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Abstract
Aim: Up to date many successful attempts to identify various types of lesions with machine learning (ML) 
were made, however, the recognition of Alzheimer’s disease (AD) from brain images and interpretation of 
the models is still a topic for the research. Here, using AD Imaging Initiative (ADNI) structural magnetic 
resonance imaging (MRI) brain images, the scope of this work was to find an optimal artificial neural network 
architecture for multiclass classification in AD, circumventing the dozens of images pre-processing steps and 
avoiding to increase the computational complexity.

Methods: For this analysis, two supervised deep neural network (DNN) models were used, a three-
dimensional 16-layer visual geometry-group (3D-VGG-16) standard convolutional neural network (CNN) and 
a three-dimensional residual network (ResNet3D) on the T1-weighted, 1.5 T ADNI MRI brain images that were 
divided into three groups: cognitively normal (CN), mild cognitive impairment (MCI), and AD. The minimal 
pre-processing procedure of the images was applied before training the two networks.

Results: Results achieved suggest, that the network ResNet3D has a better performance in class prediction, 
which is higher than 90% in training set accuracy and arrives to 85% in validation set accuracy. ResNet3D 
also showed requiring less computational power than the 3D-VGG-16 network. The emphasis is also given to 
the fact that this result was achieved from raw images, applying minimal image preparation for the network.

Conclusions: In this work, it has been shown that ResNet3D might have superiority over the other CNN 
models in the ability to classify high-complexity images. The prospective stands in doing a step further in 
creating an expert system based on residual DNNs for better brain image classification performance in 
AD detection.
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Introduction
In the turning point of the appearance of chat generative pre trained transformer (ChatGPT), which is based 
on the transformers and is able to generate novel content, rather than simply analyse existing data like 
expert systems, one might be interested if this technological advancement will serve in predicting health 
conditions, such as brain lesions and neurodegenerative diseases from a variety of medical data. However, 
despite all the features that this model has, it is not yet without limitations [1]. This means that research in 
deep neural network (DNN) expert system models is crucial for a better prediction of neuropathologies such 
as Alzheimer’s disease (AD). In fact, neurodegenerative processes in the brain, most often diagnosed when 
the stage of dementia, a clinical syndrome characterised by substantial progressive cognitive decline, have 
already an impact on daily life [2]. A purely biological method to detect AD is to control the accumulation of 
amyloid β, inducing the spread of tau pathology [2], however, this is an invasive technique and is most often 
performed when the neurobehavioral symptoms are already present. Instead, in Parkinson’s disease, there 
are no clear biomarkers since the reason for this dementia is the loss of dopaminergic neurons in substantia 
nigra pars compacta [3]. For this reason, early detection of brain degeneration from brain imaging is needed, 
and here, the DNN classificators can come into play.

The advancements to deploy machine learning (ML) in brain images classification have been made, 
but the results achieved are not yet completely satisfying. One of the reasons is that up to date there are 
no typical characteristic patterns (signatures) of structural and functional cerebral alterations, and in mild 
cognitive impairment (MCI), the disease might be misclassified with other types of brain pathology present 
in a cognitively normal (CN) subject [4]. Looking at the alteration of the brain with AD, one should focus on 
plaques, tangles, and cerebral atrophies. However, epidemiological autopsy studies of individuals with and 
without dementia showed that atrophy of brain tissues was the factor that most strongly correlated with 
dementia at all ages [5].

Nevertheless, rather successful attempts to deploy ML are present, such as support vector machine 
(SVM) for classifying AD and non-AD MRI [6]. Also, the K-nearest neighbour (KNN) system with feature 
extracting procedure has also achieved promising results > 88% [7]. Furthermore, the deep convolutional 
neural networks (DCNN) classifying images from healthy subjects, the ones with MCI and with AD achieved 
training accuracy > 92% for each class [8]. It is needed to mention that many researches often focus on a 
subset of binary classification problems such as CN vs. MCI, MCI vs. AD, or CN vs. AD [9, 10], which allows to 
achieve higher prediction accuracy, where multiclass predictions are more challenging. Moreover, success 
in brain image classification may come from the pre-processing procedure. That is, before applying ML 
algorithm, wavelet transforms, dimensionality reduction, shearlet transform, and other techniques [6, 10, 11]. 
However, feature definition often relies on manual procedures such as the outlining of brain structures, which 
can be prone to variability, and that has also a long image pre-processing procedure, as well as could be 
computationally consuming.

There is a decent amount of literature that has well studied AD Imaging Initiative (ADNI) database 
applying ML and DNN systems to detect AD [12]. The comparison of various ML methods, such as 
AdaBoost, Random Forest, KNN, and SVM was investigated in Khan & Zubair, 2022 [13], where the validation 
accuracy has been achieved by up to 93% using hybrid model learning. In the work reported by Jain 
et al. [14], 2019, a three-dimensional 16-layer visual geometry-group (3D-VGG-16) architecture for feature 
extraction for transfer learning was deployed. And other studies obtain higher than 96% of validation 
accuracy with DNN [15–17].

 Here the two DNN models are proposed, 3D-VGG-16 and three-dimensional residual network 
(ResNet3D), showing that the multiclass classification from the three groups CN, MCI, and AD can achieve 
promising results with a minimal dedication to pre-processing of images step. We believe that the ResNet3D 
has superiority over 3D-VGG-16 model, which comes mainly from the ability to handle deeper structures 
avoiding vanishing gradient descent due to the residual connections [18, 19], moreover, the ResNet3D has 
been shown to outperform other networks in some three-dimensional (3D) medical image analysis tasks, 
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such as tumour segmentation and classification, due to its ability to capture more complex features and 
representations [20]. Nevertheless, we still deployed the 3D-VGG-16 network for comparison. Our main goal 
was to verify the already existing results and to show the potential of residual networks (ResNets) model 
in brain image classification in comparison to a more traditional convolutional neural network (CNN). The 
reason stands primarily in the research of an automatic system that can analyse high-complexity images 
without increasing its computation time and complexity and has the potential to be interpreted.

Materials and methods
Datasets

Thanks to the ADNI, we could access the magnetic resonance imaging (MRI) dataset which is publicly 
available at the adni.loni.usc.edu. We downloaded one of their created collections: ADNI1—2 years, 1.5 T 
MRI scans, totally consisting of 2,042 images, which were collected from 2,042 subjects (1,205 males and 
837 females) age ranging 55–92 years old. MRI images were classified into three groups: CN—567 images, 
MCI—1,206 images, and AD—269 images. We performed the analysis in five main steps: 1) Access the 
ADNI database and download MRI collection; 2) image pre-processing; 3) dataset division into training, 
validation, and testing sets; 4) deploying the artificial neural networks; 5) provide performance metrics. 
We provide a scheme of our work in Figure 1.

Figure 1. The overall diagram of the steps of the analysis provided in this work. Brain images represented in the figure are created 
with Python library Nilearn, which is specifically designed for manipulation as well as visualisation of neuroimaging data, thus, the 
reason for them here is only to depict the process. MNI: Montreal Neurological Institute

Pre-processing stage: normalization, resampling and skull-stripping
We do not apply any image transformation to be submitted to the network as in some previous works [7, 11]. 
However, we perform some necessary pre-processing steps such as normalization, resampling, standardisation, 
and skull-stripping to prepare the images for training. These steps are inevitable since the purpose is to 
ensure that the structure of all images is of the same shape so that the classification would not be biased 
by irrelevant to the disease features.

Resampling and normalisation

The reason why these pre-processing steps in MRI scan image analysis are important is that MRI scans 
are typically acquired with different spatial resolutions, voxel sizes, and orientations. Resampling involves 
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transforming the image to a standard size, resolution, and orientation. This step helps to ensure that the 
features extracted from the image are consistent across different scans and can also reduce computational 
complexity. Where normalization helps to solve the problem of intensity variations due to differences in 
acquisition parameters, scanner hardware, and patient anatomy. Normalization involves scaling the intensity 
values to a common range to ensure that the network can learn meaningful patterns from the images.

Standardisation
This process allows us to identify the regions common to the original and normalized images that would 
represent the same anatomical structures. For a DNN to locate a certain image region as relevant is easier 
if they are adapted to one point of reference. We referred to the MNI, The McConnell Brain Imaging Centre 
atlas, as Evans et al. [21] tried to overcome the variabilities by using a single subject brain as a template and 
introduced the concept of a statistical MRI atlas for brain mapping. Since images we receive from the ADNI 
database have different formats and positions, at this stage we can adapt them according to a single template.

Skull-stripping

Since skull bone does not provide additional information to identify the neurodegenerative processes in 
the brain, its removal is useful for eliminating irrelevant information from images leaving only brain tissue. 
This step prevents the computational workload and saves the networks from additional confusion. After 
this step, the images were ready to be submitted to the DNN. We performed the skull-stripping step with 
functional MRI of the brain (FMRIB) Software Library brain extraction tool (FSL-BET) toolkit from Nipype 
in Python programming language.

Train, validation, and test sets

In order to verify the performance of the network, these tests usually are performed with unseen model 
data. In this particular case, the dataset was divided into three sets: training set consisted of a total of 1,476 
images, the validation set of 260 images, and the test set of 306 images. The split was implemented with a 
ratio of 70/15/15 (%) for train/test/validation sets respectively. The networks were trained on the training 
set, the validation set was used for the optimization of the network parameters after each training epoch. 
And the test set was used to evaluate the success of the model.

Both train/test/validation split and k-fold cross-validation are commonly used techniques for evaluating 
the performance of ML models. The choice between the two methods largely depends on the size of the 
dataset and the specific goals of the analysis. Many authors claim that k-fold cross-validation or leave-one-out 
validation is a plausible method to evaluate the model [22, 23]. However, there are some general advantages 
of train/test/validation over k-fold cross-validation. Few of them are that train/test/validation split is 
easier to interpret than the cross-validation and that the latter has higher computational complexity [24]. 
Another pitfall of cross-validation is its variability and that a repeated procedure might be needed [24, 25]. 
Moreover, train/validation/test is more often applied when there is a sufficiently high number of data [24]. 
We selected train/test/validation split method mostly relying on the reasoning that we had enough large 
datasets to train and validate the network.

Model deployment and evaluation

In this work, a pipeline was implemented to classify MRI images deploying two DNN models, 3D-VGG-16 
and ResNet3D. To implement the networks, Keras and Tensorflow libraries in Python 3.9 were used. To 
calculate the loss of the network, a cross-entropy function was deployed. In order to adjust the weights 
correctly while training the network, Adam optimizer function [26] was used  for the ResNet3D model, 
and a root mean square (RMS) error as an optimizer function [27] for 3D-VGG-16, both networks were 
trained with a learning rate of 0.0001. The purpose of loss function and optimizer is to reduce the 
error in classification, so that the features of each group are associated and learned correctly. An early 
stopping [28] parameter was used based on validation accuracy and convergence speed while training 
both models for 20 epochs. Eventually, evaluation of specificity (precision), sensitivity (recall), F1 score 
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and area under the receiver operating characteristic (ROC) curve (AUC), which is also an accuracy, was 
performed. AUC is calculated as the average of the micro F1 score for all the classes. It evaluates the ratio 
of how many correct predictions were made out of the total available in the class.

3D-VGG-16 architecture

The architecture of Very DCNNs was proposed by Simonyan and Zisserman [29]. It is based on the CNN 
model; however, the novelty of 3D-VGG-16 lies in the evaluation of increasing the depth of the layers from 
16 to 19 in the network and using very small (3 × 3 × 3) convolution filters.

For the MRI images of ADNI dataset classification, we implemented a stack of 16 convolutional 
layers followed by 13 convolutional layers and three fully-connected layers. Each layer contained 
the rectified linear unit (ReLU) non-linear activation function, except the final layer was the soft-
max activation layer. The model was trained for 20 epochs. A schematic image of 3D-VGG-16 network 
is provided in Figure 2, and in Figure S1 we provide a summary of the model with the number of 
parameters indicated.

Figure 2. Architecture of 3D-VGG-16, a schematic visualisation of the 3D-VGG-16 neural network. (A) The input to the first 
Conv3D is of a fixed size, red-green-blue (RGB) format image. The image is passed through the stack of convolutional 
layers, where the first numbers inside the brackets indicate the number of filters, and the second number the size of the 
filter, in this case, 3 stands for 3 × 3 × 3 size filter passes through the image with one-pixel stride, this allows preserving the 
spatial resolution after the convolution. After convolution layers follow the spatial 3D pooling layer. Pooling is performed over 
the 2 × 2 × 2 pixel window, with stride 2. This layer preserves the shape and edges of the image; (B) flattening layer turns 
the 2D feature maps into a 1D feature vector, which is submitted to fully-connected layers; (C) three fully-connected layers 
follow the stack of convolutional layers of 4,096 channels each. All hidden layers are equipped with ReLU function, which 
allows for overcoming the problem of vanishing gradient descent, thus enhancing the learning process. The last layer contains 
the nonlinear softmax function, that gives the probability distribution of classes. The class with the highest probability will be 
selected as the predicted class. Conv3D: 3D convolutional layer

ResNet3D architecture

The ResNet3D is based on ResNets proposed by He et al. [30]. In general, ResNets are advantageous, 
because they introduce shortcut connections that bypass a signal from one layer to the next, which reduces 
to a minimum the issue of vanishing g gradient descent. We developed a ResNet3D network following the 
work of Hara et al. [31], where they used ResNet3D to identify human movements from videos. There is 
no temporal component in the structural MRI images, however, we used the spatiotemporal identification 
capability of ResNet to enhance the spatiospatial features [14].

We implemented a 34-layer ResNet3D model (Figure 3). The model consists of one initial convolutional 
layer, 16 residual units, and 3 fully connected layers. We train the model with 20 epochs and then extracted 
testing and training metrics. We also visualize the number of parameters of the model providing its 
summary in Figure S2.
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Figure 3. ResNet3D-34 architecture. The created network starts with the initial Conv3D, with 64 filters and a size of 7 × 7 × 7. Then 
4 residual blocks follow. Each of these blocks has a certain number of residual units, indicated as a number below the block 1) 3 
units with 64 filters; 2) 4 units with 128 filters; 3) 6 units with 256 filters; 4) 3 units with 512 filters, each filter of size 3 × 3 × 3, with 
the stride of 1 pixel, each unit contains two convolutional layers. Each convolutional layer is batch normalized, that is every time 
a feature map is created it is normalized and then submitted to the following block, this improves the learning efficiency. The last 
block is three fully connected dense layers with a dropout, that excludes inefficient connections. Each hidden layer is activated by 
the ReLU function and the for the classification we use the soft-max activation function

Results
We analysed 2,042 MRI images from ADNI database. The images were divided into three groups: CN, MCI, 
and AD with 567, 1,206, and 267 images per group respectively. For the image pre-processing we only 
normalized and standardized the images to fit the uniform format and removed the skull as an unnecessary 
feature for the brain tissue analysis.

Deploying two models, the 3D-VGG-16 and ResNet3D, we found the latter to be more successful. 
Its success might lay in the spatiotemporal or, in the case of static image, spatiospatial analysis of the 
image [14] as well as the ability to avoid vanishing gradient descent. ResNet3D models, in general, have 
superior capabilities of learning specific spatial and temporal relationships, while reducing computational 
costs [30]. The aim of this work is to investigate and make a step in creating an expert system based on 
supervised learning to detect neurodegenerative processes from brain images not increasing the complexity 
of the model, and not reducing the probability to possibly interpret it.

Comparison of 3D-VGG-16 and ResNet3D models

The ResNet3D model performed better, with 85% validation accuracy, while the 3D-VGG-16 reached barely 
61% (Table 1). Moreover, due to the set-up parameter of early stopping, the network stopped after 6 epochs 
due to lack of convergence, which might occur due to failure to minimize the error and being sensitive 
to inhomogeneous amount of data in each category. It is important to note that using the 3D-VGG-16 
network, we also experienced several out-of-memory problems, which indicates the computational power 
consumption of the network and inefficacy of trainability. While the ResNet3D was trained faster, more 
efficiently, and with higher accuracy.

Table 1. DNN models performance metrics

Model Training epochs/early stopping 
(yes/no)

Training time 
per epoch (s)

Training Validation
Accuracy (%) Loss Accuracy (%) Loss

3D-VGG-16 20 (yes, after 6 epochs) 409 57.43 96.23 61.92 91.01
ResNet3D 20 (no) 74 98.37 6.62 85.38 7.06

Here we provide a short summary of the two models’ performance in classifying ADNI MRI brain slice 
images. It is seen that ResNet3D model has superiority over 3D-VGG-16 due to the higher training and 
validation accuracy. Furthermore, the time required for one epoch training in ResNet3D model is shorter. 
Due to the different optimizers used for both networks, the loss function units are different and thus, cannot 
be compared. However, for 3D-VGG-16 model loss is extremely high.
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Performance of the ResNet3D model
Since we are interested in creating a potential system that is able to analyse MRI brain images with high 
accuracy, we are concentrating on the more detailed investigation of the performance of the ResNet3D 
model giving the classification report. Not only the validation accuracy of the ResNet3D model was 
high (Figure 4), but also the precision, recall, F1 score, and support metrics for each group were 
promising (Table 2).

Figure 4. Accuracy and loss curves for training and validation sets. Left: the dotted curve describes the training accuracy, which 
fluctuates around 1, demonstrating the effective learning process. The solid curve stands for validation accuracy, where more 
fluctuations are observed, however in an early stage, after 8 epochs, it reaches 85% of classification accuracy. The values on the 
y-axis are given as the ratio and not in percentage. Right: similar to the left panel, here we show the loss function for training 
(dotted line) and validation (solid line). After 8 epochs the training and validation error decreases to a minimum. The network was 
trained for 20 epochs, but here the curves are represented only up to 8 epochs because the convergence of accuracy and loss 
functions saturated at the 8th epoch

Table 2. ResNet3D model performance evaluation

Class Precision (%) Recall (%) F1 score (%)

CN 85.93 79.71 82.70
MCI 88.55 91.30 89.90
AD 66.66 66.66 66.66
Metrics for each category classification are given. MCI class has the highest scores, this might have occurred due to the 
larger dataset

Discussion
In this work, we provided a brief overview of the two DNN models, 3D-VGG-16 and ResNet3D, that in previous 
studies also showed success in analysing images from skin lesions to coronavirus disease of 2019 (COVID-19) 
infection-affected lungs [32, 33]. However, while most health pathologies have typical symptomatics and it 
is easier to automatically group them [34], it is not the case in neurodegenerative diseases, such as AD [35]. 
Nevertheless, analysing the ADNI images with semi-CNN ResNet3D we achieved a credible classification 
score, nearly 98% training, and higher than 85% validation accuracies.

Why necessarily ResNet3D has potential in AD detection?
The appearance of CNN provided a great prospective in supervised learning image classification. However, 
developing DNNs, after a certain number of layers the model diminishes its learning process, this is due 
to that during back-propagation process, the gradients decrease and vanish while propagating to the 
lower layers. This prevents weight learning and updating in the layers, which blocks the network from 
converging [36]. Where the 3D-VGG-16 networks have similar architecture to CNN, only that here, the 
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number of hyperparameters is reduced, always using a 3 × 3 filter with a 1-step stride to convolve it with an 
image analysed. However, this is still a large network of 16 layers and also does not solve the encountered 
problems of vanishing gradient descent as well as smaller dimension features from learning process. 
Thus, one needs a better solution how to improve the learning process of the network, instead of increasing 
its volume, which often ends up as a clumsy, with thousands of parameters, and stagnant network without 
convergence in accuracy.

He et al. [30] proposed a different framework, which is based on a residual learning formulation 
of the shortcut connections where the output of a previous layer can be mapped to the connecting layer. 
The ResNet3D architecture typically consists of several residual blocks, each of which represents a sum of 
identity mapping and a stack of convolutions. The convolutional layers from the standard ResNet are replaced 
with 3D convolution blocks [37]. An advantage of residual learning is that it does not increase the complexity 
of the network, while optimizing its performance, unlike in visual geometry-group (VGG) networks, which is 
crucial when one has to analyse enough large amount of high-resolution brain images. Another benefit of 3D 
network models is that 3D convolutional kernels are invariant to the tissue discrimination in all dimensions, 
thus it can more easily learn fractal features of the cortex voxels [14]. Eventually, ResNets have the ability for 
embedding learning, where discrete features of the analysed image can be mapped to a lower dimensional 
space and meaningfully represent the same properties in a transformed way. These features further can be 
deployed with transfer learning by combining any ML classifier to advance the neurodegenerative process 
detection in the MRI image [18] and move towards an expert system for AD detection.

Limitations of the study
Despite achieving a promising result with ResNet3D model, we encountered some issues and uncertainties. 
One of them was the elimination of the skull from the MRI images. During the brain extraction procedure, 
the main problem was to find an appropriate parameter for the fractional intensity threshold. In practice, 
this parameter measures the aggressiveness of the algorithm in removing image components that do not 
represent brain tissue. A very small value would leave some irrelevant information in the image, while a 
very large value might remove some brain tissues. The main difficulty was that not all MRI data is obtained 
and preprocessed in the same way before being stored in the ADNI database, and instead, we apply the 
same filter to all datasets. Thus, it would not be possible to find an ideal fractional intensity threshold for 
the entire dataset. Nevertheless, before applying the filter for skull removal we performed several tests, 
and a threshold of 0.2 was used, as it was able to maintain a correct balance for most images. It is needed 
to mention that besides FSL-BET there are other methods, such as the high-definition brain extraction 
tool (HD-BET), based on artificial neural networks that provide a robust result in skull-stripping [38]. 
Nevertheless, HD-BET is a novel tool for brain extraction, we opted for a more traditional FMRIB Software 
Library (FSL) technique due to its versatility, that is, we could perform more functions with one toolkit.

It is also important to specify that training a 3D architecture is a much slower learning process and 
increases the need for more images. In general, the more complex the network and the more information it 
has to process, the more observations it has to learn from, therefore efficiency of the network might decrease.

Furthermore, the inhomogeneous amounts of data in different classes for training and for validation 
might strongly impact the DNN performance, it can be simply biased by the features learnt from the group 
with larger contents. Thus, tests could be done by varying the amount of data in different classes and 
tracking how the performance of the DNN changes.

Future developments
We have illustrated in this project, in a practical way, how to use neural networks (3D-VGG-16 and 
ResNet3D) to support the diagnosis of AD. However, the achieved results are not yet cutting-edge and 
further developments are needed. In the paper, we have addressed some problems that we still encounter 
today in the construction of a DNN, especially in the field of medical diagnosis. The use of various open 
libraries, such as SimpleElastix, and open databases such as ADNI have allowed us to read, process, and 
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contribute to the development of systems for neurodegenerative brain disease diagnosis. Nevertheless, a 
more generalized DNN infrastructure, with less computational and time complexity requirements as well as 
higher interpretability [39, 40] is needed. Therefore, following the first step, to have deployed the ResNet3D 
network on ADNI database, we further aim to improve this pipeline with transfer learning, by deriving 
the relevant maps from ResNet models. Such work has been implemented by Dyrba et al. [40] in 2021, 
where they tackle the CNNs interpretability problem with layer-wise relevance propagation (LRP) and 
deep Taylor decomposition to inspect the relevant feature in the MRI scan images feature maps. However, 
these maps do not hold the ground truth yet. Further developments are needed for a more precise prediction 
of the neurodegenerative processes in the brain from MRI images to move towards an expert system in 
clinical application for AD.
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