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Abstract
Currently, the predominant targets for the treatment of Alzheimer’s disease (AD) are the main components 
of the two pathological structures: senile plaques (composed of amyloid beta peptide aggregates) or 
neurofibrillary tangles (constructed of tau protein polymers). However, the existence of adequate disease 
modifiers based on such targets is discussed. In this special issue, it has been suggested to search for new 
possible targets for AD therapy. This contribution tries to analyze non-neuronal tissues (periphery) to 
identify potential factors (target) involved in the development of AD.
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Introduction
A strategy to prevent a disease is to determine the primary cause of that disease. In the case of Alzheimer’s 
disease (AD), there are two main types: familial AD (FAD) and sporadic AD (SAD). It is mainly assumed that 
the primary cause for FAD is the presence of mutations in some genes like presenilin 1 (PSEN1), 
presenilin 2 (PSEN2) , precursor of beta amyloid peptide (APP) [1] and, probably, sortilin related receptor 1 
(SORL1) [2, 3] that could favor the presence of beta amyloid (Aβ) peptide aggregates, being that presence 
the first step for AD development. In this way, FAD could be similar to other neurodegenerative disorders, 
like Huntington’s disease (HD), that results from a genetic mutation [4]. However, even assuming that it 
was the primary cause, there is not suitable therapies for FAD or HD.
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For FAD, the great majority of the cases are the consequences of PSEN1 gene mutations and it has been 
described that those PSEN1 mutations may produce alterations appearing in the brain previously to Aβ 
over-production, in a mouse FAD model [5]. Thus, the presence of Aβ could not be the first step in FAD due 
to mutated PSEN1. Nevertheless, the prevalent view is that in FAD, the increase in Aβ is a very early factor 
in the development of the disease and that it could be, also, for SAD (amyloid hypothesis) [6].

However, in SAD, there are other additional hypotheses suggesting primary causes for the disease [7]. 
Examples of those hypotheses are:  cholinergic [8], calcium [9], oxidative stress [10], neuron 
inflammation [11], microbial (viral) infections [12], glucose hypometabolism [13] or the presence of an 
excess of tau aggregates [14], among others.

On the other hand, the main risk factor for SAD is aging [15] and healthy longevity could prevent the 
appearance of SAD.

Aging can be observed at different levels: the whole organism, organs (or tissues), cellular, and 
molecular levels. At cellular level, after the cells become old could be an additional step, senescence, with 
the senescence-associated secretion phenotype (SASP) [16] in which senescent cells could secrete toxic 
substances to the surrounding cells, with or without the same origin. Thus, the presence of a tissue with 
senescent cells could facilitate the toxicity and aging of neighboring tissues. Recently, it has been described 
an example, showing that skin cell aging drives age related bone loss via secreted cystatin A [17], or that 
knee osteoarthritis (OA), in old people, may accelerate Aβ deposition and neurodegeneration in the central 
nervous system (CNS) [18], although the presence of the brain blood barrier (BBB) may difficult the 
crossing of secreted compounds from the periphery to CNS. In any way, it has been proposed that AD may 
be a multiorgan disorder [19].

In addition to being a neurodegenerative disorder, AD pathology may include immune system 
dysfunction [20], inflammation, dysbiosis, insulin resistance, heart problems, kidney, and hepatic 
dysfunction, among others [19].

However, the main pathology is related to CNS disorders and the disorders in other tissues and organs 
may be used, or not, as putative biomarkers of the disease, although further work should be done to know if 
those peripheral disorders are cause or consequence of the CNS.

CNS disorders at cellular level
The most well-known neuronal hallmarks in AD are senile plaques [21] and neurofibrillary tangles [22], 
coming from two proteins, APP and tau protein, mainly expressed in neurons [23–25]. In addition, glia cells, 
present in CNS, may play an important role in the development of AD. In this way, microglia can have 
harmful actions in AD [26]. Activated microglia or disease associated microglia (DAM) with the new 
nomenclature [27] may be one of the key factors involved in the neuroinflammation found in AD [28]. Also, 
the activation of microglia could be the consequence of a change in the cross-talking neuron-resting 
microglia [29] and could be the consequence of microglia change of status specific features found in AD 
mouse models. Parabiosis experiments in mouse models indicate that microglia account for the increased 
myeloid cell number observed in brains with plaque pathology [30]. Additionally, astrocytes may also play 
a role in neuroinflammation [31].

Is there any relation between peripheral nervous system and AD?
AD is a CNS disorder but it could correlate with some changes in the peripheral nervous system (PNS) that 
could be used as biomarkers of the disease. An example is the lower degree of pain observed in 
AD patients [32].

About peripheral biomarkers, in human fluids, in addition to looking at the levels of Aβ or tau protein 
in cerebral spinal fluid (CSF) [33, 34], other peripheral fluids, like plasma, saliva, or urine, have been used 
as possible markers of compounds, like proinflammatory cytokines, or others, that could be altered in AD 
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patients [35]. The kinetics for the appearance of these markers could be important since earlier markers 
could facilitate the earlier prevention of the disease [35].

Peripheral disorders related to AD found in patients or in animal models
Briefly, it will be described some peripheral features that are present in AD patients or in models for the 
disease, although, probably, in many cases the features could be more the consequence than the cause, that 
facilitate the development of the disorders. On the other hand, the use of palliative pharmacological 
treatments, for the disease, could result in damage to organs like kidney or liver.

Here, it is commented on the possible relation of AD development with seven different organs: heart, 
blood, gut, muscle, bone, kidney, and liver (Figure 1). Although other organs like lungs have been suggested 
to get a link with dementia [36], little is known about molecular factors involved in that interaction and 
they are not mentioned here.

Figure 1. Peripheral disorders related to AD. The figure showed different organs that could express or secrete compounds 
associated with features found in AD (like Aβ aggregates, proinflammatory cytokines, insulin dysfunction, or small fat-derived 
metabolites) or compounds that could act as protective factors (like irisin)

Heart

Links between cardiovascular abnormalities and neurological disorders in AD patients have been 
reported [37] suggesting that “mind the heart in Alzheimer disease” [38, 39]. Also, a long time ago, the term 
“cardiogenic dementia” was indicated [40], being, actually, a possible therapeutical treatment, systolic 
blood pressure intervention trial memory and cognition in decreased hypertension (SPRINTMIND), based 
on the fact that a healthy brain starts with a healthy heart and that control of intensive blood pressure 
could reduce dementia [41].

Blood

Aging, but mainly a development of AD, results, for example, in a decline of adult hippocampal neurogenesis 
and cognitive function [42]. To avoid that aging cognitive decline, heterochronic parabiosis, mixing the 
blood of young and old mice, could help the recovery of cognitive function in old mice [43]. The levels of 
some compounds, like the chemokine eotaxin, are increased in old mice or aging humans, and those 
compounds could impair memory or cognitive functions [43]. Possible therapies based on blood exchange 
have been proposed as a possible treatment of neurodegenerative disorders [43]. Also, related to AD, it has 
been described that clearance of brain Aβ burden may take place by blood exchange, suggesting that defects 
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in peripheral circulation may play a role in AD pathogenesis [44]. In this way, it has been indicated that 
blood-derived amyloid peptides could induce AD-like pathology [45] and behavioral deficits [46].

Gut

About the role of brain-gut microbiota axis dysregulation, many works have been published. Indeed, a 
whole long review article should deserve this subject, but, in this review, only a brief comment should be 
included to indicate the gut changes related to brain pathogenesis [47]. Changes in gut microbiota 
(dysbiosis) may induce increased permeability of the intestinal barrier leading to systemic inflammation. 
Curiously, Aβ has been described as an antimicrobial peptide [48] that could participate in that immune 
response [49]. It should be noted that intestinal inflammation triggers C/EBPβ/δ-secretase-dependent 
spread from gut to brain of Aβ in AD, suggesting that the gut is likely a critical source of Aβ in the brain [50]. 
In addition, there is a gut-derived amyloid that may contribute to Alzheimer’s pathogenesis [51]. Also, 
intra-gastrointestinal Aβ oligomers perturb enteric function and may facilitate the development of AD 
pathology found in another mouse model [52].

On the other hand, a high proportion of patients with inflammatory bowel disease show mental 
disorders, perhaps due to changes in brain choroid plexus modulated in response to intestinal 
inflammation [53]. Additionally, immunotherapy targeting tau can modulate gut microbiota in a mouse 
model for AD [54].

The presence of specific bacteria strains in gut microbiota could facilitate or decrease serotonin 
secretion and could promote neurotransmission dysfunction [55], which could result in depression, a risk 
factor for AD [56, 57].

The level of other metabolites like butyrate or propionic acid [58] should be also modulated by gut 
microbiota. By dietary source of tryptophan, some bacteria types could be recruited to the gut, increasing 
serotonin levels [59].

On the other hand, microbiota-dependent progression of neurodegeneration in a mouse model of 
tauopathies has been reported [60].

Finally, linking with muscle functions (see below), gut microbes shape athletic motivation [61], that 
could favor physical exercise, a protective factor for dementia.

Muscle

As previously indicated, depression is a risk factor of dementia and decreased levels of brain-derived 
neurotrophic factor (BNDF) are related to depression, but there is a peptide, irisin, induced by physical 
(muscular) exercise that increases the level of BNDF and cognition in mouse models for AD. Recently, low 
levels of irisin have been found in CSF from old humans with depression [62].

Irisin is a cleaved peptide from transmembrane fibronectin type II domain-containing protein 5 
(FNDC5) that has been linked to adult neurogenesis, being a possible mediator of muscle-brain crosstalk, 
that could explain the therapy based on physical exercise for patients with dementia [63]. In any case, irisin 
may be suggested as a possible biomarker for dementia [62].

Liver

It has been suggested that Aβ peptides produced in the liver can be involved in the formation of senile 
plaques [64]. Based on that, it has been proposed that peripheral (liver) Aβ clearance could be a good 
therapy for AD [65–67].

                
              

               
                

In addition, an association of altered liver enzymes with the diagnosis of AD has been proposed,
implying changes in cognition, neuroimaging measures, or in the level of cerebrospinal fluid markers [68].
In addition, brain changes related to hepatic apolipoprotein E4 (ApoE4) expression have been reported in 

mice with humanized livers [69]. These changes are probably due to the role of peripheral ApoE4 in
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Bone

OA and AD are two main genetic diseases that could have common features like the presence of chronic 
inflammation [72]. Also, the prevalence of dementia in OA patients is higher than in non-OA subjects and 
treatment with etoricoxib and diclofenac may reduce the risk of dementia in patients with OA [73

cognition impairment, by compromising cerebrovascular function [70]. Indeed, liver-restricted expression
 of human amyloid results in an AD-like neurodegenerative phenotype [71].

].

A possible link between OA and AD is that OA accelerates amyloid beta deposition and 
neurodegeneration, as it has been shown in a mouse model of AD [18].

Kidney

Physiological clearance of the Aβ peptide by the kidney has been reported [74]. On the other hand, tau, the 
main component of neurofibrillary tangles in AD, is usually considered as a specific neuronal protein [12] 
but its possible presence in peripheral tissues was proposed a long time ago [75]. However, recent studies 
have indicated that tau could be present in kidney, playing a role in the morphology of podocyte 
architecture [76]. Also, in some tauopathies, like frontotemporal dementia, some patients report urinary 
incontinence [77] and, more recently, the association of impaired kidney functions with dementia and brain 
pathologies has been indicated [78, 79]. Curiously, AD patients with chronic kidney disease (CKD) treated 
with cholinesterase inhibitors showed a lower risk of CKD [80]. Due to this link between brain and kidney 
pathologies and formic acid, a toxic compound associated with several cognitive disorders, may be present 
in the urine of AD patients. It was found an increase in formic acid level measured in the urine of AD 
patients and it could be used as a biomarker for the dementia and used as a diagnostic tool in 
the future [81].

Pancreas

Insulin is a peptide hormone expressed in the beta cells present in pancreas. Insulin has a role in the 
regulation of the metabolism of carbohydrates, lipid, and proteins through the absorption of glucose from 
blood to some organs. The action of insulin is through its receptors present in different cell types [82].

Insulin receptors are expressed in cells from both PNS and CNS [83], playing some functions related, 
for example, to food intake or memory consolidation [84].

Defects in insulin function may result in disorders such as diabetes mellitus. There are two types of this 
disorder, type I and II. In type I, no insulin is made and in type II, the insulin pathway initiated by the 
binding of the hormone to its cellular receptors is not working and, as a consequence of that, the expressed 
insulin does not have the desired functional effect in the body.

Diabetes mellitus type II accounts for more than 90% of all diabetes mellitus cases and a correlation 
between type II diabetes and dementia has been reported, with diabetes being an important risk factor for 
the development of AD [84, 85]. Thus, some authors have described AD as diabetes type III [86].

New targets, therapies or biomarkers for AD
Actually, the main targets for AD therapies are the components of senile plaques, Aβ peptide aggregates; or 
the component of neurofibrillary tangles, tau protein, since the amyloid [6] and tau protein [14] hypothesis 
are now the most popular hypothesis for AD development. Mainly, antibodies against Aβ aggregates have 
been tested, as a possible therapy for amyloid pathology. Although some of those antibodies like 
aducanumab or lecanemab have been raised some good expectations, no suitable results were obtained 
and, in addition, some side effects, like cerebral hemorrhages, were found in some treated patients [87]. 
More recently, it has been also indicated an accelerated brain volume loss is caused by these anti Aβ 
drugs [88]. Indeed, almost all of clinical trials for AD have failed to show positive results as indicated in the 
commentary “The long road to a cure for AD is paved with failures” recently published in Nature 
Medicine [89], discussing the last data in clinical trials for multiple targets like Aβ, tau, inflammation 
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components, and other ones, see also [90]. Also, Aβ and tau have been mainly used as early biomarkers for 
AD, looking at fluids like CSF, or blood, see for example [91]. Also, from glia (microglia) cells, triggering 
receptor expressed on myeloid cells 2 (TREM2) level could be associated with the transition from mild 
cognitive impairment to dementia, during the development of the AD continuum process [92].

On the other hand, it has been discussed why successful results have been obtained in animal models 
but not in humans [93]. Also, some compounds that could result in a neurodegeneration or cognitive 
improvement have been proposed as possible palliative therapies [94].

The use of other compounds related to some features found in AD has been reported. For example, the 
small compound “simufilam”, a stabilizer of filamin A [95], has been proposed as a possible therapy for AD, 
although that use is under discussion [96].

Now, new targets or new early biomarkers for AD are being looked for. About new possible biomarkers 
for AD, from the periphery, some examples related to blood are included. A possible link between platelet 
biomarkers and cognitive functions has been proposed [97] and between plasma β2 microglobulin and 
N-methyl-D-aspartate (NMDA) receptors, since β2 microglobulin could act as an antagonist for NMDA 
receptors, resulting in cognitive impairment [98]. Also, related to blood, associations of plasma cluster of 
differentiation 22 (CD22) level with cognitive decline in AD have been reported [99].

Biomarkers in other fluids like saliva and urine, for AD diagnosis, have been also proposed. Since 
chronic stress is a risk factor for the disease, the level of cortisol (related to stress) could be used as a 
prodromic marker for the AD continuum process [100]. Additionally, as indicated in kidney section, the 
presence of formic acid in urine could be used as a possible marker for dementia [81].

Conclusions
This brief review is mainly focused on the contribution of peripheral tissues in AD development, although, 
in many cases, the observed peripheral pathology could be more the consequence than a possible cause 
for AD.

It is well-known that changes in life style, or improving the quality of nutrition, could result in a 
decrease in the incidence of AD development [101, 102]. Treatment of risk factors like hypertension or 
diabetes or playing physical exercise could retard the appearance of dementia, decreasing the fast 
progression of AD at world level [103]. Additionally, since aging is the main risk factor for 
neurodegenerative disorders, a possible therapy to reprogram (rejuvenate) old into young neurons has 
been proposed [104]. Also, the presence of senescent cells, like senescent astrocytes, with SASP, may 
contribute to an increase in Aβ aggregation or tau phosphorylation [105] and, in that way, the use of 
senolytic drugs has been proposed in clinical trials for AD [106]. Other possible therapeutical ways could be 
based on microbiota changes, since it has been suggested that the presence of some bacteria in the gut of 
aged people may contribute to AD progression [107, 108], affecting Aβ pathology. However, although Aβ 
accumulation is a factor for AD pathogenesis, in the absence of tau, its presence is insufficient for cognitive 
decline. Now, it has been described on microbiota-dependent progression of neurodegeneration in a mouse 
model of tauopathy, being that effect modulated by ApoE4 isoform [60]. In that way, reshaping or 
eliminating gut microbiota may decrease the progression of neurodegeneration.

About new biomarkers, from the periphery, testing the level of formic acid in patients’ urine [81] or 
measuring the lower degree of pain, related to PNS, observed in subjects with mild cognitive decline, 
previous to dementia onset, could be suggested [32].

Thus, to get a whole picture of the clinical features of a patient, at the early phases of AD continuum, 
the suggested Alzheimer’s precision medicine initiative could be a good approach to retard the progression 
of AD [109]. Nevertheless, more work should be done to look for modifiers of the disease that may prevent, 
decrease or stop the development of the disease.
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