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Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS 
disorders represents an area of major medical need. One critical aspect of the CNS is its lack of 
regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so 
strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor 
(GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One 
class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-
phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the 
important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I 
describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. 
Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such 
tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the 
immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce 
autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, 
fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson’s disease, 
Huntington’s disease, Rett syndrome, Alzheimer’s disease, and others that are discussed here. LPA 
receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or 
mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including 
cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, 
LPA receptors may interact with other receptors, including a functional interaction with plasticity related 
genes.
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Introduction
G protein-coupled receptors (GPCRs) are one of the largest classes of receptors, with an estimated 800 in 
the human genome (excluding olfactory receptors). They have a large and diverse set of ligands. 
Furthermore, they have been the target of many pharmacological compounds in use today [1].

One class of GPCR ligands is the bioactive lysophospholipids, specifically lysophosphatidic acid (LPA) 
and sphingosine-1-phosphate (S1P). These lysophospholipid molecules are released from cells and bind to 
specific receptors, whereby they mediate various cellular responses. These receptors are classic GPCRs that 
signal through canonical G protein signal transduction pathways. There are six known LPA receptors (LPA1 
through LPA6) and five known receptors for S1P (S1P1 through S1P5), each signaling through one or more G 
proteins (Table 1) [2, 3]. The S1P1 receptor is unique in that all evidence to date suggests that it only signals 
through Gi/o, where it can decrease adenylate cyclase activity, as well as stimulate the rat sarcoma (Ras) and 
extracellular signal-regulated kinase (ERK) pathway to enhance cellular proliferation and activate the 
phosphatidylinositol-3 kinase (PI3K) pathway to inhibit apoptosis. The Gi/o pathway can also activate 
phospholipase C (PLC) and protein kinase C to increase intracellular calcium. The receptors S1P4 and S1P5 
signal through G12/13 to activate Rho in addition to signaling through Gi/o, with some evidence that they may 
signal through Gs under certain circumstances. The receptors S1P2 and S1P3 signal not only through Gi/o and 
G12/13, but also through Gq, where they can activate PLC to increase intracellular calcium.

Table 1. Lysophospholipid G protein-coupled receptors (GPCR). Nomenclature of the GPCRs and genes of S1P and LPA 
receptors as well as the G protein cell signaling pathways activated [2, 3]

Ligand GPCR (protein) Gene name
Mouse/human

Other names Signaling pathways

S1P1 S1pr1/S1PR1 edg1, lpB1 Gi/o

S1P2 S1pr2/S1PR2 edg5, lpB2, AGR16, H218 Gi/o, Gq, G12/13

S1P3 S1pr3/S1PR3 edg3, lpB3 Gi/o, Gq, G12/13

S1P4 S1pr4/S1PR4 edg6, lpC1 Gi/o, G12/13, (Gs)

S1P

S1P5 S1pr5/S1PR5 edg8, lpB4, Nrg-1 Gi/o, G12/13, (Gs)
LPA1 Lpar1/LPAR1 vzg1, edg2, lpA1 Gi/o, Gq, G12/13

LPA2 Lpar2/LPAR2 edg4, lpA2 Gi/o, Gq, G12/13

LPA3 Lpar3/LPAR3 edg7, lpA3 Gi/o, Gq

LPA4 Lpar4/LPAR4 GPR23, p2y9 Gs, Gq, G12/13

LPA5 Lpar5/LPAR5 GPR92 Gq, G12/13

LPA

LPA6 Lpar6/LPAR6 p2y5 Gs, G12/13

S1P4 and S1P5 primarily signal through Gi/o and G12/13, although there is some suggestion that they can signal through Gs 
(parentheses) under certain circumstances

LPA receptors, likewise, signal through various G protein pathways. The first two receptors identified, 
LPA1 and LPA2, signal through Gi/o, Gq, and G12/13, with the G12/13 pathway leading to activation of Rho and 
cytoskeletal rearrangements. The receptor LPA3 signals through Gi/o and Gq, but not G12/13. LPA4 signals 
through Gq and G12/13, as well as Gs (but not Gi/o). LPA5, on the other hand, only signals through Gq, and 
G12/13. The final validated LPA receptor, LPA6, which appears to be a lower affinity receptor [4], has been 
shown to signal through Gs and G12/13.

LPA and S1P receptors and their ligands have been found to be involved in a variety of physiological 
and pathological responses (for review, see [5]). This includes extensive roles in the nervous system and 
neural development (the reader is referred to other reviews [3, 6]). Activation of S1P or LPA receptors is 
generally considered pro-proliferative and anti-apoptotic, and thus there is considerable research on their 
role in the progression of cancer [7]. Furthermore, both S1P and LPA receptors are involved in 
inflammation, including neuroinflammation, and this is another area of active research. There is also 
evidence of a role of S1P receptors in the cardiovascular system and angiogenesis. In this review, I focus on 
summarizing evidence that LPA and S1P receptors are involved in neurodegeneration and neuroprotection.
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S1P receptors
S1P receptors are expressed throughout development and in the adult in many tissues, including the brain 
and spinal cord. The receptors S1P1 and S1P2 are widely expressed throughout the body [8, 9]. There is 
major expression in the heart for receptors S1P1, S1P3, and S1P5 [8]. The receptors S1P2 and S1P3 are 
expressed during development in mesenchymal tissue and somites [8]. S1P4 is highly expressed in the 
immune system. In the CNS, the receptors S1P1, S1P2, S1P3, and S1P5 are highly expressed [8, 9]. In the 
brain, expression of S1P1 and S1P4 is found in forebrain. The receptor S1P5, however, is primarily restricted 
to the brain and spinal cord, where it is highly expressed in oligodendrocytes [8, 10–12]. The receptors 
S1P1 and S1P2 are also expressed during development in neural progenitors in the ventricular zone as well 
as the neural tube.

Much of our understanding of the role of S1P receptors in neuropathological conditions and 
neuroprotection has been elucidated with various pharmacological agents (Table 2). The most widely used 
pharmacological tool has been the compound fingolimod (also known as FTY720, Gilenya®), which is 
currently in clinical use for multiple sclerosis (MS). It is an agonist for all the S1P receptors except S1P2, 
although it often functions as a functional antagonist (see below). However, more specific S1P receptor 
agonists have been developed, with the S1P1-specific agonist SEW2871 being used more recently.

Table 2. Pharmacological compounds. Major pharmacological compounds used in the literature for investigation of the roles of 
S1P and LPA receptors

Compound Receptor targets Role Reference

S1P receptor targeting agents
Fingolimod* S1P1, S1P3, S1P4, S1P5 Agonist (functional antagonist) [13, 14]
SEW2871 S1P1 Agonist [15, 16]
W146 S1P1 Antagonist [17]
LPA receptor targeting agents
Ki16425 LPA1, LPA3 Antagonist [18]
AM095 LPA1 Antagonist [19]
TCLPA5 LPA5 Antagonist [20]
* Fingolimod is phosphorylated in vivo, and fingolimod-phosphate is the active agonist. Furthermore, although fingolimod is a 
S1P receptor agonist, it often acts as a functional antagonist by causing receptor internalization and degradation [21, 22]

With the approval of fingolimod for the treatment of MS, MS is one of the best examples of a role for 
S1P receptors in neurological disease. MS is considered an autoimmune disease in which T-lymphocytes 
cross the blood-brain barrier and attack myelin, leading to demyelinated lesions. In the most common form, 
relapsing-remitting MS (RR-MS), this demyelination is repaired by oligodendrocytes, most likely newly 
differentiated from resident oligodendrocyte precursor cells. However, the cycle continues and leads to 
progressive neuronal damage, and disability, as the disease progresses.

S1P receptors, especially S1P1, are important clinical targets for MS. As mentioned previously, the 
pharmacological compound fingolimod has been approved by the FDA for the treatment of RR-MS after 
clinical trials [23], with many other compounds in clinical trials [3, 21, 24]. Fingolimod (originally called 
FTY720) was synthesized as a derivative of the fungal metabolite myriocin (also known as ISP-1) as an 
immunosuppressant for organ graft survival [25–27]. Interestingly, it led to lymphopenia with reduced 
circulating lymphocytes [27]. Later it was discovered that fingolimod is phosphorylated in vivo, and the 
phosphorylated form is the active compound [13, 14]. Phosphorylated fingolimod has structural similarities 
to S1P, and it was subsequently shown that fingolimod-phosphate binds to the S1P receptors S1P1, S1P4, 
and S1P5 with high affinity (EC50 ~0.3–0.6 nM) and to S1P3 with slightly lower affinity (EC50 ~3 nM), but not 
to S1P2 [13, 14]. Binding of fingolimod to the S1P receptor activates it, and fingolimod was initially 
characterized as an agonist [13, 14]. However, in the immune system, upon binding fingolimod, S1P 
receptors are internalized and degraded so that they are unresponsive to S1P, and fingolimod is now often 
considered a functional antagonist (see [13, 21, 22]). Recently, more specific S1P receptor agonists and 
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antagonists have been developed, especially for S1P1, and many are in various stages of clinical trials [3]. 
One of the most important ones for experimental investigation has been SEW2871, which is specific for 
S1P1 (see Table 2).

Fingolimod’s approval for RR-MS was after extensive preclinical work where it was efficacious in the 
rodent model experimental autoimmune encephalomyelitis (EAE) [13, 21, 22, 28]. In MS and EAE, 
fingolimod works by inducing a lymphopenia of peripheral lymphocytes, including CD4+ T cells, CD8+ T cells 
and B cells. This lymphopenia results in sequestration of central memory T lymphocytes in lymph nodes, 
reducing the autoimmune activity in MS and EAE.

However, in addition to immune modulation, fingolimod has been suggested to have a neuroprotective 
role in EAE and potentially MS [22]. One piece of evidence for this neuroprotective role is that a higher dose 
of fingolimod is required for efficacy to reduce symptoms in EAE than is needed for lymphocyte 
sequestration [29]. Furthermore, fingolimod has been shown to restore electrophysiological function after 
EAE [30]. In addition, fingolimod may also work by reducing neuroinflammation through astrocytes and/or 
microglia [22, 31].

In addition to MS, a neuroprotective role for fingolimod has been suggested for many other 
neurological diseases [3, 32]. For instance, fingolimod is neuroprotective in a cerebral ischemia (stroke) 
model. During a stroke, a blood clot forms in the brain leading to local ischemia, and the resulting loss of 
oxygen results in neuronal death; it also produces a neuroinflammatory state, which, especially after 
reperfusion, can induce further apoptosis. S1P is released after cerebral ischemia in a rodent model, which 
leads to increased damage. The released S1P was shown to activate S1P receptors on microglia leading to 
neuroinflammation; there was also some evidence of activation of astrocytes leading to astrogliosis. This 
neuroinflammation led to neurodegeneration, and fingolimod was neuroprotective but not directly on 
neurons. Various studies suggest that the receptors S1P1, S1P2, and S1P3 are involved in mediating this 
response [33], although fingolimod likely acts primarily through S1P1 as its action is mimicked by 
SEW2871. On the other hand, in a different stroke model, it was found that neural progenitor cells migrated 
toward a brain infarction, and this was dependent on the receptors S1P1 and S1P2 [34], suggesting a role in 
neural repair processes.

There is also evidence that S1P receptor activation is neuroprotective in a Parkinson’s disease model. 
Parkinson’s disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in 
the substantia nigra. Furthermore, in two different mouse models of Parkinson’s disease (6-OHDA and 
rotenone), fingolimod was neuroprotective for dopaminergic neuron loss and apoptosis, as well as reducing 
dopamine loss and improving motor deficits [35, 36]. This effect appeared direct, as fingolimod treatment 
also reduced apoptosis by 6-OHDA or rotenone in vitro in the dopaminergic SH-SY5Y cell line. In this model, 
fingolimod appears to act as a S1P receptor agonist, as its neuroprotective effect is blocked by a S1P1 
receptor antagonist (W146). Fingolimod, as well as the S1P1 receptor agonist SEW2871, is also 
neuroprotective against an in vitro oxidative stress model in these SH-SY5Y cells [37], again showing a role 
in protecting dopaminergic neurons.

In yet another neurodegenerative disease, Huntington’s disease, fingolimod was neuroprotective, 
leading to reduced apoptosis as well as improvements in motor skills, electrophysiology, and survival [38]. 
This was also recapitulated in a striatal-derived cell line, suggesting a direct neuroprotective effect on 
neurons.

In amyotrophic lateral sclerosis (ALS), fingolimod slowed disease progression in a mouse model, likely 
moderating neuroinflammation, although there may be a direct neuroprotective effect [39]. Furthermore, in 
vitro, fingolimod is neuroprotective for neurons in culture as well as possibly astrocytes and 
oligodendrocytes [22].

A potential mechanism of neuroprotection by S1P receptors is through increasing brain derived 
neurotrophic factor (BDNF) expression (Figure 1). BDNF is a neurotrophin that is a survival factor for many 
neurons as well as their axons and synaptic connections. In a mouse model for Rett syndrome, which has 
low levels of BDNF, fingolimod treatment raised brain BDNF levels as well as promoted improved motor 
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function and increased survival [40]. The authors then went on to show that in an in vitro cortical neuron 
culture model, either fingolimod, S1P, or the S1P1 receptor agonist SEW2871 increased excitatory neuronal 
activity. This was accompanied by increased phospho-ERK and phospho-CREB (cAMP-response element 
binding protein), resulting in increased BDNF production. This increased BDNF production was 
neuroprotective against excitotoxicity induced by the glutamate agonist N-methyl-D-aspartate (NMDA). 
This proposed neuroprotective mechanism of increasing BDNF through S1P receptor signaling is also 
supported in the Huntington disease model, where fingolimod treatment leads to increased BDNF levels as 
well as being efficacious in improving disease symptoms [38].

Figure 1. Model for neuroprotection by S1P1 receptors through BDNF. It has been found that activation of S1P1 by S1P leads to 
increased excitatory neural activity in cortical neurons. Activation of S1P1 as well as neural activity leads to phosphorylation of 
ERK (pERK). This in turn leads to phosphorylation of cAMP-response element binding protein (pCREB) that results in increased 
production of brain derived neurotrophic factor (BDNF). BDNF is released and binds to tyrosine receptor kinase B (TrkB) to 
mediate neuroprotection. BDNF could activate TrkB in the same cell (left in figure) or another cell (right in figure) (Model based 
upon data from [40])

Another area where S1P receptors are involved in neuroprotection is in spinal cord injury, which is a 
complex injury resulting in neuroinflammation, scar formation, axonal loss, and neuronal death. S1P is 
produced by microglia and astrocytes at the site of injury after a spinal cord lesion [41]. After a contusion 
spinal lesion, neural stem cells migrate to the site of injury, and this migration is blocked by a short hairpin 
RNA (shRNA) or inhibitor of S1P1 [41]. Furthermore, fingolimod is neuroprotective in a contusion spinal 
cord injury model, leading to improvements in clinical score and motor coordination [42]. Interestingly, 
fingolimod did not reduce inflammation, suggesting a more direct neuroprotective role, although it did 
reduce astrocyte accumulation. This improvement was recapitulated by the S1P1 receptor specific 
compound SEW2871, implicating S1P1 as the important receptor.

S1P receptors also appear to be neuroprotective in Alzheimer’s disease. S1P was found to be increased 
in the plasma of Alzheimer’s disease patients [43], although this is a correlation and thus may be a result, 
not a cause, of neuroinflammation. In rat models of Alzheimer’s disease, intracerebroventricular injection of 
Aβ1-42 leads to hippocampal cell apoptosis and impairments in learning and memory. In this model, 
treatment with fingolimod was neuroprotective for hippocampal cell loss [44, 45] as well as improving 
learning and memory in various paradigms [44–46]. Intriguingly, in one study, treatment with fingolimod 
itself impaired spatial learning and memory in control rats [44], suggesting more complex regulation, which 
may involve multiple S1P receptors. Furthermore, as before, BDNF may be involved. In the model of 
intracerebroventricular injection of oligomeric Aβ1-42, treatment with fingolimod was neuroprotective and 
also correlated with increased levels of BDNF [46]. The role of BDNF was corroborated in an in vitro system 
of oligomeric Aβ1-42 toxicity of cortical neurons, where fingolimod was shown to be neuroprotective, and 
this neuroprotection was shown to depend on increased BDNF production and signaling through TrkB 
receptors and ERK1/2 activation, as determined through the use of inhibitors [47]. A more specific role for 
the receptor S1P1 was seen in a hippocampal slice culture system where the specific agonist SEW2871 
significantly reduced tau phosphorylation [48], another hallmark of Alzheimer’s disease.

The role of S1P receptors has been investigated in other neurological diseases as well. In a mouse 
model of the neurodegenerative disorder Sandhoff disease, a neuropathic lysosomal storage disorder, 
progression of the disease involved the receptor S1P3, as mice with null mutations in S1P3 had reduced 
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disease progression and severity, although they were not cured [49]. This progression also required 
sphingosine kinase 1 (SphK1), the enzyme that catalyzes production of S1P, as a null mutation in SphK1 
also reduced disease progression. In this case, the mutations were neuroprotective by reducing astrocyte 
proliferation and astrogliosis.

In the eye, in a rat model of retinal disease, S1P appears to be involved in retinal ganglion cell (RGC) 
death by glutamate excitotoxicity [50]. A sphingosine kinase inhibitor was neuroprotective and reduced the 
cell death, although the specific S1P receptors were not determined.

Additional human studies suggest a role for S1P receptors in a variety of neurodegenerative diseases, 
although this is correlative and specific receptors have not been identified. In human patients, plasma S1P 
levels were decreased in a variety of neurodegenerative diseases, including idiopathic Parkinson’s disease, 
Alzheimer’s disease (mentioned above), dementia with Lewy bodies, multiple system atrophy, and 
progressive supranuclear palsy [43].

Other studies have investigated the role of S1P receptors in neuroprotection in vitro. In one of the 
earlier studies, S1P reduced apoptosis caused by serum withdrawal in PC12 cells, a peripheral neural cell 
line [51], although it was not clear if this was receptor mediated. In an in vitro model of glutamate 
excitotoxicity in mesencephalic neurons, S1P was neuroprotective [52], but again the receptors involved 
were not analyzed. In astrocytes, the receptors S1P2 and S1P3 activate neuroinflammation [53].

Thus, in a variety of model systems, S1P and S1P receptors have neuroprotective roles, although 
whether their activation or inhibition is neuroprotective varies. Much of this hinges on whether the 
pharmacological compound fingolimod, as well as SEW2871, acts as an agonist or a functional antagonist, 
with some evidence for each role.

LPA receptors
The roles of LPA receptors in neural development, physiology, and pathogenesis are numerous (for 
reviews, see [5, 6, 9, 54]). For instance, LPA receptors, especially LPA1 and LPA2, are involved in the early 
development of the cerebral cortex, regulating neural progenitor expansion and differentiation (see below). 
A significant role for LPA receptors, in this case, LPA1, LPA3, and LPA5, has been described in the initiation 
and maintenance of neuropathic pain (see [6, 55, 56]), whereby initiation of neuropathic pain involves a 
feed-forward mechanism by LPA through LPA1 and LPA3 on microglia. Subsequently, LPA5 is required for 
maintenance of the neuropathic pain state [57]. Additional roles for LPA receptors, especially LPA1, have 
been demonstrated in maturation of glutamatergic synapses in the hippocampus, with learning and 
memory deficits seen in Lpar1 null mice [6, 58].

LPA receptors are expressed throughout the nervous system, especially during development, with 
different expression patterns for the six LPA receptors. The receptor genes Lpar1, Lpar2, Lpar4, and Lpar6 
are expressed during embryonic brain development in the neocortex, hippocampus, cerebellum, and 
olfactory bulb, as well as in adult brain in these regions. The receptor Lpar3, however, is only expressed 
postnatally, and Lpar5 expression may be in early brain development, although the data is less clear [59, 
60].

Outside of the nervous system, LPA receptors have significant roles in cancer, the immune system, as 
well as other physiological processes (for reviews, see [7, 9, 54, 61–66]). Due to the importance of LPA 
receptors in physiology and disease, various pharmacological compounds are being developed both as 
experimental tools and for clinical therapeutic purposes (see [63, 67]). However, the LPA receptor 
pharmacological compounds have not advanced as much as for S1P receptors, and none are yet approved 
for clinical treatment. Nevertheless, there are a few pharmacological tools that have been used in various 
studies, especially that inhibit LPA1 (Table 2). The compound Ki16425 has been shown to inhibit LPA1, but 
also LPA3, and so is not completely specific [18]. A newer, more specific inhibitor of LPA1, AM095, is now 
being used [19]. In addition, a partially characterized inhibitor of LPA5, TCLPA5, has been used in some 
studies [20]. However, without good pharmacological agents, much of our understanding of LPA receptor 
function has been from mice with LPA receptor mutations.
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Focusing on neuroprotection, one of the early roles of LPA receptors is in the development of the 
cortex. In an in vitro embryonic cortical culture system, LPA addition increases survival of neural 
progenitors, which is blocked by double null mutations in the receptors LPA1 and LPA2 [68]. Furthermore, 
in a LPA1 (receptor) null mouse (maLPA1), there was reduced neural progenitor proliferation and increased 
apoptosis, leading to reduced cortical layers [69]. This suggests a neuroproliferative and/or 
neuroprotective role of the receptor LPA1. Furthermore, in the adult hippocampus, the maLPA1 null mutant 
mouse had reduced hippocampal neurogenesis compared to control when exposed to an enriched 
environment [70], documenting a role for the receptor LPA1 in adult neurogenesis. Indeed, Lpar1 null mice 
have deficits in learning and memory [71, 72]; whether this was due to a neuroprotective role for LPA1 or a 
role in synaptic remodeling or neurophysiology is not clear.

LPA and LPA receptors have been implicated in embryonic axonal growth and, potentially, in axon 
guidance. LPA has been demonstrated in vitro to cause the collapse of axonal growth cones and neurite 
retraction in neuroblastoma and PC12 peripheral nerve cell lines [73, 74] as well as primary neurons in 
culture [75–79]. Although the GPCRs mediating these responses have not been identified yet (but see [78]), 
the response appears receptor mediated due to specificity and potency [78, 79]. This growth cone collapse 
and neurite retraction proceeds via the Gα12/13 signal transduction pathway, as it is blocked by inhibition of 
Rho and ROCK [77, 79–86]. There also appears to be a role for the receptor LPA3 in neurite branching 
through the novel GTPase Rnd2 [87].

In addition to roles in neural development, LPA receptors have been implicated in a variety of 
neurodegenerative conditions. In traumatic brain injury (TBI), LPAR2 gene expression was increased in 
human patients ~43 hours (range: 6 hours to 122 hours) after injury [88]. Furthermore, in human patients, 
levels of the ligand LPA increased significantly 24 hours after injury [89]. Using a mouse model of TBI, 
treatment with a monoclonal antibody against LPA (Lpathomab) was neuroprotective, leading to reduced 
lesion volume and decreased cytokine levels, as well as improved behavioral outcomes [89].

There has also been found a neuroprotective role of LPA receptor antagonism in spinal cord injury. In a 
mouse model of spinal cord injury, the receptor genes Lpar2 and Lpar3 were upregulated after injury [90]. 
Spinal cord injury leads to demyelination, but this demyelination was partially blocked in an Lpar1 null 
mutation mouse or upon treatment with the LPA1 antagonist AM095 [91]. The antagonist also led to a 
small, but significant, functional improvement. The receptor LPA2 also appears to be involved, as the Lpar2 
null mutant mouse also showed partially reduced demyelination and some functional recovery [92]. In 
another study with a different model of spinal cord injury, an LPA1 antagonist led to increased corticospinal 
tract sprouting after injury [93], again demonstrating a neuroprotective role by blocking LPA1. Thus, in 
spinal cord injury, it appears that antagonism of LPA receptors is neuroprotective.

In another neurodegenerative condition, stroke and cerebral ischemia, LPA acting through LPA 
receptors appears to mediate neurological damage, and again antagonism is neuroprotective. In human 
stroke patients, plasma LPA levels increase [94, 95]; LPA levels also increase in the brain in a rodent model 
of stroke, a transient middle cerebral artery occlusion (tMCAO), which produces a transient focal cerebral 
ischemia [96, 97]. In this tMCAO model, increased LPA appears to be pathological, as addition of exogenous 
LPA leads to increased lesion volume [98, 99]. The receptor LPA1 appears to be involved in mediating this 
pathway, as the antagonist AM095 or an shRNA was neuroprotective and reduced lesion volume, neuronal 
apoptosis, and neurological deficits after tMCAO and reperfusion [100]. Furthermore, a role for LPA5 has 
also been implicated by treatment with an antagonist, TCLPA5, after tMCAO and reperfusion leading to 
functional recovery and reduced lesion volume [101]. Although the specificity of TCLPA5 has not been 
extensively tested, it inhibits LPA5 [20]. Importantly, treatment with TCLPA5 three hours after cerebral 
ischemia and reperfusion was neuroprotective, suggesting potential clinical benefit [101]. However, 
whether the neuroprotective effect is direct on neurons is not clear, as cerebral ischemia also induces 
neuroinflammation, and an antagonist of LPA1 or LPA5 reduces microglial activation and proinflammatory 
cytokines [100–103]. Interestingly, it was found that when rats are treated with a repeated hyperbaric 
oxygen exposure prior to ischemia, which is neuroprotective, Lpar1 gene expression was increased [104].
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There is a suggestion for a role of LPA receptors in Alzheimer’s disease pathology (see [105, 106]). 
However, much of it is indirect, whereby characteristics of Alzheimer’s disease are mimicked by LPA or LPA 
receptors in other systems, sometimes with extremely high levels of LPA. For instance, LPA treatment of 
neuroblastoma cells leads to tau phosphorylation, which is a hallmark of Alzheimer’s disease [107]. More 
recently, there have been found differences in LPA receptor expression in the brain of a transgenic 
Alzheimer’s disease mouse model [108], but the role of these differences is not clear.

There is a potential role for receptor LPA2 in ALS. In human ALS patients, there are increased levels of 
Lpar2 mRNA in the spinal cord, which is also seen in the SOD1G93A mouse model of ALS [109]. Furthermore, 
in this mouse model, a null mutation in Lpar2 leads to reduced disease progression, suggesting LPA2 is 
involved in disease mediation. Interestingly, though, the Lpar2 null mutation decreases survival in this 
mouse model. Thus, in this ALS model, although signaling through LPA2 increases disease symptoms, it 
extends lifespan. Furthermore, the role of LPA2 appears to be related to inflammation and not directly on 
motor neurons.

There is also evidence of the role of LPA receptors in other neurodegenerative disorders. The LPA 
receptor LPA1 appears to be involved in posthemorrhagic hydrocephalus. In a mouse model, LPA injection 
into the ventricle killed ependymal cells and produced hydrocephalus, but this was partially reduced in 
Lpar1 null mutant mice as well as with an LPA1 antagonist [110]. In glaucoma, the receptors LPA1 and LPA2 
are upregulated in a rat model of elevated ocular pressure, and an LPA receptor agonist reduced 
histological damage and improved retinal electrophysiology [111]. In a different oxygen-induced 
retinopathy model in rats, an shRNA against Lpar1 was neuroprotective for RGC loss [112].

Thus, in a variety of conditions, activation of LPA receptors appears to be pathological, while inhibition 
of LPA receptors appears neuroprotective.

Interacting receptors: the PRGs
There is also the possibility of interacting receptors that could modulate responses. For LPA receptors, one 
of the most intriguing possibilities is a family of receptors called the plasticity related genes (PRGs), also 
known as phospholipid phosphatase-related proteins (PLPPRs), which are a subfamily of the lipid 
phosphatase/phosphotransferase family of proteins (for review, see [113]). These are transmembrane 
proteins that are suggested to be receptors. Interestingly, although they are related to lipid phosphatases, 
they seem to have little or no lipid phosphatase activity.

The first PRG, PRG-1 (also known as PRG1, PLPPR4), was identified as a gene that was upregulated 
during hippocampal development as well as after lesion [114]. Interestingly, PRG-1 overexpression in 
neuroblastoma cells counteracted the neurite retraction activity of LPA [114], suggesting a possible 
interaction. In addition, other evidence showed that another family member, PRG-3, could enhance axonal 
outgrowth in a variety of systems [115, 116]. Interaction with LPA receptors was demonstrated in a prg-1 
null mutant mouse. Deletion of prg-1 led to epileptic seizures in the mouse (with larger synaptic currents 
and higher mEPSC frequencies), but simultaneous deletion of Lpar2 rescued this phenotype, suggesting an 
interaction [117]. However, the interaction may not be direct, as PRG-1 was localized postsynaptically and 
LPA2 was presynaptic. In other studies, another PRG, PRG-2, was found to be important for thalamocortical 
axon guidance to the barrel cortex. In this case, deletion of prg-2 resulted in misrouted thalamocortical 
axons, and this phenotype could be rescued by inhibiting autotaxin, the enzyme responsible for LPA 
biosynthesis [118].

Furthermore, an interaction between LPA2 and PRG-1 has been seen in stroke. First, LPA levels 
increase in cerebrospinal fluid of human stroke patients. In a tMCAO mouse model of stroke, inhibition of 
autotaxin (which produces LPA) reduces LPA levels and improves behavioral outcomes with reduced lesion 
volume. Interestingly, a loss of function prg-1 mutation (R346T) resulted in increased lesion volume and 
worse behavioral outcomes after tMCAO [119]. An interaction with LPA2 was shown because deletion of 
Lpar2 along with the prg-1 mutation reversed the prg-1 mutant phenotype, resulting in lesion after tMCAO 
being similar to wild type injury after tMCAO. Thus, again, the Lpar2 mutation rescued the defects caused 
by a prg-1 mutation.
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Several studies have shown a role for PRGs to be neuroprotective and counteract the inhibitory activity 
of LPA and LPA receptors on axonal growth. PRG-2 promoted a growth state in neurons by binding and 
inhibiting PTEN (phosphatase and tensin homolog) [120]. PRG-3 is strongly expressed after spinal cord 
injury, and PRG-3 overexpression in cortical neurons induced neurite outgrowth and overcame inhibitory 
LPA treatment [121, 122]. The PRG family member PRG-5 induced filopodia when overexpressed, and its 
overexpression attenuated LPA-induced neurite retraction [123].

A variety of experiments suggest an interaction of PRGs with LPA signaling through LPA receptors. In 
most cases, these receptors have not been identified, although an interaction between LPA2 and PRG-1 has 
been demonstrated genetically. Furthermore, whether there is direct interaction or not has yet to be 
established, as all the evidence so far shows only a functional interaction. Nonetheless, the potential 
interaction of PRGs with LPA receptors is intriguing, and much work remains to be done.

Conclusions
There has now accumulated substantial evidence that lysophospholipid GPCRs are involved in 
neurodegeneration and neuroprotection. This is especially true for S1P receptors due to the S1P receptor 
agonist, or functional antagonist, fingolimod, which has been clinically demonstrated to treat MS. The 
clinical success of fingolimod has led to the development of more specific S1P receptor pharmacological 
compounds as well as the investigation of S1P receptors in a variety of neurodegenerative conditions. There 
has been less investigation of LPA receptors in neurodegeneration, as there are fewer and less well-
characterized pharmacological compounds as tools. Nonetheless, there is accumulating evidence that they, 
too, are involved in neuroprotection. As more LPA receptor compounds are developed and disease models 
examined, our understanding of the role of LPA receptors is likely to increase.

Furthermore, there exists the intriguing possibility of interactions between certain GPCRs and other 
receptors, including other GPCRs. There is genetic evidence of a functional interaction of PRGs with LPA 
receptors, although there may not be direct physical interaction. A recent report suggests a direct physical 
interaction between LPA1 and the GPCR C-X-C motif chemokine receptor 4 (CXCR4) [124]. Interestingly, 
although coexpression of LPA1 and CXCR4 did not affect LPA signaling, signaling by the ligand C-X-C motif 
chemokine 12 (CXCL12) through CXCR4 is reduced by LPA treatment, suggesting a functional interaction 
[124]. Thus, an important direction for the future is to examine this concept of GPCR heterodimerization 
that could influence receptor signaling.
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