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Abstract
The pathogenic basis behind some of the most prevalent neurodegenerative diseases in advanced societies, 
known as proteinopathies, deals with alterations in protein homeostasis. Despite the broad diversity of 
clinical symptoms, they share a remarkably common feature that is the serious neuronal loss in several 
disease-specific brain regions due to the presence of toxic aggregations of misfolded proteins. So far, research 
efforts have been insufficient to decipher the exact molecular mechanisms that trigger the conformational 
change from a functional healthy protein to its pathological version. This is a sine qua non condition to 
progress in developing new approaches and treatments for these diseases for which there is no cure. 
Currently, it is well accepted that perturbations in gut microbiota composition negatively impact a wide 
range of brain processes via the gut-brain axis which increases host susceptibility to neurodegenerative 
disorders. In this context, modulate the microbial ecosystem colonizing the gastrointestinal tract may be 
a promising therapeutic approach in the management of proteinopathies. This review aims to provide an 
updated view of the role that gut microbiota poses in the pathogenesis of Parkinson’s disease, Alzheimer’s 
disease and Huntington’s disease, the most common neurodegenerative proteinopathies, and of the 
possibility of translating this knowledge into effective and safe clinical microbiota-based interventions, 
especially those designed to afford neuroprotection.
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Introduction
Neurodegenerative diseases (ND) have become an important public health concern in last decades affecting 
millions of people throughout the world, particularly in developed countries. Their associated direct and 
indirect socioeconomic impact is of paramount relevance and it is expected to rise at $1 trillion by 
2030 [1]. Despite significant advances in recent years, the understanding of pathological mechanisms 
of different ND remains unknown and the development of disease-modifying therapeutic interventions 
has not been as advanced as had been hoped. Nowadays, there is still no cure for the most frequent ND 
and the medical therapies only provide symptomatic relief at best. Under this discouraging scenario, a great 
and urgent effort is needed to better comprehend the etiopathology of these diseases and to identify early 
biological markers that translate into new curative therapies.

Some of the most prevalent ND in advanced societies as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Lewy body dementia (LBD), Huntington’s disease (HD) or amyotrophic lateral sclerosis (ALS) 
belong to proteinopathies family. This term encompasses any of the disorders characterized by protein 
deposits within neurons, or in the brain parenchyma, which ultimately result in cellular dysfunction, 
impaired synaptic function and clinical abnormalities [1, 2]. Although the disease-specific brain areas 
affected are different, they share typical clinical phenotypes that cover behavioural and cognitive 
changes, deficits in primary motor and/or executive and language functions, and premature death. As a 
general rule, these proteins with diverse physiological functions in healthy brains suffer a conformational 
change owing to their physical and chemical properties (i.e., from monomers to aberrant oligomers) that 
lead to neurotoxic high order aggregates [3]. Pathological deposits formed by these aggregation-prone 
proteins were first identified in PD. In fact, this pathology is characterized by the presence of α-synuclein 
(α-syn) cytoplasmic inclusions in the so-called Lewy bodies in the substantia nigra (SN) and surrounding 
brain regions. In AD, up to two types of abnormal protein deposits, the pathological hallmarks of the disease, 
can be identified; the amyloid plaques result from the extracellular accumulation of β-amyloid peptide (Aβ), 
and the neurofibrillary tangles composed of anomalous filaments of hyperphosphorylated microtubule-
associated protein tau inside neurons. Other less well-known proteinopathy is HD where impaired folding 
of huntingtin (HTT) protein leads to toxic cytoplasmic and nuclear aggregates in inhibitory neurons in the 
striatum of the basal ganglia [2]. Occasionally, even different types of protein deposits may find together 
in the same disease [4]. The still pending questions are: why these proteins accumulate? or what factors 
trigger the protein aggregation?

The winner of the Nobel Prize in Physiology or Medicine 1986, Rita Levi-Montalcini, already commented: 
“The burden of neurological disorders is reaching a significant proportion in countries with a growing percentage 
of the population over 65 years”. Effectively, aging is considered the main risk factor for these ND and many 
scientists point out that the probability of suffering any of them doubles past the age of 60. However, there 
are other influences, genetic and environmental, whose complex interaction may trigger neurodegeneration 
at any age.

Within the last years, particular attention has been placed on the functional interaction between the 
gut microbiota, including its metabolites, and the central nervous system (CNS). On one hand, CNS regulates 
intestinal function via afferent and efferent autonomic pathways. On the other hand, the sympathetic and 
parasympathetic nervous system of the gut, together with the vagus nerve, connects the enteric nervous 
system (ENS) and the hypothalamic-pituitary-adrenal axis (HPA) with the CNS [5-7]. This a priori beneficial 
bidirectional communication can become harmful due to an imbalance in the microbiota composition, i.e., 
symbionts/pathobionts ratio, which seems to influence the development and progression of various ND, 
proteinopathies among them. Under this perspective, this review attempts to provide an updated view of the 
role that gut microbiota poses in the pathogenesis of the most common neurodegenerative proteinopathies, 
and of the possibility of translating this knowledge into effective therapeutic treatments.
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The microbiota and microbiota-based therapies
The human body constitutes a true ecosystem composed of trillions of microorganisms that inhabit on 
or within us. This microbiota is a long-term evolutionary human partner that has strongly influenced 
its evolution and adaptation to the environment [8-10]. Undoubtedly, the gut hosts the largest number 
of microbes of the human body. Despite its complexity, progress in high-throughput sequencing 
techniques have led to this microbial community being the best characterized so far [10-12]. The gut 
microbiota harbours a huge variety of microorganisms, like bacteria, fungi, amebae, archaea, protozoa 
and viruses, that exist in a mutualism symbiosis with the human host [7, 13, 14]. Bacterial species 
dominate the gastrointestinal tract (GIT), and Bacteroidetes and Firmicutes are the two phylotypes most 
represented. However, small amounts of Proteobacteria, Actinobacteria, Fusobacteria, Cyanobacteria 
and Verrucomicrobia phyla can also be found [10, 15, 16]. The role of microbiota in the human health 
has been widely studied. In fact, energy homeostasis, metabolic processes such as vitamin synthesis or 
producing short-chain fatty acids (SCFAs), deconjugation of bile acids, or protecting against colonization 
by pathogens and immunologic reactions are just some of a large number of human activities in which 
microorganisms are involved [13, 14, 17].

The gut colonisation begins at the moment of birth when the sterile infant GIT is exposed to maternal 
and environmental microbiota. From that time, and during the first years of life, the gut microbial 
population undergoes a maturation process until reaching the stable composition and diversity that of 
the adult. This primocolonisation is influenced by diverse factors such as gestational age, mode of delivery 
(vaginal birth or C-section), diet (breast or formula milk), antibiotic therapy or surrounding environment, 
and maternal health conditions. This early life microbiota modifications, that occur in a key window 
for the host development, can have short and long impacts on the host. Moreover, during the lifespan, 
physiological conditions differ widely into human gut leading to a different concentration and diversity of 
microorganisms through the GIT [18]. This fact makes the faecal microbiota of each adult human individual 
unique, being considered as a personal “fingerprint” [10, 14, 16, 19]. Despite these high inter-individual 
variations, the microbiota is highly stable through time, especially at functional level, and the enteric 
microbiota role in homeostasis and host health is generally conserved. Advanced experimental efforts have 
demonstrated a strong association between altered gut microbiota and its metabolites in the pathogenesis 
and the progression of gastrointestinal, metabolic and various neurodegenerative and neuropsychiatric 
diseases [12, 14, 20, 21]. These efforts include not only new analytical techniques in microbiology and 
bioinformatics, but also pivotal collaborative projects, including the Human Microbiome Project [22] or 
the Metagenomics of the Human Intestinal Tract (MetaHIT) project [23]. Besides essential or beneficial 
microbiota, gut is colonized permanently or occasionally by bacteria that can become opportunistic 
pathogens if the occasion arise [24]. Therefore, the pathological imbalance of the optimal gut microbiota 
composition, named dysbiosis, leads to an overgrowth of harmful bacteria and ultimately to a disruption of 
the host-microorganism homeostasis [25-27].

The concept of microbiota equilibrium has been the basis of new preventive strategies involving dietary 
interventions that modify altered microbiota to limit potentially dangerous disruptions: microbiota-based 
therapies. In this case, we can find the use of beneficial microorganisms (probiotics and live biotherapeutics), 
substances that promote the growth and/or activity of bacteria that contribute to host well-being (prebiotics), 
and a combination of both (synbiotics) [28]. Furthermore, the use of beneficial bacteria could be independent 
of microbiota modulation. Indeed, the classical definition of probiotics (live microorganisms that, when 
administered in adequate amounts, confer a health benefit on the host) refers mostly to the potential direct 
effect of bacteria on the host without considering the possible modulation of the microbiota.

The microbiota-gut-brain-axis
Different studies in last decades have evidenced a dynamic cross-talk between gut microbiota and CNS, 
known as gut-brain axis (GBA), which is critical in brain development, in some processes as neurogenesis and 
microglial activation, and in modulating host behaviour [21, 29] (Figure 1). This bidirectional communication 
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is far from simple since different pathways (i.e., immune, neural, endocrine, or metabolic) coexist in an 
intricate network that links GIT and brain. The most direct way to maintain this communication implies the 
ENS and the autonomic nervous system (ANS). On one hand, the sympathetic and parasympathetic nervous 
system links gut with CNS. On the other hand, CNS regulates gut function (immunity, permeability, or mucus 
secretion) via afferent and efferent autonomic pathways [5, 6]. However, enteric microorganisms can also 
indirectly influence the brain function by other routes: i) immune system activation mediated by cytokine 
molecules, ii) hormones and metabolic products of microbial activity such as SCFAs (e.g., propionate, 
butyrate and acetate) transmitted to distant organs as the brain, and iii) neurotransmitters and other 
neuroactive molecules of microbial origin (e.g., serotonin, melatonin, histamine or acetylcholine) able to 
cross the intestine mucosal layer and to orchestrate brain functions [7, 10, 15, 20]. Finally, some authors 
pointed out that the HPA axis seems to influence the GBA via neuroendocrine connections. In fact, the 
activation of the HPA system in response to environmental (psychological or physical) stressors triggers 
the secretion of cortisol from adrenal glands which negatively affects brain function, gut microbiota 
composition and GIT permeability [30-32].

Figure 1. Schematic representation of the intricate network that links GIT and brain, forming the so-called microbiota-gut-brain-axis

Gut microbiota in brain development and function
The advance in understanding the modulatory effect of microbiota in GBA signalling has required the 
adoption of new and innovative instruments. Perhaps, the most convincing approach to overcome this 
issue is the use of germ-free (GF) mice. GF animals display very different morphological, physiological, and 
immunological characteristics, which underscores the importance of the microbiota in host homeostasis [33]. 
Focusing in the GBA, GF mice display an impaired HPA activity, an increased stress reactivity and augmented 
levels of cortisol that contribute to the anxiety-like behaviour that characterizes these animals [30, 34, 35]. 
Moreover, alterations in the serotoninergic signalling due to changes in tryptophan levels, the precursor of 
serotonin, would be behind of the memory and cognition dysfunction that GF mice suffer [6, 36-38]. Similarly, 
variations in synaptic transcriptome have been observed in GF versus control mice. For example, it has been 
demonstrated increased hippocampal levels of the dopamine receptor subunit Drd1a and reduced amounts of 
glutamate receptor subunits (Nr1 and Nr2) in cortex, hippocampus and amygdala [39]. In addition, augmented 
expression of myelin related genes and hypermyelination in the prefrontal cortex have been described in GF 
mice [10]. Nevertheless, mice growing in a “sterile bubble”, as it is the case of GF mice in most of the axenic 
animal facilities, show a myriad of neural disturbances, compared with those conventionally housed, that 
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seem to influence some cognitive and brain functions (reviewed in [39-41]). This fact, join to the complexity 
of managing GF mice, has extended the use of altered microbiota murine models (i.e., animals treated with 
antibiotics, exposed to specific bacterial species or pathogens, or transplanted with faecal microbiota at some 
time points across their lifespan) as a good alternative to GF mice to study the impact of the microbiota on the 
GBA [6, 39]. For instance, it has been found that the partial or total lack of gut microbiota correlates with an 
increase in adult hippocampal neurogenesis [42], alterations in blood brain barrier (BBB) permeability [43], 
α-syn aggregates and a significant downregulation of microglia gene profile [10, 25, 44, 45].

At this point, some questions arise: (i) are microbial-induced alterations in the GBA reversible? (ii) is 
it possible to use dietary interventions that modulate the microbiota to prevent GBA microbial-induced 
alterations? In this sense, Ait-Belgnaoui et al. [46] observed that the increase in BBB permeability was 
prevented when they pre-treated animals with Probio’Stick®, a probiotic mixture of Bifidobacterium longum 
R0175 and Lactobacillus helveticus R0052. Similar results were obtained after administration of a butyrate-
producing bacteria, Clostridium tyrobutyricum, to GF mice [43]. In the rigorous work of Erny et al. [44], the 
authors concluded that “recolonization with a complex microbiota partially restored microglia features” and 
that “short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products regulated microglia 
homeostasis”. Indeed, very recent studies have confirmed that early exposure to probiotics, and other bacterial 
derivatives that affecting GBA, reduces the exacerbated HPA axis response to stress and prevents changes in 
hippocampal neurogenesis and synaptic plasticity [24, 27, 47].

Role of gut dysbiosis in proteinopathies: molecular mechanisms and 
clinical applications
Converging evidence strongly suggests that accumulation of protein aggregates, neuroinflammation 
and oxidative stress play a fundamental role in the complex aetiology and pathophysiology of different 
proteinopathies as AD, PD and HD. Nowadays, it is quite straightforward to establish a direct link between 
neurodegeneration and aging, and how the broad spectrum of age-related changes, in terms of lifestyle habits 
(e.g., diet, stress, environmental factors, etc.), influences the risk of developing ND. The current lack of effective 
treatments has to do with the fact that exact mechanisms underlying their pathogenesis are still unclear. In 
this sense, finding new and effective therapeutic tools constitutes a major challenge to neuroscientists.

The involvement of gut dysbiosis in the onset and development of neurodegenerative proteinopathies 
has drawn a lot of attention in last decades. It is well-known that intestinal microbiota experiences a reduction 
in diversity composition during aging and in aged-related ND. Although with high interindividual variability, 
the relative proportions of pathogenic and beneficial bacteria change, i.e., Firmicutes and Bifidobacteria 
numbers decrease, and Enterobacteriaceae and Bacteroidetes increase [20, 48]. But these fluctuations are 
not only related to aging but also to decline in health status, malnutrition, and high rate of medication in the 
elderly. Regardless of the cause, alterations in the optimal microbial composition of aging patients suffering 
from ND result in a compromised microglial reaction, the weakening of the GIT barrier function and the 
disruption of the BBB integrity which leads to a serious recrudescence of inflammatory processes in the 
brain [21, 43, 49] (Figure 2). The new understanding of the involvement of gut dysbiosis in the pathogenesis 
of some proteinopathies and possible microbiota-based intervention strategies with therapeutic potential 
will be treated in the following sections.

PD
PD is the second most common ND, which affects 1-2% of people over 65 years of age. This multifactorial 
neurodegenerative disorder, first described by James Parkinson in 1817, is characterized by a progressive 
death of dopamine-producing neurons in the SN pars compacta [50]. Like other well-defined proteinopathies, 
the affected brains exhibit typical aggregations of α-syn, known as Lewy bodies, that trigger neuronal death 
and compromise dopamine secretion in motor control areas [51, 52]. Motor characteristic PD symptoms 
as bradykinesia, tremor or postural instability are basically related with this dopamine loss. Besides 
cognitive alterations, constipation stands as a prevalent and early non-motor manifestation of PD (> 80%) 
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that appears even before motor disturbances [53]. Regardless of the type of PD, i.e., familial early-onset 
PD caused by inheritable genetic factors or the most frequent idiopathic cases [54-57], effective anti-PD 
therapies exist for symptom relieving and include both pharmacological and surgical interventions [58-60]. 
Although levodopa (L-DOPA) remains the treatment of choice for PD, disabling motor complications (i.e., 
on-off phenomena, dyskinesia or dystonia) emerge after some years of chronic administration. Alternative 
treatments as dopaminergic agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, 
pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase B (MAO-B) inhibitors (selegiline and 
rasagiline) or catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone), are generally less 
effective than L-DOPA but show fewer motor adverse effects [61, 62]. Deep brain stimulation or magnetic 
resonance imaging (MRI)-guided focused ultrasound are among neurosurgical procedures provide the 
greatest benefits for patients [62, 63]. Unfortunately, no disease-modifying treatments are available so new 
therapies are essential to improve life quality of those suffering from PD.

Figure 2. Gut dysbiosis linking to the pathogenesis of neurodegenerative proteinopathies. A) Normal cross-talk between 
intestinal immune system and gut microbiota under non-pathological conditions; B) gut microbiota unbalance leading 
to immune dysregulation under pathological conditions which ultimately influences the clinical manifestations of the 
proteinopathies. LPS: lipopolysaccharides

Pioneering studies in last decades suggest that the initial step in PD pathogenesis might occur in the 
GIT since alterations in the gut function as constipation, dysphagia, nausea, or gastroparesis have been 
observed in patients long before the typical motor symptoms [64]. In this way, it has been postulated that 
gut dysbiosis and the consequent interruption in the beneficial relationship between the microbes of the 
intestine and CNS may be linked to the onset and progression of the disease [53, 65-67]. Certain separate 
lines of evidence converged to establish this. First, epidemiological studies of vagotomised patients showed 
a significant decrease in the risk of developing PD when compared with general population [39, 68]. Second, 
analyses in PD patients described alterations in microbiota composition compared to age-matched healthy 
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controls. For instance, some authors found reduced levels of anti-inflammatory bacteria Prevotellaceae, 
Blautia, Coprococcus, and Roseburia and a greater abundance of pro-inflammatory Enterobacteriaceae. In 
fact, a decrease in Prevotellaceae family members, who are well-known to be mucin and neuroactive SCFAs-
producers, leads to alterations in gut permeability and susceptibility to bacterial endotoxins. In contrast, 
the higher levels of Enterobacteriaceae species seem to be related with inflammation and the severity 
of motor dysfunction in PD [13, 53, 66, 69, 70]. Third, in addition to microorganisms themselves, some 
gut-derived pro-inflammatory bacterial products as LPS can also be involved in the progression of the 
proteinopathy. Among others, Guo and co-workers [71] demonstrated by in vitro and in vivo models of PD 
that LPS penetrates into the blood through a compromised epithelial barrier and induces the microglial 
expression of inflammatory cytokines, such as tumour necrosis factor (TNF-α) or interleukin (IL)-1b and 
IL-6, which alter the BBB and promote α-syn neurodegenerative accumulation in the SN pars compacta. 
More recently, Song and colleagues [72] have postulated that interaction between α-syn and some bacterial 
toxicants is central in the exacerbated gut microbiota disruption and dopaminergic neuron loss showed 
by transgenic mice overexpressing human α-syn. Importantly, high levels of LPS in brain and serum of 
PD patients have been frequently described in clinical trials [73-76]. Fourth, according to the hypothesis 
of Braak et al. [67], the pathological accumulation of α-syn could start in the ENS spreading to the brain 
through the vagus nerve [67, 77]. In this sense, gut-derived pro-inflammatory factors could induce the 
expression and misfolding of α-syn. It has been observed histologically identical inclusions to Lewy 
bodies in enteric neurons of both submucosal (Meissner) and myenteric (Auerbach) plexuses following 
a hypothetical rostral-caudal gradient [78, 79]. Indeed, inoculation of α-syn isolated from brains of PD 
patients or α-syn preformed fibrils into the gastric wall of healthy rodents resulted in Lewy body-like brain 
aggregates and in motor deficits [80, 81]. Intriguingly, Sampson et al. [82] confirmed that faecal microbiota 
transplantation (FMT) from PD patients reproduced motor symptoms in GF mice. Finally, there is evidence 
that small intestinal bacterial overgrowth (SIBO) and Helicobacter pylori infection are triggering factors 
in PD [66, 83-86]. Satisfactory treatment of SIBO and eradication of Helicobacter pylori would be related 
to the long-lasting improvement in motor and intestinal indicators of patients, probably due to greater 
efficiency in L-DOPA absorption [79, 87, 88]. 

Bearing in mind all the data, it is not surprisingly that by normalizing and maintaining a balanced gut 
microbiota composition, PD pathological processes could be reduced and even act as a preventive factor. 
In fact, by taking advantage of microorganisms that inhabit the GIT as a target to mediate beneficial brain 
effects, different microbial-based treatments have displayed efficacy in the reduction of symptoms in PD 
patients. These live biotherapeutics include probiotics, prebiotics, synbiotics, and postbiotics, and can be 
administrated through diet by supplements or functional foods (a precise definition of those terms can be 
found in [24, 89]). Although preclinical and clinical studies are limited, it is shown that probiotics containing 
Lactobacillus casei Shirota and different Bifidobacterium strains significantly improve GIT symptoms in PD 
patients [79, 89-91]. Recent randomized, double blind, placebo-controlled clinical studies go in the same 
direction and evidence that some probiotic formulations (tablet, capsule, or drinkable formats) have success 
in ameliorating motor clinical symptoms and biochemical profiles in PD [92] (https://parkinsons-london.
co.uk/academic-observational-studies/). Interestingly, and according with recent studies in MPTP- and 
rotenone-induced models of PD, the rescuing effects of a probiotic mixture (Lactobacillus and Bifidobacterium 
species) in the prevention of dopaminergic neuronal degeneration may be partially due to both, increased 
levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and glial cell line-derived 
neurotrophic factor (GDNF)] and to bacteria-derived butyrate in the brain [93]. Moreover, the regular intake 
of Bacillus spp., among other bacterial treatments, may increase dopamine levels since this probiotic group 
can convert L-tyrosine into L-DOPA in a reaction mediated by tyrosine decarboxylase [66, 94, 95]. Finally, in 
a placebo-controlled clinical trial in 120 patients with PD, the authors found a significant improvement in 
constipation and other GIT-related symptoms after regular consumption of a synbiotic, containing different 
probiotic strains and prebiotic fibers, compared with those patients given placebo [96].

Not only probiotics or synbiotics contribute to a healthy gut microbiota composition but dietary 
interventions [12, 97, 98] or traditional medicines are also noteworthy. For example, mercury sulfide-
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containing Hua-Feng-Dan and 70W Zhen-Zhu Wan (70W, Rannasangpei) have been included among the 
Ayurveda, Tibetan and Chinese medicines used for the treatment of neurological disorders for more than 300 
years. Now, it has been proven that these medicinal recipes exert their neuroprotective effects by reducing 
gut microbiota disturbances in mouse and rat models of PD [99, 100].

Finally, a recent innovative and effective way to restore gut microbiota ecosystem in PD patients is the 
FMT; stool samples from healthy donors are transferred to the GIT of individuals suffering from PD. Studies 
on the benefits of FMT to mitigate constipation and also non-GIT symptoms of PD with seemingly fewer 
side effects are increasingly available [101, 102]. However, the US Food and Drug Administration (FDA) has 
recently issued an alert concerning the risk of transmission of pathogenic bacteria and serious life-threatening 
infections with the use of FMT [103, 104] (https://www.fda.gov). Further studies are needed to probe its real 
benefit as a therapy to combat/prevent PD.

AD
AD is the most devastating and common form of dementia that may contribute, according to recent estimates, 
to 60-70% of cases; its prevalence stands at around 5-8% in people over 65 years of age which rises to 
25-50% above 75 years [105]. This chronic neurodegenerative disorder is characterized by a progressive 
loss of memory, language and learning capabilities leading to severe disability in daily activities, a myriad 
of symptoms already documented in detail by Alois Alzheimer between 1906 and 1911 in patients who 
had died of an unusual mental illness [106]. Cognitive deficits are a reflection of inflammatory processes, 
loss of neurons and progressive impairments in synaptic function in some brain areas, mainly in frontal 
cortex and hippocampus [107, 108]. Notably, two types of protein aggregations namely amyloid plaques 
and neurofibrillary tangles are responsible for this mixed proteinopathy, being also considered as the 
pathological hallmarks of the disease. Senile plaques result from abnormal processing of the amyloid 
precursor protein (APP) leading to extracellular accumulation of misfolded Aβ, whereas neurofibrillary 
tangles consist of intracellular accumulations of hyperphosphorylated tau protein; both contribute 
significantly to loss of cholinergic neurons, axonal degeneration and synaptic failure associated with 
the pathology [109-111]. Interestingly, many lines of evidence have demonstrated that cerebrovascular 
dysfunction also contributes in a direct way to AD pathogenesis. In fact, some theories point out that damage 
of cerebral blood vessels, BBB breakdown, changes in permeability and diminished brain perfusion would 
be key in the Aβ accumulation and neuronal degeneration in AD brains (reviewed in [112, 113]).

AD appears predominantly in a sporadic fashion, but a small number of patients suffers from the familial 
variety of the disease with inheriting mutations that lead to early-onset cases [55, 109, 114, 115]. Despite 
recent advances in research, there is still no precise comprehension of the dementia disease burden and 
current therapies only provide modest symptom relief. The few anti-AD drugs approved are intended to 
increase acetylcholine levels (e.g., cholinesterase inhibitors as donepezil, galantamine or rivastgmine) 
or decrease the overall N-methyl-D-aspartate (NMDA) glutamate receptors activity (e.g., NMDA receptor 
antagonist as memantine) in CNS, which seems to temporarily improve cognitive performance and/or slow 
down the disease progression in some people [116, 117]. Moreover, treatments aiming at decrease the Aβ 
or tau burden by using antibodies for plaque clearance or tau aggregation inhibitors (TAIs) have not been 
proven effective in patients due to different reasons [118, 119]. Since the global number of people living with 
AD is increasing with devastating consequences for families, communities, and health-care systems around 
the world, intensive research has been focused on searching for new therapeutic targets that could prevent 
neurodegeneration and/or improve cognition in AD.

In vitro and in vivo assays have demonstrated the impact of microbiota dysbiosis in the development of 
AD. Part of the current knowledge about the potential link between gut microbiota and this proteinopathy 
comes from the study of Bruce-Keller and collaborators [120], who found an impairment in the cognitive 
behavioural capacity of mice undergoing an antibiotic therapy and injected with gut microorganisms from 
mice fed with a high-fat diet. Similarly, an age-related abnormal gut microbiota composition seems to be 
associated with the compromised cognitive function in senescence-accelerated mouse prone 8 (SAMP8) 
mice [121, 122]. Although limited, the studies made so far have been enough to prove important alterations 
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in the intestinal microbial profile in AD patients compared to control age- and sex-matched individuals. 
On one hand, it has been described a reduction in diversity of gut microbiota, i.e., low levels of Firmicutes 
and Bifidobacterium and higher amount of Bacteroidetes [123], and differences in Firmicutes:Bacteroidetes 
ratio [124]. On the other hand, Helicobacter pylori infection has been associated with a greater cognitive 
decline in AD patients and its eradication with a decreased risk of AD [125, 126]. A detailed analysis of faecal 
microorganisms of subjects suffering from cognitive impairment and brain amyloidosis also demonstrated 
a larger proportion of pro-inflammatory Escherichia/shigella spp. taxa and a lower proportion of anti-
inflammatory Eubacterium rectale spp. taxa compared to healthy controls [127]. This altered gut microbiota 
composition has a profound effect on the brain function modulating microglial activation and contributing 
to Aβ pathology [128]. Something that is not generally considered is that a significant percentage of 
total Aβ content of the brain is generated peripherally by many of the microorganisms that colonize our 
intestine [129]. This peptide, as well as other molecules of bacterial origin like lipoproteins or LPS, are able 
to cause a chronic inflammation, by the release of various microglial pro-inflammatory mediators (iNOS, 
ROS, COX-2, and NF-κB), that impact the permeability of GIT and compromises BBB integrity [128, 130]. 
Consequently, increased levels of peripheral Aβ together with a decreased capacity of protein clearance 
seem to potentiate fibrillogenesis and Aβ aggregation in the brain [124, 129, 131, 132]. A positive correlation 
between serum levels of LPS and cognitive impairment in AD patients has been also demonstrated [15].

Simultaneously, the pioneering studies of Harach and colleagues [133], in a GF mouse model of AD (GF-
APP/PS1), were instrumental for analysing potential microbiota-based AD therapies. In fact, they observed 
that transgenic mice raised under GF conditions exhibit a diminished Aβ pathology and low levels of 
inflammation in the CNS when compared to conventionally housed AD animals. Interestingly, the transference 
of stool samples from conventionally-raised APP/PS1 mice to GF-APP/PS1 ones resulted in a markedly 
accumulation of cerebral senile plaques [133]. Further, changes in gut microbial composition by prolonged 
antibiotic therapies significantly reduced Aβ-induced neurodegeneration and neuroinflammation [134]. 
Preventive effects on Aβ-induced cognitive deficits were also observed in mice orally administered with 
Bifidobacterium breve A1 strain prior to the intracerebroventricular injection of Aβ25-35 [135]. Likewise, other 
probiotics (e.g., SLAB51, VSL#3, ProBiotic-4), prebiotics (e.g., fructooligosaccharide, xylooligosaccharides, 
ferulic acid), synbiotics (e.g., a mixture of xylooligosaccharides and Lactobacillus paracasei HII01) and, even 
dietary and traditional medicine interventions (e.g., oligosaccharide fractions derived from Liuwei Dihuang 
decoction) are potentially neuroprotective in different models of aging as SAMP8 mice [136-138] and other 
murine age-linked models of the AD etiopathogenesis [139-146], alleviating the main age-related symptoms 
of the disease and delaying its progression. This fact seems to reflect deeper changes at biochemical level, 
i.e., a decreased microglial activation, inflammation, oxidative stress and Aβ accumulation, increased levels 
of hippocampal BDNF and of genes involved in synapse processes [40, 145, 146].

Probiotics have also proven to have some success in ameliorating AD-related symptoms in 
some human studies (see the exhaustive reviews of [40, 47]). A specific multibiotic of four strains (L. 
acidophilus, L. casei, B. bifidum, and L. fermentum) given over a course of 12 weeks to an AD cohort in 
a double-blind randomized controlled trial led to improvements in cognition according to Mini-Mental 
State Examination Score (MMSE) [147]. However, a similar intervention using other Lactobacilli and 
Bifidobacterium combinations (e.g., L. fermentum, L. plantarum, B. lactis, or L. acidophilus, B. bifidum, B. 
longum) demonstrated the insensitivity of severe cases of AD to this treatment [148]. In a recent study 
of Tamtaji and co-workers [149], an AD cohort was randomly supplemented with either a probiotic 
mixture (L. acidophilus, B. bifidum, and B. longum) combined with selenium as prebiotic, selenium alone 
or placebo. Their findings showed enhancements in the MMSE and a significant reduction in metabolic 
markers of inflammation, oxidative stress, insulin metabolism and dyslipidemia, following synbiotic 
administration compared with prebiotic alone or placebo [149]. In addition, the daily consumption for 90 
days of probiotic-fermented kefir was effective in the improvement of anti-/pro-inflammatory cytokine 
and anti-/pro-oxidant ratios in AD patients which seems to be behind the higher scores on all cognitive 
tests [150]. Finally, the efficacy of FMT was evaluated in both mouse models of AD and clinical trials. It has 
been shown that infusion of faecal material from wild-type mice in the gut of APPswe/PSEN1dE9 or 5XFAD 
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transgenic mice positively modifies some typical biomarkers of the disease. In this sense, FMT reduced 
phosphorylation of tau protein and the brain levels of Aβ, increased synaptic plasticity and decreased COX-
2 and other pro-inflammatory molecules, resulting in a remarkable cognitive improvement [151-153]. To our 
knowledge, only a case report has been published until now. This is just a proof of concept for one patient of 
82-year-old who experienced a rapid and surprising improvement in AD symptoms after undergoing an FMT 
from a healthy donor to treat a recurrent Clostridioides difficile infection [154]. Nevertheless, at least two 
randomized placebo-controlled trials with FMT in AD patients are ongoing and registered on ClinicalTrials.
gov at the time of writing this review.

Despite the promising results that different gut microbiota-targeted interventions have demonstrated 
in some researches, further humanized studies are required to establish unequivocally their safety and 
therapeutic potential in AD.

HD
HD is an autosomal-dominant rare neurodegenerative genetic disorder that appears in mid-life with fatal 
consequences. Given its heritability, HD affects 50% of the patients’ progeny with a variable age of onset 
(30-50 years) and a maximal life expectancy of 15-25 years after diagnosis [155]. The pathology is caused 
by a trinucleotide repeat of cytosine-adenine-guanine (CAG) in the HTT gene which encodes for the HTT 
protein; whereas the length of CAG is 16-20 repeats in normal conditions, in the case of the mutant protein 
[mutant HTT (mHTT)] it reaches more than 36 repeats [156]. Although the exact physiological role of the 
HTT is unknown, its mutations result in a polyglutamine (polyQ) expansion in the N-terminus that leads 
to impaired protein folding and consequently to its self-aggregation into cytotoxic cytoplasmic and nuclear 
inclusions [157-160]. The acquisition of new pathogenic properties by the mutant protein and the loss of 
function of the wild-type HTT protein have been associated with degeneration of inhibitory neurons in 
some structures of basal ganglia, as striatum, which is accompanied by a secondary neuronal death in SN, 
cerebral cortex, hippocampus or cerebellum [161, 162]. Overall, these brain changes are behind the clinical 
manifestations of HD including psychiatric (depression), cognitive (dementia), and characteristic motor 
alterations (chorea) with hyper- and hypokinetic phases [163]. The mechanism of disease progression is 
not clear and, unfortunately, there is no curative treatment for HD. The main goal of currently therapeutic 
approaches, some of them still under study, is to reduce symptoms and maintain the quality of life of patients 
as much as possible [162, 164]. Notable, among them, are the use of dopamine inhibitors, anti-excitotoxic 
compounds and antipsychotics drugs, and also those actions designed for achieving the enhancement of 
BDNF expression or the reduction of mHTT burden [164-166].

In addition to motor and cognitive dysfunction, a high percentage of HD patients co-presents a wide 
range of GIT clinical symptoms including diarrhea, nutrient deficiencies or gastritis, that have been ignored 
for a long time [163, 167, 168]. Thus, despite the extensive evidence of gut dysbiosis in other proteinopathies 
as AD and mainly PD, few studies have raised this issue in the case of HD. In the last years, some preclinical 
work has reported altered gut microbiota profiles in some animal models of HD [169]. However, it was not 
until the year 2018 when Kong and co-workers [170] demonstrated it for the first time. In fact, they found 
changes in gut microbiota composition and microenvironment in R6/1 transgenic mice showing an increased 
level of Bacteroidetes and a decreased amount of Firmicutes. Moreover, this gut dysbiosis seemed to be related 
with loss in body weight and motor deficits in HD mice at 12 weeks of age. These results, alongside to an 
impaired intestinal permeability, were subsequently confirmed in transgenic R6/2 HD mice in early and 
early/mid stages of disease [171]. Furthermore, the BACHD mouse model of HD placed in a GF conditions 
exhibited defects in myelin plasticity [172]. Finally, the pioneering study of Wasser et al. [173] has become the 
first direct evidence of gut dysbiosis in people with HD; the authors highlighting the existence of important 
alterations in the gut microbial community structure, i.e., differences in richness and diversity, associated 
with cognitive performance and motor signs in HD patients compared with age- and gender-matched healthy 
controls. In summary, with regard to HD, there is an urgent need for further research to uncover the exact 
relationship between gut dysbiosis and the disease that could lead to new microbiota-targeted therapies, as 
in the case of other proteinopathies.
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Perspectives and conclusions
Nowadays, the existence of a link between the gut microbiota and the brain function of the host is beyond 
doubt. This review compiles a significant number of verified evidences that are instrumental in highlighting 
the key role of microbiota colonization in the neurodevelopment, and how disturbances in microbiota 
dynamics are able to impact brain function in an age-dependent way. Thus, changes in microbiota composition 
during infancy and childhood are related with the risk of developing neuropsychiatric disorders later in life 
(a complete survey of this topic is beyond the scope of this paper and the reader is referred to [21, 174, 175] 
for further details), and ageing can influence the onset of some ND.

Perhaps the greatest exponent of healthy aging is constituted by those people who reach 100 or more 
years of age with a lower number of comorbidities and a better health condition, either physical and/or 
mental status, the so-called “centenarians”. Interestingly, some authors using next-generation sequencing 
approaches demonstrated that gut microbiota of centenarians markedly differs from elderly population in 
composition, i.e., they showed decreases in Faecalibacterium, Roseburia, Coprococcus, Blautia. Furthermore, 
increases in Enterobacteriaceae, Christensenellaceae, Akkermansia and Bifidobacterium, and in functionality 
with a propensity for proteolytic rather than carbohydrate metabolism were observed [176-178]. This may 
suggest that rearrangements in gut microbiota in the final stage of life could promote healthy aging and 
longevity, pointing out some bacterial groups, such as Christensenellaceae and Akkermansia, as bacterial 
signatures of a healthy eldering. In a totally opposite situation are people who suffer from some type of age-
related ND, proteinopathies among them. In fact, pathological alterations in the gut microbiota composition 
have been demonstrated in these patients compared with healthy controls. In this sense, gut dysbiosis and 
the consequent disruption of beneficial relationship between microorganisms that inhabit the GIT and 
CNS may contribute to the onset and progression of some proteinopathies (Figure 2). More importantly, 
most studies in this field suggest that influence GBA by bacteria and bacterial derivatives impacts several 
symptoms and hallmarks of PD, AD and HD, so it could be a promising new therapeutic option in their clinical 
management [12, 13, 15, 21, 179]. These potential microbiota-based therapies would include the intake of 
adequate amounts of different bacterial strains or substances inducing the growth/activity of microbiota 
(probiotics, prebiotics or synbiotics), or to replacing the entire gut microbial population with a new intact one 
by FMT [40, 47] (Table 1). However, there are still uncertainties associated with the use of these therapies; 
for example, the very limited number of human studies, the high variety in the cohorts employed, or the lack 
of formulation and dose standardization have disabled their recommendation as biotherapeutics in current 
medical practice [103, 104, 180]. Indeed, mainly in the case of FMT, safety issues have been revealed by the 
scientific community for these particularly vulnerable groups that still make difficult to endorse this strategy. 
Therefore, further research is needed to design safe, effective, and targeted microbiota-based therapies for 
patients with hard-to-treat proteinopathies.

Table 1. Summarizing documented clinical manifestations, gut microbial profiles, and conventional and new microbial-related 
therapies in proteinopathies

ND Hallmarks Clinical 
manifestations

Conventional 
therapies

Gut microbial profile New microbial-related 
therapies

PD Lewy bodies Bradykinesia, 
tremor or postural 
instability
Constipation

L-DOPA, 
dopaminergic 
agonists, MAO-B 
inhibitors and 
COMT inhibitors

Reduction of anti-inflammatory 
species and greater 
abundance of pro-inflammatory 
Enterobacteriaceae [13, 53, 66, 
69, 70]
SIBO and Helicobacter pylori 
infection [79, 87, 88]

Probiotic containing 
Lactobacillus casei Shirota 
and Bifidobacerium strains 
[79, 89-91]
Regular intake of Bacillus spp. 
[66, 94, 95]
Regular consumption of 
synbiotics [96]
FMT [101, 102]
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Table 1. Summarizing documented clinical manifestations, gut microbial profiles, and conventional and new microbial-related 
therapies in proteinopathies (continued)

ND Hallmarks Clinical 
manifestations

Conventional 
therapies

Gut microbial profile New microbial-related 
therapies

AD Senile 
plaques, 
neurofibrillary 
tangles

Progressive 
loss of memory, 
language 
and learning 
capabilities

To increase 
acetylcholine 
levels
To decrease 
NMDA glutamate 
receptors activity

Reduction in gut microbiota 
diversity [123]
Differences in 
Firmicutes:Bacteroidetes ratio 
[124]
Helicobacter pylori infection 
[125, 126]
Larger proportion of pro-
inflammatory Escherichia/
Shigella spp. taxa and lower 
proportion of anti-inflammatory 
Eubacterium rectale spp. taxa 
[127]

Multibiotics [147]
Lactobacilli and 
Bifibodbacterium 
combinations [148]
Probiotic mixture combined 
with selenium as prebiotic 
[149]
Daily consumption of 
probiotic-fermented kefir [150]
FMT [154]

HD mHTT 
aggregations

Depression, 
dementia, motor 
alterations and 
GIT dysfunction

Dopamine 
inhibitors, 
anti-excitotoxic 
compounds and 
antipsychotic 
drugs

Differences in richness and 
diversity [173]

Currently under investigation
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