammatory markers such as 
high-sensitivity CRP, and inflammatory 
cytokines such as IL-6 and TNF-α

ChiCTR2200061243* [238]

Recombinant leptin 
therapy

Hormone 
therapy

Exogenous leptin treatment decreased 
hepatic steatosis and injury in patients with 
NASH who have relative leptin deficiency with 
partial lipodystrophy

NCT00596934 [239]

Cenicriviroc C-C chemokine 
receptors type 
2 and 5 dual 
antagonist

In response to cenicriviroc treatment, patients 
with NASH achieved ≥ 1-stage fibrosis 
improvement at year 1 and maintained it at 
year 2

NCT02217475 [240]

# Sri Lanka Clinical Trials Registry; * Chinese clinical trial registration

Furthermore, combinational therapies are potential therapeutic options for NAFLD or NASH treatment. 
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone (an incretin hormone) with numerous 
metabolic functions, including stimulation of insulin secretion, reduction of food intake, and inhibition of 
pancreatic β-cell apoptosis [241]. GLP-1 receptor agonists (e.g., short-acting agent lixisenatide and long-
acting agent liraglutide) as glucose-lowering agents have been developed to treat T2DM and other 
metabolic or chronic diseases [242]. A dual agonist against GLP-1 and FGF21 improves the non-alcoholic 
fatty liver disease activity score (NAS) with improved efficacy compared to each single treatment alone 
[243]. Another clinical trial shows that a combination of Clostridium butyricum capsules with rosuvastatin 
[to lower bad cholesterol or low-density lipoprotein (LDL) and TG], which is used to decrease high 
cholesterol and TG levels, can effectively advance the intestinal flora balance, reduce blood lipid levels, and 
improve liver fibrosis and injury in NAFLD patients [244].

Summary
Abnormal liver metabolism and inflammation contribute to the progression of NAFLD to NASH, as well as 
the end stage of liver disease. The extrahepatic inflammation induced by metabolic disorders, including 
obesity, insulin resistance, T2DM, CKD, and CVD promotes the progression of NAFLD. The gut-microbiota-
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derived metabolites and their components can impact the function and inflammation of hepatocytes and 
liver non-parenchymal cells, such as LSECs and HSCs, to promote NAFLD and fibrosis. In addition, gut 
microbiota dysbiosis links different metabolic diseases. Proteins, including ACCs, AMPKs, FXRs, FGFs, 
GPCRs, HIF-1, Nrf2, and PPARs play pivotal roles in NAFLD pathogenesis; therefore, they are molecular 
targets for NAFLD or NASH therapy. Clinical trials have been undertaken to explore the inhibitors or 
agonists for molecular targets in the treatment of chronic liver disease and its comorbidities. However, 
their efficacy and safety must be further explored in the future.
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