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Abstract
Recent investigations have shed light on the potential of seaweed, an abundant source of bioactive 
compounds, to mitigate and combat neurodegenerative diseases. In this comprehensive review, the 
accumulating evidence supporting the neuroprotective properties of seaweed-derived compounds is 
evaluated and their putative mechanisms of action are elucidated. The background of this review 
encompasses the general understanding of neurodegenerative diseases as debilitating conditions 
characterized by the progressive loss of nerve cell function and viability in the central nervous system. 
Furthermore, the global prevalence of these diseases, encompassing Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease, and the persistent absence of effective treatments are emphasized. To 
address this critical issue, an innovative avenue of research is explored by investigating the potential of 
seaweed and its diverse array of bioactive compounds. By examining the available literature, the evidence 
supporting the neuroprotective effects of seaweed-derived compounds is consolidated. These bioactive 
constituents exhibit promising properties in preventing and mitigating neurodegeneration. Mechanistically, 
their actions involve intricate pathways that contribute to neuronal survival, reduction of oxidative stress, 
inhibition of neuroinflammation, and modulation of protein aggregation processes. This review provides a 
comprehensive analysis of the mechanisms underlying the neuroprotective effects of seaweed compounds. 
In conclusion, this review highlights the potential of seaweed as a valuable source of neuroprotective 
compounds and underscores the advancements made in this burgeoning field. The identification and 
elucidation of the mechanisms through which seaweed compounds exert their neuroprotective effects hold 
promise for the development of novel therapeutic interventions. These findings transcend disciplinary 
boundaries, offering insight into the potential application of seaweed-derived compounds as a valuable 
resource for combating neurodegenerative diseases across scientific domains.
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Graphical abstract. The power of marine algae for neuroprotection. MS: multiple sclerosis. Created with BioRender.com
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Introduction
Seaweed, commonly referred to as marine macroalgae, comprises a diverse group of multicellular plants 
thriving in marine environments. Throughout centuries, it has been a dietary staple in numerous Asian 
cultures, acclaimed for its manifold health benefits, including its potential neuroprotective effects [1, 2]. The 
investigation of seaweed and its bioactive compounds on brain health has yielded promising findings, 
prompting this manuscript to offer a comprehensive overview of the current understanding surrounding 
the potential advantages of seaweed compounds in the prevention and combat of neurodegenerative 
diseases (NDs) [3, 4].

Multiple studies have explored the impact of seaweed and its bioactive compounds on brain function, 
unveiling encouraging outcomes. Notably, a study conducted in Japan discovered that elderly individuals 
who regularly consumed seaweed exhibited a diminished risk of developing dementia compared to non-
consumers [5]. Similarly, a study conducted in Korea demonstrated that a diet abundant in seaweed 
correlated with enhanced cognitive function among older adults [6].

The potential neuroprotective effects of seaweed compounds are often attributed to their antioxidative, 
anti-inflammatory, and anti-apoptotic properties [7]. These compounds have demonstrated the ability to 
scavenge reactive oxygen species (ROS), mitigate inflammation, and impede programmed cell 
death—factors crucial in the development and progression of NDs [8]. Moreover, apart from their direct 
influence on the brain, seaweed compounds may indirectly exert their neuroprotective effects by 
modulating the gut microbiota. Recent studies have implicated the gut microbiota in the pathogenesis of 
NDs, suggesting that interventions targeting this microbial ecosystem hold therapeutic potential. Seaweed 
compounds have exhibited the capacity to modulate the gut microbiota, implying additional avenues for 
their neuroprotective effects [9].

Although further research is imperative to comprehensively elucidate the mechanisms of action and 
clinical efficacy of seaweed compounds in preventing and treating NDs, the existing evidence is indeed 
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promising. Seaweed represents a natural and sustainable reservoir of bioactive compounds, thus 
integrating it into the diet may present a safe and effective strategy for reducing the risk of NDs [3, 10].

In summary, the introduction has established the overall context by introducing seaweed as a diverse 
group of marine macroalgae with a long history of being a dietary staple in Asian cultures. The specific 
context is presented by highlighting the potential neuroprotective effects of seaweed compounds, 
supported by studies indicating the lower risk of dementia and better cognitive function associated with 
seaweed consumption. The current problem addressed in this review is the need for a comprehensive 
understanding of the potential benefits of seaweed compounds in preventing and combating NDs. By 
exploring the antioxidative, anti-inflammatory, and anti-apoptotic properties of seaweed compounds, as 
well as their potential impact on the gut microbiota, this review aims to shed light on their mechanisms of 
action and therapeutic potential.

Seaweed compounds and their potential neuroprotective effects
Seaweed compounds have received increasing attention for their potential neuroprotective effects against 
NDs. Several studies have demonstrated the ability of seaweed compounds to protect brain cells from 
damage and degeneration, thus potentially slowing or preventing the progression of these diseases [11].

One of the main groups of seaweed compounds that have been studied for their neuroprotective effects 
are the polysaccharides. These complex carbohydrates have been shown to have antioxidant and anti-
inflammatory properties, which can help to reduce oxidative stress and inflammation in the brain, two key 
contributors to NDs such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [12, 13].

AD has been linked to a deficiency in the neurotransmitter acetylcholine (ACh), as demonstrated by 
multiple neuropathological studies [14]. One of the most promising methods of treating the symptoms of 
AD is inhibiting the acetylcholinesterase enzyme (AChE), which breaks down ACh [15]. This pathology is 
associated with the enzymatic reaction of β-secretase (BACE1) on the amyloid precursor protein (APP) for 
the generation of neurotoxic amyloid β (Aβ) [16]. Several studies have reported AChE inhibitory activity in 
various species of marine algae.

Another group of seaweed compounds with potential neuroprotective effects is the phlorotannins. 
These polyphenolic compounds have been shown to have antioxidant and anti-inflammatory properties, as 
well as the ability to inhibit the formation of β-amyloid plaques, which are a hallmark of AD [17, 18].

Fucoidan is another bioactive compound found in seaweed that has been studied for its potential 
neuroprotective effects. Fucoidan has been shown to have anti-inflammatory and antioxidant properties, 
and it can also inhibit the formation of tau protein, which is another hallmark of AD [3, 11, 19].

Carotenoids, such as fucoxanthin, are also present in seaweed and have been shown to have 
neuroprotective effects. Fucoxanthin has been shown to have antioxidant properties and can reduce 
oxidative stress in the brain, which can help to protect against NDs, by both subsiding pro-inflammatory 
mediators and enhancing brain-derived neurotrophic factor (BDNF) [20, 21].

Furthermore, seaweed compounds may exert their neuroprotective effects by modulating the gut 
microbiota. The gut-brain axis is a bidirectional communication pathway between the gut and the brain, 
and recent studies have shown that modulating the gut microbiota can have positive effects on brain 
function and NDs. Seaweed compounds have been shown to modulate the gut microbiota, thus potentially 
exerting their neuroprotective effects through this mechanism [22, 23].

Thus, seaweed compounds have shown great potential for their neuroprotective effects against NDs. 
Their antioxidant, anti-inflammatory, and anti-amyloid properties, as well as their ability to modulate the 
gut microbiota, make them a promising natural compound for the prevention and treatment of NDs [24]. 
However, further studies are needed to fully elucidate the mechanisms of action and the clinical efficacy of 
these compounds (Table 1) [25, 26].
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Table 1. Neuroprotective effects of some compounds extracted from seaweeds

Algae Extracts or compounds Activity References
Agarum clathratum 
subsp. yakishiriense 
(P)

Ethyl acetate, n-butanol extracts, and 
crude extract

Neuronal protection from ischemic injury [27]

Alaria esculenta (P) 
(Figure 1a)

Methanol and water extract The formation of amyloid fibrils by α-synuclein 
is inhibited by the extract fractions

[28]

Amphiroa beauvoisii 
(R) (Figure 1b)

Aqueous and methanol extracts Inhibiting AChE

IC50 = 0.12 mg/mL

[29]

Amphiroa 
bowerbankii (R)

Methanol extracts AChE inhibition [30]

Amphiroa ephedraea 
(R)

Methanol extracts AChE inhibition [30]

Asparagopsis armata 
(R) (Figure 1c)

Methanol extracts AChE and BuChE inhibition [31]

Bifurcaria bifurcata 
(P) (Figure 1d)

Eleganolone, eleganonal (diterpenes) Antioxidant and neuroprotective potential in PD [7]

Capsosiphon 
fulvescens (C)

Glycoproteins Reduces aging-induced cognitive dysfunction [32, 33]

Caulerpa racemosa 
(C) (Figure 1e)

Methanolic extract AChE inhibition [30]

C. racemosa (C) Racemosins A and B Neuro-protective activity [34]
Chondracanthus 
acicularis (R) 
(Figure 1f)

Carrageenan λ Antioxidant activity [35]

Chondrus crispus (R) 
(Figure 1g)

Methanol extracts Extract-mediated protection against PD [36]

Cladophora 
vagabunda (formerly 
Cladophora 
fascicularis) (C)

Methanol extracts AChE inhibition [3]

Codium capitatum (C) Methanol extracts AChE inhibition [30]
C. capitatum (C) Aqueous and methanolic extracts AChE inhibition [29]
Codium duthieae (C) Aqueous and methanolic extracts AChE inhibition [29]
Codium tomentosum 
(C) (Figure 1h)

Dichloromethane extract Antioxidant activity [37]

Cystoseira humilis (P) 
(Figure 1i)

Methanolic extract AChE inhibition [31]

Dictyopteris undulata 
(P)

Sesquiterpene: zonarol Antioxidant activity [38]

Ecklonia bicyclis (P) Phlorotannins Suppression of BACE1 activity [39]
Ecklonia cava subsp. 
stolonifera (formerly 
E. stolonifera) (P)

Fucosterol Prevents cognitive dysfunction induced by 
soluble Aβ

[40]

Ecklonia maxima (P) 
(Figure 1j)

Phlorotannin: eckmaxol Anti-Aβ oligomer neuroprotective effect [41, 42]

Ecklonia radiata (P) Fucofuroeckol-type phlorotannins Exhibits a wider range of neuroprotective 
activity against both oxidative stress and Aβ 
exposure

[18]

Eucheuma 
denticulatum (R) 
(Figure 1k)

Iota-carrageenan Antioxidant activity [43]

Ericaria selaginoides 
(formerly Cystoseira 
tamariscifolia) (P) 
(Figure 1l)

Methanolic extract AChE and BuChE inhibition [31]

Fucus vesiculosus (P) 
(Figure 2a)

Fucoidan Prevents the loss of dopaminergic neurons [44]

F. vesiculosus (P) Fucoidan Antioxidant activity [35]
F. vesiculosus (P) Fucoidan Protective effect [45]
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Algae Extracts or compounds Activity References
F. vesiculosus (P) Fucoidan At a concentration of 10 µmol/L, fucoidan 

inhibits the clustering of microglial cells 
induced by Aβ

[46]

F. vesiculosus (P) Phlorotannins Suppressing the overproduction of intracellular 
ROS induced by hydrogen peroxide
IC50 = 0.068 mg/mL

[47]

F. vesiculosus (P) Fucoidan Neuroprotection against transient global 
cerebral ischemic injury

[48]

Gelidiella acerosa (R) Extracts obtained include petroleum ether, 
hexane, benzene, dichloromethane, 
chloroform, ethyl acetate, acetone, 
methanol, and water

AChE and BuChE inhibition [49]

G. acerosa (R) Phytol AChE and BuChE inhibition [50]
Gelidium amansii (R) Ethanol extract Neurogenesis (synaptogenesis promotion) [51, 52]
Gloiopeltis foliaceum 
(R)

Aqueous and methanolic extracts AChE inhibition [29]

Gloiopeltis furcata (R) The compounds obtained consist of 2-(3-
hydroxy-5-oxotetrahydrofuran-3-yl) acetic 
acid, glutaric acid, succinic acid, nicotinic 
acid, (E)-4-hydroxyhex-2-enoic acid, 
cholesterol, 7-hydroxycholesterol, uridine, 
glycerol, phlorotannin, and fatty acids

AChE and BuChE inhibition [53]

Gongolaria nodicaulis 
(formerly Cystoseira 
nodicaulis) (P) 
(Figure 2b)

Methanolic extract AChE and BuChE inhibition [31]

Gongolaria usneoides 
(formerly Cystoseira 
usneoides) (P) 
(Figure 2c)

Methanolic extract AChE and BuChE inhibition [31]

Gracilaria cornea (R) Sulphated agaran Neuroprotective effects in rat model PD [54]
Gracilaria edulis (R) Methanol extracts AChE inhibition [55]
Gracilaria gracilis (R) 
(Figure 2d)

Methanol extracts AChE inhibition [55]

Gracilariopsis chorda 
(R)

Ethanol extracts Ethanol extract exhibited the highest 
neuroprotective effects at a concentration of 15 
µmol/L. At this concentration, the G. chorda 
extract significantly enhanced cell viability to 
119.0% ± 3.2% and reduced cell death to 
80.5% ± 10.3%

[56]

G. chorda (R) Ethanolic extract Extract concentration-dependently increased 
neurite outgrowth

[57]

Halimeda incrassata 
(C)

Water extracts Neuroprotective and antioxidant properties [58]

Halimeda cuneata (C) Methanol extracts AChE inhibition [30]
H. cuneata (C) Aqueous and methanol extracts AChE inhibition [29]
Hypnea valentine (R) Methanol extracts AChE inhibition [59]
H. valentiae (R) Methanol extracts AChE inhibition [59]
Ishige okamurae (P) Phlorotannin (6,6’-bieckol) AChE inhibition [60]
I. okamurae (P) Phlorotannin (DPHC) The neuroprotective effect against hydrogen 

peroxide (H2O2)-induced oxidative stress in 
murine hippocampal neuronal cells was 
observed with an IC50 value of 50 µmol/L

[61]

Kappaphycus 
alvarezii (R) 
(Figure 2e)

Ethanol extracts Stimulates the extension of neurites in 
hippocampal neurons

[62]

Marginariella boryana 
(P)

Sulfated fucans Prevents the accumulation of Aβ [63]

Ochtodes 
secundiramea (R)

Dichloromethane and methanol extracts: 
Halogenated monoterpenes

AChE inhibition [64]
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Algae Extracts or compounds Activity References
Padina australis (P) Dichloromethane extract AChE inhibition [65]
Padina gymnospora 
(P) (Figure 2f)

Methanol extracts AChE inhibition [55]

P. gymnospora (P) Acetone extracts AChE and BuChE inhibition [66]
Padina pavonica (P) 
(Figure 2g)

Methanol extracts Antioxidant activity on 6-OHDA-induced 
neurotoxicity in the human neuroblastoma cell 
line SH-SY5Y

[37]

Padina 
tetrastromatica (P)

Fucoxanthin Demonstrates antioxidant activity by effectively 
decreasing lipid peroxidation in rats, with an 
IC50 value of 0.83 μmol/L

[67]

P. tetrastromatica (P) Chloroform and ethanol extracts The chloroform extract exhibited notable 
anticonvulsant activity at a dose of 600 mg/kg

[68]

Papenfussiella lutea 
(P)

Sesquiterpenes AChE inhibition [69]

Porphyra capensis 
(R)

Porphyran Prevents loss of dopaminergic neurons [70]

Porphyra and Pyropia 
sp. (R)

Phycoerythrobilins Antioxidant activity [71]

Pyropia haitanensis 
(R)

Porphyran An agent that combats neurotoxicity induced 
by Aβ peptide in AD

[72]

Pyropia yezoensis 
(formerly Porphyra 
yezoensis) (R)

Ethanol extracts Increased neurite outgrowth at an optimal 
concentration of 15 µg/mL

[73]

P. yezoensis (as 
Porphyra yezoensis) 
(R)

Oligo-porphyran Agent with anti-neurotoxic properties suitable 
for preventing and treating a range of 
neurological disorders

[74]

Rhodomela 
confervoides (R)

Bromophenol Antioxidant action [75]

Rhodomelopsis 
africana (R)

Aqueous and methanol extracts AChE inhibition [29]

Saccharina japonica 
(P)

Fucoidan Demonstrates a protective effect against 
neurotoxicity induced by MPTP. Moreover, it 
diminishes behavioral deficits and cell death 
while enhancing dopamine levels

IC50 = 25 mg/kg, once per day in mice

[76]

S. japonica (P) Fucoidan Inhibitory effect of fucoidan on nitric oxide 
production in lipopolysaccharide-activated 
primary microglia. The IC50 value for this 
inhibition is 125 μg/mL

[77]

S. japonica (P) Fucoidan Antioxidative activity [78]
S. japonica (P) Ethanolic extract Promoted neurite outgrowth in a dose-

dependent manner with optimal concentrations 
of 15 μg/mL

[52, 79]

S. japonica (P) Fucoidan Reduced 6-OHDA and reduced the loss of 
dopaminergic in neurons

IC50 = 20 mg/kg in rats

[80]

Saccorhiza 
polyschides (P) 
(Figure 3a)

Methanol extracts Displays antioxidant activity against 6-OHDA-
induced neurotoxicity in the SH-SY5Y human 
neuroblastoma cell line

[37]

Sargassum 
aquifolium (formerly 
Sargassum 
crassifolium) (P)

Crude extracts of fucoidan Antioxidant and neuroprotective properties [81]

Sargassum fulvellum 
(P)

Pheophytin A Stimulates neurite outgrowth, increasing it from 
20% to 100% in the presence of 10 ng/mL of 
NGF. Additionally, it exhibits an activating 
effect with an IC50 value of 3.9 μg/mL in PC12 
cells

[82]

S. fulvellum (P) Ethanol extracts Induced dose-dependent promotion of neurite 
outgrowth, with optimal concentrations 
observed at 5 μg/mL

[83]



Table 1. Neuroprotective effects of some compounds extracted from seaweeds (continued)

Explor Neuroprot Ther. 2023;3:409–28 | https://doi.org/10.37349/ent.2023.00058 Page 415
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Sargassum fusiforme 
(formerly Hijikia 
fusiformis) (P)

Fucoxanthins Exhibits antioxidative activity by effectively 
scavenging DPPH radicals

[84]

S. fusiforme (P) Fucoidan Shows potential in ameliorating learning and 
memory deficiencies and serves as a potential 
ingredient for the treatment of AD

[85]

Sargassum horneri 
(P)

Total sterols and β-sitosterol Antidepressant effect [86]

S. horneri (P) Fucoxanthins Attenuates Aβ oligomer-induced neuronal 
apoptosis in SH-SY5Y cells

[87]

S. horneri (P) Fucoxanthins Fucoxanthin reduces H2O2-induced neuronal 
apoptosis in SH-SY5Y cells

[88]

Sargassum 
macrocarpum (P)

Carotenoids Enhance PC12 cell neurite outgrowth activity to 
0.4 with an IC50 of 6.25 μg/mL

[89]

S. macrocarpum (P) Sargaquinoic acid TrkA-MAPK pathway mediates the signaling 
process with an IC50 of 3 μg/mL

[90]

S. macrocarpum (P) Sargachromenol Activate cAMP and MAPK pathways to 
enhance the survival of PC12 cells and 
promote neurite outgrowth, with an IC50 of 9 
μmol/L

[91]

Sargassum 
micracanthum (P)

Plastoquinones Exhibit anti-oxidative activity by inhibiting lipid 
peroxidation, with an IC50 range of 0.95–44.3 
μg/mL

[92]

Sargassum muticum 
(P) (Figure 3b)

Methanolic extract Demonstrate antioxidant activity against 6-
OHDA-induced neurotoxicity in the human 
neuroblastoma cell line SH-SY5Y

[93]

Sargassum 
polycystum (P)

Hexane, dichloromethane, and methanol 
extract

AChE inhibition [65]

Sargassum 
sagamianum (P)

Sesquiterpenes AChE inhibition [69]

S. sagamianum (P) Sargaquinoic acid and sargachromenol AChE and BuChE inhibition [94]
Sargassum 
siliquastrum (P)

Fucoxanthin Exhibit anti-oxidative activity by inhibiting 
hydrogen peroxide in vero cells, with an IC50 of 
100 μmol/L

[95]

S. siliquastrum (P) Meroditerpenoids These compounds demonstrated moderate to 
significant radical-scavenging activity while 
also displaying weak inhibitory effects on 
sortase A and isocitrate lyase

[96]

Sargassum sp. (P) Methanol extracts AChE inhibition [55]
Sargassum swartzii 
(formerly Sargassum 
wightii) (P)

Alginic acid The polysaccharides exhibited inhibitory 
activities against COX-2, 5-LOX, XO, and MPO 
in type II collagen-induced arthritic rats, with an 
IC50 of 100 mg/kg

[97]

S. swartzii (formerly 
S. wightii) (P)

Petroleum ether, hexane, benzene, and 
dichloromethane extracts

AChE and BuChE inhibition [98]

Sargassum vulgare 
(P)

Methanolic extract AChE inhibition [31]

Scytothamnus 
australis (P)

Sulfated fucans Prevents the accumulation of Aβ [63]

Splachnidium 
rugosum (P)

Sulfated fucans Inhibits the Aβ accumulation [63]

Turbinaria decurrens 
(P)

Fucoidan Shows potential for a neuroprotective effect in 
PD

[99]

Ulva australis 
(formerly Ulva 
pertusa) (C)

Sulfated polysaccharide (ulvan) Scavenging activity for superoxide radicals [100, 101]

Ulva compressa (C) Dichloromethane extract Exhibits antioxidant activity against 
neurotoxicity induced by 6-OHDA in the human 
neuroblastoma cell line SH-SY5Y

[93]

Ulva fasciata (C) Methanolic extract AChE inhibition [30]
U. fasciata (C) 50% aqueous methanol extract AChE inhibition [29]
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Algae Extracts or compounds Activity References
Ulva prolifera 
(formerly 
Enteromorpha 
prolifera) (C)

Pheophorbide A Displays antioxidant activity with an IC50 of 71.9 
µmol/L

[102]

Ulva reticulata (C) Methanol extracts AChE inhibition [59]
Undaria pinnatifida 
(P)

Ethanol extracts Neurite outgrowth was enhanced in a manner 
that correlated with the dosage, reaching 
optimal levels at concentrations of 5 μg/mL

[79, 103]

U. pinnatifida (P) Ethanol extracts The activities displayed encompass 
neurogenesis, neuroprotection, anti-
inflammatory effects, and anti-Alzheimer’s 
properties

[104]

U. pinnatifida (P) Glycoprotein The observed effects included neurogenesis, 
neuroprotection, anti-inflammatory properties, 
and anti-Alzheimer’s potential. Notably, 
significant inhibitory activities against AChE, 
BChE, and BACE1 were demonstrated, with 
IC50 values of 63.56 μg/mL, 99.03 μg/mL, and 
73.35 μg/mL, respectively

[105]

U. pinnatifida (P) Sulfated fucans It inhibits the buildup of Aβ [63]
Zonaria spiralis (P) Spiralisone A and chromone 6 It displayed inhibitory effects on CDK5/p25, 

CK1δ, and GSK3β kinases, with IC50 values of 
10.0 μmol/L, < 10 μmol/L, and < 10 μmol/L, 
respectively

[106]

C: Chlorophyta (green macroalgae); P: Phaeophyceae (brown macroalgae); R: Rhodophyta (red macroalgae); IC50: half 
maximal inhibitory concentration; BuChE: butyrylcholinesterase; DPHC: diphlorethohydroxycarmalol; 6-OHDA: 6-
hydroxydopamine; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MAPK: mitogen-activated protein kinase; NGF: nerve 
growth factor; DPPH: 2,2-diphenyl-1-picrylhydrazyl; TrkA: tropomyosin receptor kinase A; cAMP: cyclic adenosine 
monophosphate; COX-2: cyclooxygenase-2; 5-LOX: 5-lipoxygenase; XO: xanthine oxidase; MPO: myeloperoxidase; CDK5: 
cyclin-dependent kinase 5; CK1δ: casein kinase 1; GSK3β: glycogen synthase kinase 3β

Antioxidant effects
Neurodegenerative disorders, including AD, PD, and Huntington’s disease, involve the gradual degeneration 
of nerve cells in the brain and nervous system. Oxidative stress, marked by an imbalance of ROS and 
inadequate detoxification mechanisms, is recognized as a significant contributor to this neuronal loss [107]. 
ROS are unstable molecules that can damage cells by reacting with lipids, proteins, and DNA. They are 
produced as a byproduct of normal cellular metabolism and can also be generated in response to 
environmental toxins and other stressors [108]. When the levels of ROS become too high, they can lead to 
oxidative stress, which can cause inflammation and damage to nerve cells, ultimately leading to their death 
[109].

Neurodegenerations are often associated with oxidative stress, a condition in which there is an 
imbalance between the production of ROS and the body’s ability to detoxify them [110]. Seaweed 
compounds have been shown to scavenge ROS, reducing oxidative stress and preventing damage to nerve 
cells [111]. For example, phlorotannins, a type of polyphenol found in brown seaweed, have been shown to 
have potent antioxidant effects and protect against oxidative stress-induced neurotoxicity [112].

Seaweed compounds, particularly phlorotannins, have been found to have potent antioxidant effects 
and can scavenge ROS, reducing oxidative stress and preventing damage to nerve cells [113]. Phlorotannins 
are a type of polyphenol found in brown seaweed, and they are known for their strong antioxidant 
properties [114]. Studies have shown that phlorotannins can protect against oxidative stress-induced 
neurotoxicity in cell culture and animal models. For example, one study found that treatment with 
phlorotannins from brown seaweed protected rat brain cells from oxidative stress-induced cell death [115]. 
Another study found that phlorotannins from brown seaweed improved cognitive function and reduced 
oxidative stress in mice with AD [116].
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Figure 1. (a) Alaria esculenta; (b) Amphiroa beauvoisii; (c) Asparagopsis armata; (d) Bifurcaria bifurcata; (e) Caulerpa 
racemose; (f) Chondracanthus acicularis; (g) Chondrus crispus; (h) Codium tomentosum; (i) Cystoseira humilis; (j) Ecklonia 
maxima; (k) Eucheuma denticulatum; (l) Ericaria selaginoides. Scale bar = 1 cm

Overall, these findings suggest that seaweed compounds, particularly phlorotannins, have the potential 
to be used as therapeutic agents for the prevention and treatment of NDs associated with oxidative stress 
[23]. In the treatment of neurodegenerative disorders, cholinesterase (ChE) inhibitors have proven to be a 
successful approach for alleviating symptoms, although there exist various strategies to impede the 
progression of neurodegeneration. The isolation of phlorotannins from Ecklonia maxima revealed their 
capability to inhibit AChE activity. Among these compounds, dibenzo 1,4-dioxine-2,4,7,9-tetraol and eckol 
exhibited superior inhibitory effects on AChE compared to phloroglucinol. This enhanced potency can be 
attributed to their larger molecular size and increased number of hydroxyl groups, which modulate their 
interactions with AChE, ultimately leading to its blockade. These findings underscore the potential 
applications of Ecklonia maxima as a valuable ingredient that could be incorporated into food additives, 
serving as neuroprotective agents [4, 41, 42, 115].
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Figure 2. (a) Fucus vesiculosus; (b) Gongolaria nodicaulis; (c) Gongolaria usneoides; (d) Gracilaria gracilis; (e) Kappaphycus 
alvarezii; (f) Padina gymnospora; (g) Padina pavonica. Scale bar = 1 cm
Note. Figure 2b and 2c adapted from “Pioneering role of marine macroalgae in cosmeceuticals,” by Kalasariya HS, Pereira L, 
Patel NB. Phycology. 2022;2:172–203 (https://www.mdpi.com/2673-9410/2/1/10). CC BY. Figure 2d and 2e adapted from “The 
seaweed diet in prevention and treatment of the neurodegenerative diseases,” by Pereira L, Valado A. Mar Drugs. 2021;19:128 
(https://www.mdpi.com/1660-3397/19/3/128/html). CC BY.

Figure 3. (a) Saccorhiza polyschides; (b) Sargassum muticum. Scale bar = 1 cm

Anti-inflammatory effects
Inflammation is a key contributor to the development and progression of NDs. Seaweed compounds have 
been shown to modulate the immune response, reducing inflammation, and preventing damage to nerve 
cells [117]. Fucoidan, a sulphated polysaccharide found in brown seaweed, has been shown to have potent 
anti-inflammatory effects and protect against inflammation-induced neurotoxicity [118].

Inflammation is a natural response of the body’s immune system to injury or infection. However, 
chronic inflammation can contribute to the development and progression of various diseases, including 
neurodegenerative disorders such as AD, PD, and multiple sclerosis (MS) [119, 120]. Chronic inflammation 
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is associated with the activation of various immune cells and the release of pro-inflammatory cytokines, 
which can damage nerve cells and disrupt normal brain function [121, 122].

Seaweed, which is a rich source of bioactive compounds, has been studied for its potential anti-
inflammatory effects. Fucoidan, a sulfated polysaccharide found in brown seaweed, has been shown to have 
potent anti-inflammatory properties. Fucoidan can modulate the immune response by inhibiting the 
activation of immune cells and reducing the production of pro-inflammatory cytokines [26, 123]. Studies 
have shown that fucoidan can protect against inflammation-induced neurotoxicity. For example, fucoidan 
treatment has been shown to reduce inflammation and protect against nerve cell damage in animal models 
of NDs such as AD and PD [19, 124].

In addition to fucoidan, other seaweed compounds such as phlorotannins and carotenoids have also 
been shown to have anti-inflammatory effects. These compounds can inhibit the activation of immune cells 
and reduce the production of pro-inflammatory cytokines, thereby reducing inflammation and protecting 
against NDs [117, 125]. Overall, the anti-inflammatory effects of seaweed compounds suggest that seaweed 
may have therapeutic potential for the prevention and treatment of NDs [126]. However, more research is 
needed to fully understand the mechanisms of action and potential benefits of seaweed compounds in the 
context of neuroinflammation and neurodegeneration [3].

Anti-apoptotic effects
Apoptosis, or programmed cell death, is a process that plays a role in the development and progression of 
NDs [127]. Apoptosis is a natural process that occurs in multicellular organisms to remove damaged or 
unnecessary cells. This process is crucial for the proper development and function of tissues, organs, and 
the immune system [128]. However, dysregulation of apoptosis can lead to various pathological conditions, 
including NDs such as AD, PD, and Huntington’s diseases. Seaweed compounds have been shown to inhibit 
apoptosis, preventing the death of nerve cells [129].

Anti-apoptotic effects refer to the ability of certain compounds to prevent or inhibit apoptosis. These 
compounds can target different components of the apoptotic pathway, including signaling molecules, 
transcription factors, and enzymes [130]. Seaweed compounds, specifically polysaccharides found in red 
seaweed, have been shown to possess anti-apoptotic effects. These compounds have been found to protect 
against apoptosis-induced neurotoxicity, which is the toxic effect on nerve cells caused by excessive 
apoptosis [131, 132].

Polysaccharides are complex carbohydrates that consist of many sugar units linked together. They are 
abundant in seaweed and have been shown to possess various biological activities, including antioxidant, 
anti-inflammatory, and immunomodulatory effects [133, 134]. Polysaccharides from red seaweed have 
been found to protect nerve cells against apoptosis by regulating the expression of apoptosis-related genes 
and modulating various signaling pathways [135]. In addition to red seaweed, other seaweed species have 
also been found to possess anti-apoptotic effects. For example, fucoidan, a sulfated polysaccharide found in 
brown seaweed, has been shown to protect against apoptosis-induced liver injury and promote the survival 
of liver cells [136].

The anti-apoptotic effects of seaweed compounds have great potential for the development of novel 
therapeutics for NDs and other pathological conditions associated with dysregulated apoptosis [137].

Conclusions
Seaweed and its bioactive compounds hold tremendous promise in the prevention and treatment of NDs. 
The available evidence points towards their potential therapeutic benefits, but further research is 
warranted to fully comprehend their mechanisms of action and establish their clinical efficacy [138]. 
Numerous studies have reported the antioxidant, anti-inflammatory, and neuroprotective properties of 
seaweed extracts and compounds, which could prove advantageous in impeding the progression or even 
preventing NDs such as AD, PD, and Huntington’s disease [139, 140]. Notably, certain seaweed-derived 
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compounds like fucoidan and laminarin have demonstrated the ability to enhance cognitive function and 
memory in animal models of AD [141]. Despite these encouraging findings, it is important to acknowledge 
that the majority of research conducted on seaweed and NDs has relied on animal models or in vitro 
studies. Therefore, the next crucial step entails conducting more rigorous clinical trials to ascertain the 
safety and efficacy of seaweed-derived compounds in human subjects [142]. Such endeavors would bridge 
the gap between preclinical investigations and translational application, providing a more comprehensive 
understanding of the potential of seaweed as a therapeutic intervention for NDs.

In conclusion, while the existing evidence indicates the potential of seaweed and its bioactive 
compounds in the prevention and treatment of NDs, further research is imperative to unravel their effects 
and determine their clinical utility [143]. As experts in the field, we emphasize the need for concerted 
efforts to refine theoretical frameworks and methodological approaches, which will pave the way for a 
deeper comprehension of the importance of this research. The theoretical implications and translational 
applications of this study extend beyond the realms of neurodegeneration, providing valuable insights into 
the broader domain of natural compounds as potential therapeutic agents. By continuously advancing our 
knowledge in this area, we can unlock the full therapeutic potential of seaweed and contribute to the 
development of innovative strategies for combating NDs.
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