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Abstract
Different stressors can elicit neuroinflammatory responses modulated by innate immunity receptors, 
such as the family of Toll-like receptors (TLRs). The TLR4, a pattern recognition receptor (PRR), is involved 
in many diseases, such as inflammatory and central nervous system (CNS) diseases. Stress exposure can 
regulate the expression of PRRs, including TLR4, in the brain of animals, especially in the hippocampus and 
prefrontal cortex. Moreover, TLR4 modulates behavior and neuroinflammatory responses in the brain. In 
addition, to TLR4, the endocannabinoid (eCB) system plays a role in stress response and immunity, acting 
as a regulatory, stress-buffer system. This system is involved in many TLRs-mediated immune responses, 
such as microglia activation. Therefore, pharmacological approaches targeting the eCB system could 
modulate neuroinflammatory responses to stress by interfering with the TLR4 pathway. Although the 
connection between TLR4, stress, and neuroinflammation is well documented, almost no pre-clinical studies 
investigate the possible direct relationship between TLR4, behavior, stress, and the eCB system. Studies 
exploring the relationship between stress, neuroinflammation, TLR4, and the eCB system were searched 
using Pubmed, Web of Science, and Embase databases. Based on this search, this review is focused on the 
involvement of TLR4 receptors and signaling in neuroinflammation and the behavioral consequences of 
stress exposure. Moreover, evidence of the eCB system modulating TLR4-mediated responses was brought 
to the attention, pointing out a possible regulatory role of these responses by eCBs in behavior changes 
related to mood disorders.
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Introduction
Stress is a physiological response of the organism to any external or internal challenge, called stressor. The 
physiological alterations induced by stress exposure include behavioral and cognitive changes, and the 
inability to overcome stress is related to the development of pathologies, including those associated with 
the central nervous system (CNS) [1, 2]. Acute or chronic exposure to several psychosocial stressors in lab 
animals, for example, can promote morphological and neuroplastic alterations in the brain, especially in 
limbic areas [3, 4].

Different neuronal networks are engaged by different types of stressors, although they overlap at some 
points. Physical stressors, such as infections and hemorrhage, induce the activation of brain regions such as 
the paraventricular nucleus of the hypothalamus (PVN), the nucleus of the solitary tract (NTS), and locus 
coeruleus (LC) [5]. Psychological stressors, such as exposure to aversive stimuli and predator-related cues, 
engage components of the limbic system, including the prefrontal cortex (PFC), amygdala, hippocampus, 
ventral tegmental area (VTA), and nucleus accumbens (NAc). Limbic-PVN connections are relayed specially 
by gamma-aminobutyric acidergic (GABAergic) neurons. Chronic stress affects this circuitry resulting in 
enhanced PVN excitability, and considering corticotropin-releasing hormone (CRH) neurons are expressed 
in the PVN, this could result in hypothalamus-pituitary-adrenal (HPA) axis activation [5, 6].

Several neurotransmitter systems, including the noradrenergic, glutamatergic, serotonergic, nitrergic, 
and cannabinoid systems, are involved in neuroplasticity processes after stress. Moreover, alterations in 
the cytoarchitecture of the amygdala, hippocampus, and PFC [7–11] are also involved. Among these brain 
regions, the medial PFC is extremely sensitive to stress and suffers significant changes in its morphology and 
function after chronic stress [7–11].

Besides the neural alterations, stress activates microglial cells, the resident macrophages of CNS, a 
phenomenon proposed to contribute to and shape the responses of the organism to threats [12]. Microglia 
cells are vulnerable to both infectious and sterile stimuli, such as psychological stress, so their actions range 
from maintaining homeostasis to induced neuroinflammation, depending on the type, intensity, and duration 
of the stimulus [13, 14]. The collection of microglial receptors allows these cells to detect and respond to 
signals of stress deflagrated by the neuroendocrine, immunologic and nervous systems [12, 15].

Therefore, microglial cells act as sensors of the environment and are highly responsive to local 
disturbances, which could lead to different reactive states [16]. Microglial activation has a complex 
classification but is generally designated as microglial M1, or proinflammatory, and microglial M2, or 
anti-inflammatory [13, 16–18]. Several studies demonstrated that exposure to acute or chronic stress 
induces behavioral changes and also induces the expansion of microglial processes in many cerebral areas, 
including the hippocampus and PFC [13, 19, 20]. Moreover, stress exposure also induces other alterations 
in molecules associated with the immune response in the brain, particularly in the PFC, such as increased 
expression of the enzymes inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the 
transcription factor nuclear factor kappa B (NFκB), and Toll-like receptors (TLRs) such as the TLR4 [2, 21, 22].

The TLR4 is a pattern recognition receptor (PRR) expressed in the membrane, mostly by innate 
immune cells, such as in microglia in the brain [23]. As a PRR, TLR4 can detect pathogen-associated 
molecular patterns (PAMPs), such as lipopolysaccharide (LPS), and damage-associated molecular patterns 
(DAMPs), such as heat shock proteins (HSPs) and high mobility group box 1 (HMGB1) [24].

Activation of TLR4 depends on the myeloid differentiation factor 2 (MD-2) co-receptor and the 
recruitment of adaptor proteins, such as myeloid differentiation factor 88 (MyD88). This process 
triggers an intracellular signaling cascade that culminates in phosphorylation and consequent 
degradation of inhibitor of NFκB (IkB) kinase via the proteasome; IkB kinase is an inhibitor of the 
NFκB transcription factor in the cytoplasm. The activated NFκB then translocates to the nucleus, 
where it binds to gene promoter regions, initiating the transcription of several pro-inflammatory genes 
which originate proteins such as COX-2, iNOS, interleukin 1β (IL-1β), IL-6, and tumor necrosis factor 
α (TNF-α) [25]. Pharmacological inhibition of the TLR4 pathway by systemic administration of TAK-242 
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(resatorvid) reduce neuroinflammation in the PFC of rats exposed to acute restraint stress [26]. However, 
whether TLR4 receptors in the PFC directly participate in the behavioral consequences of stress remains 
to be investigated. Studies evaluating TLR4 in stress response will be discussed further.

The endocannabinoid (eCB) system is another important system activated by stress response and 
that modulates this response is the eCB system [27, 28]. Stress increases glutamate release, which through 
N-methyl-D-aspartate (NMDA) receptors increases neuronal activity. Activation of NMDA and metabotropic 
glutamate receptor 5 (mGluR5) receptors by glutamate results in intracellular calcium influx in the 
postsynaptic terminal, culminating in activation of eCB synthesis enzymes, leading to their production and 
release by the postsynaptic terminal in the synaptic cleft [29]. Cannabinoid type 1 (CB1) and CB2 receptors 
(CB2Rs), the eCBs anandamide (AEA, also known as N-arachidonoylethanolamine), and 2-arachidonoylglycerol 
(2-AG) are the most studied components of the eCB system [30–34].

The eCB system can also modulate the neuroimmune response, including in stressful conditions. For 
example, repeated stress-induced neuroinflammation in the PFC of mice was attenuated by CB1 and CB2 
agonists [35, 36]. Furthermore, a non-selective CB1/CB2 agonist administered for six days during social 
defeat stress decreased neuroinflammation and the anxiogenic response, and prevented the later sensitized 
conditioned fear response [37].

In addition, several works, including from our research group, demonstrate that eCB signaling in the 
medial PFC has an important role in responses related to stress and anxiety, including controlling the 
HPA axis [29]. The presence of CB1Rs in corticolimbic circuits that regulate the HPA axis, the anti-stress 
properties of cannabis use, and several other pieces of evidence, including from animal models, support the 
eCB signaling involvement in the inhibition of stress response [37, 38]. Moreover, the presence of the eCB 
system, mainly CB2Rs, in immune cells, especially in microglia cells, and the involvement of this system in 
neuroimmune modulation [39, 40] strengthen the idea that eCB effects in modulating behavioral responses 
could involve the modulation of neuroimmune mechanisms.

Neuroinflammation has been discussed to play a central role in the neurobiology of neuropsychiatric 
disorders [41]. Several targets are involved in neuroinflammatory responses, including some induced by 
stress exposure, such as TLR4 and eCB signaling. However, fewer studies have evaluated the interaction 
between these systems in regulating neuroinflammation and behavior changes after stress [42, 43]. 
Therefore, it was hypothesized that the TLR4 signaling involvement in stress response, including behavioral 
changes related to psychiatric disorders, could be modulated by the eCB system. Before summarizing 
the findings of the TLR4 receptors in stress response and evidence of relationship with the eCB system, 
it is noteworthy to give a brief overview of how stress exposure can impact the immune system and 
neuroinflammation. Also, it is important to briefly address the TLR4 pathway to understand how the impact 
of stress on this signaling could result in behavioral changes. The studies mentioned in this review were 
obtained in PubMed, Embase, or Web of Science. Only full-text articles in English were considered.

An overview of neuroimmune effects of stress exposure
The sympathetic nervous system and the HPA axis, activated during a stress response, are the main drivers of 
the physiological systems, including the immune system [44]. In turn, the immune system is affected by acute 
and chronic stressors, resulting in various cellular changes and humoral responses both in the periphery 
and CNS [45]. The understanding of these mechanisms is essential to comprehend the consequences 
of stress [46].

The immune system in the brain, for example, develops several responses to stressful situations in 
the brain, including morphological and functional changes [47]. There is bidirectional communication 
between the brain and the immune system, which involves efferent and afferent pathways through which 
the brain and the periphery exchange information about the body’s homeostatic state. This process is 
an essential element of the response to environmental, physiological, and psychological factors that 
affect homeostasis [45].
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Exposure to acute or chronic stress can have several immune consequences, such as increased cortisol 
levels, increased circulating pro-inflammatory cytokines/chemokines (IL-6 and TNF-α), and other molecules 
such as DAMPs and prostaglandins [24]. Some of these mediators can be found in the brain, where they 
could mediate neuroinflammation and be involved in several behavioral changes [45, 48]. The neurochemical 
alterations in the brain arising from inflammation include activation of the kynurenine pathway, which 
affects tryptophan metabolism and serotonin levels, reduction of brain-derived neurotrophic factor 
(BDNF) production, among others [49, 50]. These changes are mostly associated with mood disorders 
such as anxiety and depression [51], but not all patients with mood disorders will present signs of immune 
activation [52]. Therefore, stressful experiences can induce activation of many aspects of peripheral 
immunity and central neuroimmune processes, contributing to various forms of host defense, stress 
recovery, and, ultimately, disease susceptibility [37, 45]. There are, therefore, a variety of neuroimmune 
signaling pathways that can be activated in response to stressful experiences. In animal studies, these effects 
often depend on specific individual characteristics of the subjects [46]. It is beyond the scope of the present 
review to address all these pathways; there are excellent reviews about this topic (for example, [53]).

In addition to the observed changes in the expression of cytokines and other inflammatory signaling 
molecules, exposure to stress is often accompanied by cellular changes manifestations of neuroimmune 
activation, such as dynamic changes in the state of microglial activation. These cells are the primary brain 
source of immune mediators [54]. Several human studies suggest that microglial changes could be related 
to mood disorders [55–59]. Moreover, inhibition of microglia with minocycline, a tetracycline antibiotic that 
inhibits microglial activation at low doses [60], was benefic to depressive patients [60–62] and demonstrated 
to improve antidepressant response in treatment-resistant patients [62]. However, the exact role of microglia 
cells in mood disorders remains uncertain. More recent data, almost exclusively from lab animal studies, 
suggest that PRRs in microglia, namely the nucleotide oligomerization domain-like receptor protein 
3 (NLRP3) and the TLR4, are involved in the behavioral consequences of stress exposure [63–70]. This review 
will focus on evidence pointing out the involvement of TLR4, therefore is essential to give a brief overview of 
this pathway.

TLR4 pathway
As described in the Introduction, the activation of TLR4 by PAMPs, such as LPS, or DAMPs, such 
as HMGB1, HSPs, and fibrinogen, can activate two pathways, MyD88-dependent pathway and 
MyD88-independent pathway [71].

The MyD88-dependent pathway leads to the recruitment and activation of IL-1 receptor-associated 
kinase (IRAK) and TNF receptor-associated factor 6 (TRAF6) proteins, which activates transforming growth 
factor β-activated kinase 1 [TAK1, also known as mitogen-activated protein kinase (MAPK) kinase kinase 7 
(MKK7)]. This molecule leads to the activation of MAPK pathways, promoting the nuclear translocation of 
activator protein 1 (AP-1) [71]. TAK1 can also activate IkB-kinase (IKK) complex [formed by NFκB essential 
modulator (NEMO), IKKα, and IKKꞵ], which phosphorylates the inhibitor protein of NFκB complex (subunits 
p65 and p50) and the IkBα. Phosphorylated IkBα (p-IkBα) is degraded by the proteasome and releases 
NFκB to translocate to the nucleus, where it will promote the transcription of several proinflammatory 
genes, including those necessary for the NLRP3 inflammasome [71, 72] (see Figure 1).

The activation of the MyD88-independent pathway promotes the endocytosis of TLR4 dimer, which 
through Toll/IL-1 receptor-domain-containing adapter-inducing interferon-β (TRIF) and TRAF3 proteins 
leads to the activation of the transcription factor interferon regulatory factor 3 (IRF3), which favors the 
expression of type I interferons [e.g., interferon α (IFNα) and IFNꞵ] [71, 72].
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Experimental approaches to study TLR4-related mechanisms in 
stress response
Genetic, chemical, and pharmacological approaches are used to study the influence involvement of TLR4 in 
stress response and behavior. Some of these strategies will be briefly discussed below.

LPS from Gram-negative bacteria, a TLR4 activator, is extensively used to evaluate sickness behavior, 
cognitive deficits, and depressive-like behaviors in animals [73–76]. Overall, LPS-induced behavioral changes 
and neuroinflammation are attenuated by antidepressants from different classes [selective noradrenaline 
reuptake inhibitors, selective serotonin reuptake inhibitors (SSRIs) and serotonin-noradrenaline reuptake 
inhibitors (SNRIs), and tricyclic antidepressants] [75, 77–79]. Therefore, this model is helpful for investigating 
mechanisms involved in the consequences of LPS exposure, as demonstrated for the indoleamine 
2,3-dioxygenase (IDO) enzyme [80–82] and the NLRP3 inflammasome [83]. Moreover, the LPS model is used 
to evaluate the potential effect of drugs in attenuating depressive-like behavior in the context of immune 
system activation. Ketamine [84–86], agonists of CB2Rs [86], and the phytocannabinoid cannabidiol [87], for 
example, attenuated the behavioral consequences of LPS administration in lab rodents. Therefore, these data 
are relevant to the study of depression associated with immune changes because in this case, the condition 
can be resistant to conventional treatments [88–90].

Some drugs were designed as inhibitors of the TLR4 pathway, including E-5531, eritoran, and 
TAK-242, mainly for the treatment of sepsis [91–93]. However, they fail to present therapeutic effects in 
this condition [42, 94]. These compounds aim to block the activation of the TLR4 pathway by DAMPs and 
PAMPs, blocking the induction of chronic and sterile inflammation, which can be involved in neuropsychiatric 
diseases [70, 95]; therefore, they are essential experimental tools.

TAK-242 is a cell-permeable compound that selectively binds to the cysteine residue of TLR4, 
disrupting its interaction with the adaptor molecules TIRAP and TRAM. TAK-242 attenuated 
neuroinflammation and behavioral changes induced by LPS challenge [96] and acute restraint stress [26]. 
Recently, Shirayama, et al. [70] showed an antidepressant effect of TAK-242 in a learned helplessness 

Figure 1. TLR4 pathway. The activation of the TLR4 pathway results in the translocation of transcription factors related to 
inflammation to the nucleus, such as AP-1, NFκB, and IRF3. These transcription factors bind to specific regulatory regions in 
the DNA, leading to the transcription of several inflammatory genes, resulting in the synthesis of messenger RNA (mRNA) of 
proinflammatory mediators, including IL-6, pro-IL-1ꞵ, pro-caspase-1, NLRP3, and iNOS. P: phosphorylation site;  TIRAP: Toll/IL-1 
receptor domain-containing adapter protein; TRAM: TRIF-related adaptor molecule; PGE2: prostaglandin E2
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model after intracerebroventricular administration. Interestingly, this effect was attenuated by local 
administration of a glutamate AMPA receptors antagonist (NBQX) or an inhibitor of BDNF-tropomyosin-
related kinase receptor B (TrkB) signaling (ANA-12), highlighting the involvement of these receptors in the 
effects of TAK-242.

Eritoran, a synthetic analog of the lipid A portion of LPS, competes with LPS for binding to the MD-2 
portion of the TLR4 receptor complex [97]. This drug attenuated depressive-like behaviors and neurochemical 
changes induced by chronic restraint stress (CRS) in a dose-dependent manner [98].

Genetic models are also widely used, such as the TLR4 knockout (KO) and C3H/HeJ mice; in the latter, 
TLR4 has a defective response to LPS [2]. Moreover, it is also possible to use interfering peptides that 
disrupt the beginning of the TLR4 pathway [99]. Several studies show that TLR4 KO is resistant to the 
behavioral effect of stress and has lower levels of neuroinflammation [100, 101]. However, contradictory 
data show no effect [102] or even an opposite effect, an anxiogenic behavior [103]. These data will be 
discussed in the next session.

New genetic models have emerged since microglia has gained importance in many neurological and 
psychiatric disorders [104, 105]. Conditional KO mice, such as C-X3-C motif chemokine receptor 1 (CX3CR1, 
CX3CR1+/–CreER), when crossed with mice with a floxed gene, can promote the deletion of specific gene targets 
in CX3CR1-positive cells, including microglia (CX3CR1+ cells). After some weeks following the treatment 
with the estrogen receptor agonist tamoxifen, the deletion is obtained. These animals were not yet used to 
study the brain microglia’s TLR4 in behavior but are helpful to study neurodegenerative diseases [106, 107]. 
Below we will discuss studies using these different approaches to study TLR4 in a stress context.

Involvement of the TLR4 pathway in stress-induced neuroinflammation 
and behavioral consequences
Several pieces of evidence show that exposure to stressors in lab animals alters TLR4 pathway molecules 
expression in brain areas related to neuropsychiatric disorders, supporting an essential role for TLR4 in 
mood disorders. Most importantly, pharmacological or genetic manipulation of the TLR4 pathway modifies 
animals’ behavior and neuroinflammation after stress exposure. These studies are summarized in Table 1 
and will be discussed below. Most of these studies use heterotypic stressors, such as exposure to chronic 
unpredictable mild stress (CUMS) (see Table 1, Figure 2).

Table 1. Involvement of the TLR4 pathway and related mediators in stress response, neuroinflammation, and behavioral 
effects in animal models

Animal (strain, 
sex, size/ age)

Stress model Behavioral 
assessment

Major findings Modulation of 
TLR4 pathway

Reference

C3H/HeN mice, 
male
adult

Immobilization 
stress (1 eCB/7 
days)

None Stress induces ↑COX-2, ↑iNOS, 
and ↑lipid peroxidation in HeN but 
not in HeJ animals

C3H/HeJ mice Caso et al., 
2008 [126]

C57BL/6N 
mice, male
6–12 weeks old

Single or repeated 
social defeat stress 
(4 or 10 days)

Social 
interaction test, 
EPM

Repeated stress induces 
microglia activation, ↑IL-1α, 
↑TNF-α, and social avoidance, all 
absent in TLR2/4 double KO mice

TLR2/4 KO mice Nie et al., 
2018 [129]

C57Bl/6 mice, 
male
8–12 weeks old

Footshock 
stress (one or 
two sessions of 
180 inescapable 
footshocks, 0.3 mA 
duration of 6 s)

Learned 
helplessness; 
number 
of failures 
to scape 
footshocks

Stress in WT animals but not 
TLR4 KO promotes ↑HMGB1, 
↑TNF-α, ↑IL-6, ↑IL-1β, ↑TLR4, 
and ↑NLRP3 in PFC
TLR4 KO animals display 
resistance to learned 
helplessness depression-like 
behavior

TLR4 KO mice Cheng et al., 
2016 [100]
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Table 1. Involvement of the TLR4 pathway and related mediators in stress response, neuroinflammation, and behavioral 
effects in animal models (continued)

Animal (strain, 
sex, size/ age)

Stress model Behavioral 
assessment

Major findings Modulation of 
TLR4 pathway

Reference

ICR mice, male
Weighing 
18–22 g

CUMS (8 weeks)
LPS (5 days, 0,83 
mg/kg, i.p./day)

SPT, OFT, TST, 
FST

Stress: ↑TNF-α, ↑IL-6, ↑IL-1β, 
and ↑TLR4 in hippocampus and 
depressive-like behavior
Stress effects were reversed by 
TAK-242 and baicalin

TAK-242 (3 mg/kg, 
i.p.) and baicalin (60 
or 30 mg/kg, i.g.)

Guo et al., 
2019 [96]

C57Bl/6 mice, 
male
8–10 weeks old

CUMS (6 weeks) FST, TST, OFT, 
SPT

Stress ↑HMGB1, ↑Iba-1, ↑TNF-α, 
↑TNFR1, ↑GM-CSF, ↑IL-1β, ↑IL-5, 
↑IL-6, ↑IL-7, ↑IL-9, ↑IL-13, ↑IFNγ, 
↑NO, ↑IDO, ↓dopamine, ↓5-HT, 
↑TLR4, ↑MyD88, ↑p-IkBα, and 
↑p-NFκB p65 in PFC.
Stress induced depressive-like 
behavior in WT but not TLR4 KO 
mice
Stress effects were reversed by 
drug treatment

TLR4 KO mice and 
arctigenin (25, 50, 
or 100 mg/kg, i.p.)

Xu et al., 
2020 [101]

C57Bl/6J mice, 
male
8 weeks old

LPS (1 mg/kg, i.p.) TST, SPT, FST LPS ↑IL-1β, ↑Iba-1, ↑RANTES, 
and ↑MCP-1 in PFC

None He et al., 
2020 [74]

ICR mice, male
weighing 
18–22 g

CUMS (6 weeks) SPT, TST, OFT, 
FST

Stress ↓5-HT, ↓NE, ↑TNF-α, 
↑IL-6, ↑IL-1β, ↑TLR4, ↑p-NFκB, 
↑p-p38, ↑NLRP3, and ↑caspase-1 
in PFC and hippocampus
Stress ↓SOD, ↓GPx, and ↓MDA in 
the serum
Stress promotes depressive-like 
behavior prevented by Cli-095

TAK-242 (referred 
as Cli-095 in this 
paper) (3 mg/kg, 
i.g.)

Fu et al., 
2019 [110]

BALB/c mice, 
male
8 weeks old

CUMS (4 weeks);
i.c.v. administration 
of fr-HMGB1 or 
non-oxid HMGB

SPT, TST, OFT Stress ↑HMGB1 (serum and 
cortex) and depressive like 
behavior
fr-HMGB1, but not non-oxid 
HMGB1, induced depressive-like 
behavior, ↑TNF-α, and ↓ MBP 
in hippocampus, which was 
reversed by TAK-242

TAK-242 (3 mg/kg, 
i.p.)

Lian et al., 
2017 [117]

C57Bl/6 mice 
and ob/ob 
mice, male
7–8 weeks old

CUMS (3 weeks) SPT, OFT, 
Morris water 
maze

Stress induced depressive-like 
behavior and alterations in target 
quadrant in Morris water maze
Stress ↑TNF-α, ↑IL-6, and ↑IL-1β 
in hippocampus and frontal cortex
TAK-242 reversed the 
depressive-like behavior in c57 
and ob/ob mice
Also, reversed stress effects in 
TNF-α, IL-6, and IL-1β levels in 
the brain

TAK-242 (3 mg/kg, 
i.p.)

Wang et al., 
2018 [43]

ICR mice, male
6–8 weeks old

LPS (0,83 mg/kg, 
i.p.)

OFT, TST, FST, 
SPT

LPS induced ↑TNF-α, ↑IL-6, 
↑IL-1β, ↑CD89, ↑TLR4, ↑p-IkBα, 
↑NFκB p65, and ↑HMGB1 in 
hippocampus
LPS also induced depressive-like 
behavior reversed by the drug 
used

Saikosaponin-d 
(1 mg/kg, i.g.)

Su et al., 
2020 [112]
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Table 1. Involvement of the TLR4 pathway and related mediators in stress response, neuroinflammation, and behavioral 
effects in animal models (continued)

Animal (strain, 
sex, size/ age)

Stress model Behavioral 
assessment

Major findings Modulation of 
TLR4 pathway

Reference

ICR mice, male
8–10 weeks old

LPS (1 mg/kg, i.p.) FST, SPT, 
NSFT

LPS induced ↑Iba-1, ↑GFAP, 
↑TNF-α, ↑IL-6, ↑IL-1β, ↑TLR4, 
↑p-NFκB, ↑MyD88, ↓BDNF in 
hippocampus, and depressive-
like behavior
These effects are reversed by the 
pre-treatment with fast green FCF

Molecular docking 
simulation indicates 
possible interaction 
between TLR4 and 
fast green FCF (100 
mg/kg, i.p.)

Yang et al., 
2019 [73]

NMRI mice, 
male
Adult
Weighing 
20–25 g

LPS (0,83 mg/kg, 
i.p.)

OFT, FST LPS induced ↑expression of 
TLR4, p-NFκB, and IDO in mice 
hippocampus and depressive-like 
behavior
GM-CSF inhibited the LPS effects

Modulation of TLR4 
pathway with GM-
CSF (30 μg/kg, i.p.)

Hemmati 
et al., 2019 
[111]

Wistar rats, 
male
Weighing 
150–180 g

CRS (6 eCB/day, 
28 days)

SPT, OFT, 
FST, social 
interaction test

CRS induced ↑TNF-α, ↑IL-6, 
↑IL-1β, and ↓BDNF in rat 
hippocampus and PFC. CRS 
also induced alterations in 
neurotransmitters, ↓GABA, 
↑glutamate, and ↓GAD in 
hippocampus and PFC
CRS also promoted depressive-
like behavior and ↓social 
interaction
All effects were reversed in a 
dose-dependent manner by 
eritoran

TLR4 antagonist, 
eritoran (5 mg/kg, 
i.p.)

Aboul-
Fotouh et 
al., 2018 
[98]

Wistar rats, 
male
adult
Weighing 
250–300g

LPS (20 μg or 
80 μg, i.c.v.)

OFT, EPM, 
FST, Morris 
water maze

LPS induced ↑TNF-α, ↑IL-1β
LPS induced depressive- and 
anxiety-like behaviors and 
cognitive impairments in Morris 
water maze

None Na et al., 
2021 [131]

Wistar 
Hannover rats, 
male
Weighing 
200–225g

CMS (21 days) FST, SPT, 
splash test, 
EPM

CMS induces bacterial 
translocation, ↑plasma LPS and 
depressive-like behavior

None Martín-
Hernández 
et al., 2016 
[130]

Offspring of 
C57BL/6 mice, 
male and 
female

MIA (single dose of 
LPS on embryonic 
day 12, 50 μg/kg, 
i.p.)

None Pro-inflammatory profile of 
cytokines and ↑TLR4 in amygdala 
of MIA offspring

None O’Loughlin 
et al., 2017 
[114]

↑: increase; ↓: decrease; EPM: elevated plus-maze; WT: wild-type; SPT: sucrose preference test; OFT: open field test; TST: 
tail suspension test; FST: forced swim test; Iba-1: ionized calcium binding adaptor molecule 1; TNFR1: tumor necrosis factor 
receptor 1; GM-CSF: granulocyte-macrophage colony-stimulating factor; NO: nitric oxide; 5-HT: 5-hydroxytriptamine; p-NFκB: 
phosphorylated NFκB; RANTES: regulated on activation, normal T cell expressed and secreted; MCP-1: monocyte chemoattractant 
protein-1; NE: norepinephrine; p-p38: phosphorylated p38; SOD: superoxide dismutase; GPx: glutathione peroxidase; MDA: 
malondialdehyde; MBP: myelin basic protein; NSFT: novelty suppressed feeding test; GFAP: Glial fibrillary acidic protein; GABA: 
γ-aminobutyric acid; GAD: glutamate decarboxylase; CMS: chronic mild stress; MIA: maternal immune activation

However, fewer articles evaluate the effect of homotypic stress, such as footshock or restraint stress 
exposure. Several reports show differences in immune system activation after exposure to homotypic or 
heterotypic stressors, including microglial activation. This effect is related to habituation of the HPA activation 
in the first but not in the second condition [4, 108, 109].

As already briefly discussed, stress exposure can increase pro-inflammatory cytokines and enzymes in 
the brain, especially in the hippocampus and PFC, and decrease neurotrophic factors and monoamines in the 
same brain regions [13, 19, 100, 101, 110, 111]. Also, there is an alteration in microglial markers, suggesting 
the involvement of these cells in stress response [74, 101, 112] (see Table 1).

Acute or repeated homotypic stressors increase the expression of TLR4 pathway components in the 
brain, including TLR4, MyD88, and NFκB [2, 73, 102, 113–116]. One of the molecules responsible for 
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triggering the TLR4 response is HMGB1 [100, 101, 112, 117]. Several studies showed that severe stress 
increases HMGB1 levels in the brain and induces neuroinflammation [116, 118, 119]. Considering that 
HMGB1 binds to TLR4 and CD14, resulting in the release of several cytokines [120], and considering that 
behavioral changes after stress involve HMGB1 release [121, 122], this DAMP could be responsible for the 
behavioral consequences of TLR4 activation after stress exposure.

Moreover, several studies show that stress increases the expression of components of the microglial 
NLRP3 inflammasome in the brain [63, 64, 118]. This inflammasome is primed by activation of 
TLR4 (Figures 1 and 2). When primed, other stimuli can activate it, such as activating purinergic P2X7 
receptors by ATP. NLRP3 inflammasome activation results in caspase-1 activation and conversion of 
pro-IL-1β/pro-IL-18 in IL-1β/IL-18 [73, 100, 101, 112] (see Table 1). Therefore, activation of this pathway 
could be one of the readouts of TLR4 activation.

The benefits of modulating the TLR4 pathway are described in several conditions such as Parkinson’s 
and Alzheimer’s diseases [123, 124] and traumatic brain injury [125]. Moreover, stress-induced inflammatory 
changes can be modulated by interfering with the TLR4 pathway. These data are summarized in Table 1 and 
discussed below.

TLR4 KO mice are resistant to depressive-like behavior in the learned helplessness paradigm and also 
have a blunted cytokine response to stress, with lower hippocampal levels of TNF-α, IL-6, and IL-1β than 
wild-type mice [100]. These mice also present a protective phenotype after exposure to repeated homotypic 
restraint stress [126] or CUMS [101].

However, the data of TLR4 KO mice in models predictive of anxiolytic drugs are controversial, with 
reports of no effect [102, 127, 128] or anxiogenic effect [103, 116]. For example, the anxiogenic effect in TLR4 
KO mice has been previously reported in different animal models, both in males and females [103]. However, 
one study [102] did not report this anxiogenic effect. These mice also showed deficits in the contextual 
conditioned fear paradigm, among other cognitive changes [102].

A recent work evaluated social interaction, but not anxiety behavior, in TLR4 KO and double TLR2/TLR4 
KO mice exposed to repeated social defeat stress [129]. Stress-induced social interaction reduction depends 

Figure 2. Behavioral and neuroimmune consequences of stress. In rodents, psychological and immunological stressors cause 
microglial activation, especially in limbic areas, such as the hippocampus and PFC. Microglia can be activated through the 
activation of the TLR4 pathway by PAMPs, like LPS, or DAMPs, like HSPs, HMGB1, and fibrinogen, leading to an increase in 
proinflammatory cytokines, such as IL-1β and TNF-α, enzymes that mediate immune/inflammatory responses, such as iNOS, 
COX-2, and PGE2, and transcription of components of the NLRP3 inflammasome pathway (pro-IL-1β, pro-IL-18, pro-caspase-1, 
and NLRP3). Stressors’ exposure also induces depressive-like and anxiety-like behaviors, which could be related to the 
downstream activation of TLR4. Therefore, pharmacological or genetic inhibition of this pathway, by administering drugs that 
antagonize TLR4 or prevent its activation, such as TAK-242, or using TLR4 KO or transgenic mice, could prevent the development 
of behavioral consequences of stress exposure
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on TLR2/TLR4 receptors specifically expressed in medial PFC (mPFC) microglia. Furthermore, reduced 
neuronal activity, microglial activation, and dendritic atrophy in the mPFC after stress also depend on these 
receptors. Although TLR4 KO animals did not present changes related to anxiety behavior in this study, 
these animals’ cellular responses to stress were not evaluated [129]. Furthermore, whether the deletion of 
TLR4 only in microglial cells participates in behavioral and cellular responses promoted by stress exposure 
is still an open question.

The pharmacological antagonism of TLR4 with TAK-242 restores sucrose preference and ameliorates 
depressive-like behavior after CUMS [110] and reduces helplessness behavior and expression of TNF-α in 
the hippocampus induced by chronic social defeat stress (CSDS) [116]. TAK-242 also reversed behavioral 
alterations and hippocampal increase of TNF-α after intracerebroventricular injection of reduced forms of 
HMGB [disulfide HMGB1 (ds-HMGB1) and fully reduced HMGB1 (fr-HMGB1)] [117]. In addition, TAK-242 
reversed the CUMS-induced depressive-like behavior both in C57bl/6 and in ob/ob (mutant mouse 
for leptin gene) mice, reversing the increase of TNF-α, IL-6, and IL-1β in the hippocampus and frontal 
cortex [43]. Overall, these results suggest that blockade of the TLR4 pathway can be beneficial to coping after 
stress exposure, similar to several data obtained with TLR4 KO mice (Table 1).

Concerning anxiety behavior, to our knowledge, few studies have evaluated if pharmacological 
inhibition of TLR4 can modify this behavior after stress. Intracerebroventricular administration of a 
TLR4 antagonist, the inhibitory LPS from Rhodobacter sphaeroides (R. sphaeroides), in naive animals 
induced an anxiolytic-like effect [102], contrasting with some reports in TLR4 KO mice indicating an 
anxiogenic effect (Table 1).

Therefore, pharmacological and genetic tools used to study the role of TLR4 in behavior, particularly 
related to anxiety, can render contradictory effects. The exact role of TLR4 in behavioral responses to stress 
still needs to be further elucidated. The resultant effect observed with TLR4 KO mice, for example, could 
involve the absence of these receptors during brain development [128, 129].

Interestingly, CMS promotes intestinal translocation and depressive like-behavior [130], and intestinal 
decontamination prevents the increase of TLR4, COX-2, and iNOS expression in the rat frontal cortex after 
stress exposure which indicates an essential role of bacterial translocation in activating the TLR4 pathway 
after stress. These effects of intestinal decontamination can also be observed with other types of stressors, 
such as CMS [113] and repeated restraint/acoustic stress [2]. However, in these studies, the behavior was not 
evaluated. Therefore, it is still not completely clear how bacterial translocation impacts behavior, and this 
discussion is beyond the scope of this review.

Altogether, these experimental data support the involvement of the TLR4 pathway in the 
neuroinflammatory and behavioral responses triggered by stress. Therefore, these receptors could be 
a potential target for therapeutic intervention in conditions of overactivation of the immune system. 
It is crucial to evaluate if similar alterations are observed in humans and if drugs currently used to treat 
stress-related disorders, such as antidepressants, or drugs potentially used to treat these disorders, could 
change the TLR4 pathway [96].

TLR4 in mood disorders and evidence of antidepressant effects involving 
this pathway
Recent data indicate that major depressive disorder (MDD) patients present changes in TLRs expression, 
or components of their signaling pathway, in blood cells [131–137]. TLR4 expression, for example, is 
increased in several MDD patients [132, 134, 136–138]. Interestingly, postmortem evaluation of TLRs 
in the PFC and dorsolateral PFC (DLPFC) of suicide and non-suicide depressive patients found higher 
levels of TLR4 mRNA and other TLRs [26, 139, 140]. However, no changes were found in the DLPFC 
of MDD patients [50]. Some reports suggest that TLR4 levels could predict the severity of depressive 
symptoms in MDD [132, 137]. Patients with severe symptoms, for example, presented significantly lower 
levels of methylation (an epigenetic process related to repression of gene transcription) in the tlr4 gene, 
specifically in the cytosine-phosphate-guanine (CpG) site cg05429895, when compared to patients with 
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mild symptoms; these findings were in line with the increased plasmatic levels of TLR4 mRNA [137]. 
However, there are also data showing no association between TLR4 levels and symptom severity [69]. In 
addition, single nucleotide polymorphisms (SNPs) of the tlr4 gene could predict some traits, such as anxiety 
and psychomotor retardation, observed during the first episode of depression in MDD patients [68]. Also, 
in MDD patients, peripheral levels of TLR4 expression could predict anxiety traits and weight loss [69]. 
Accordingly, TLR4 levels could be a potential biomarker in MDD.

A recent review summarized animal and human studies investigating if SSRI and SNRI attenuate 
neuroinflammation by modulating immune pathways [141]. In fact, human studies evidence 
anti-inflammatory effects of antidepressants [132–137, 139, 140]. Part of these effects could be 
mediated by TLRs, because chronic treatment with antidepressants from different classes attenuated the 
expression levels of several TLRs [133–135], including increased TLR4 levels [134, 135], in blood cells from 
MDD patients.

In vitro and animal studies with antidepressants, such as amitriptyline, escitalopram, and fluoxetine, 
support that their effects can result from TLR4 expression modulation [142–144]. For instance, several 
studies showed that fluoxetine decreases TLR4 levels in various brain regions [145, 146], a mechanism that 
could be related to subsequent inhibition of the NFκB pathway and the NLRP3 inflammasome [49, 147, 148].

Furthermore, not only antidepressants, but other compounds can modulate the TLR4 pathway. 
Compounds from plants used in the traditional Chinese and Indian cultures can modulate the TLR4 
pathway [95, 149]. For example, asperosaponin VI (ASA VI), isolated from the Radix Dipsaci, used 
in traditional Chinese medicine, improved LPS-induced depressive-like behavior in mice. ASA VI 
also suppressed microglia-mediated neuroinflammatory response by inhibiting the TLR4/NFκB 
signaling pathway [149]. Furthermore, arctiin, isolated from the plant Fructus arctii, induced a dose-
dependent antidepressant effect in mice. This compound also reduced excessive microglia activation, 
decreased the release of HMGB1, and attenuated the expression of TLR4 in the PFC of mice exposed to 
CUMS; it also attenuated the inflammatory profile of primary microglia stimulated with HMGB1 and 
TNF-α [101]. Baicalin, a flavonoid compound isolated from Scutellaria baicalensis, has anti-inflammatory 
and antioxidant properties [150]. This flavonoid attenuated CUMS-induced depressive-like behaviors 
and attenuated the increase in HMGB1/TLR4/NFκB expression [151]. Other flavonoids, such as flavones, 
apigenin, and hesperidin, demonstrated antidepressant effects by inhibiting TLR4 signaling in animal 
models [70, 152, 153]. Finally, curcumin, the yellow pigment in Indian saffron, isolated from the rhizome of 
Curcuma longa, has been investigated as a neuroprotective agent in several pathological conditions [154]. 
In a traumatic brain injury model and in an in vitro model, curcumin attenuated microglial activation and 
the expression of the TLR4/MyD88/NFκB pathway, and reduced neuronal apoptosis [155]. Moreover, it also 
attenuated neuroinflammation and long-term cognitive deficits induced by a high dose of LPS [156].

Therefore, not only drugs already used in the clinic, such as antidepressants, but also other compounds 
primarily used in popular medicine could exert at least part of their effects by modulating neuroinflammation 
via inhibition of the TLR4 pathway. Considering all experimental data showing anti-inflammatory and 
anti-stress effects of drugs that interfere with the TLR4 pathway and evidence of changes in TLR4 in 
MDD patients, we suggest that drugs interfering with this pathway could be used as adjuvant treatment 
in stress-related disorders. Also, they could be an alternative treatment in treatment-resistant patients, 
especially when there are signs of immune alteration. Finally, considering evidence that some antidepressants 
modulate the TLR4 pathway, those antidepressants with an anti-inflammatory profile would be a better 
choice for patients with altered immune parameters.

The eCB system in neuroimmune and behavioral response to stress: 
potential link with the TLR4 pathway
The eCB system modulates many functions in the CNS, such as neuroplasticity, the release of cytokines 
by microglia, cell homeostasis, and behavior [29, 157]. This system comprises endogenous lipidic 
messengers/neurotransmitters (the eCBs), receptors, and anabolic and catabolic enzymes [158]. The most 
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well understood eCBs are AEA and 2-AG. The N-acylphosphatidylethanolamine-specific phospholipase 
D (NAPE-PLD) and the fatty acid amide hydrolase (FAAH) are responsible for the biosynthesis and 
hydrolysis of AEA, respectively. The diacylglycerol lipase α (DAGLα) and DAGLβ, monoacylglycerol lipase 
(MAGL), and α/β-hydrolase domain 6 (ABHD6) are responsible for the synthesis and degradation of 2-AG, 
respectively. eCBs interact with CB1Rs and CB2Rs; but they can interact with other targets, such as transient 
receptor potential vanilloid type 1 (TRPV1) and peroxisome proliferator-activated receptor α (PPARα) and 
PPARγ receptors [157]. Other eCBs exist, such as the N-palmitoylethanolamide (PEA) [159], which has several 
anti-inflammatory and neuroprotective properties [160–162], and its effects can be mediated, for example, 
by activation of CB2, TRPV1, and PPARα [157, 159].

eCBs are synthesized by several cells and act on different brain cells, including neurons and 
microglia [163, 164]. Therefore, the widespread localization of the eCB system molecules in brain cells and 
its multi-target actions allows the control of many functions, from controlling local cellular actions to big 
circuits involved in behavior.

CB1Rs  are expressed in the periphery, but mostly in the CNS; they are found in telencephalic 
and cerebellar regions, mostly in neurons, but also in glial cells [165–167]. They are the most expressed 
G-protein coupled receptors in the brain [165–167]. The neuronal CB1 expression is generally located at 
presynaptic elements, where they are coupled to Gi protein [165, 166]. Therefore, neuronal CB1 activation 
usually inhibits neurotransmitter release [165, 167, 168]. In the striatum, CB1R is expressed by parvalbumin-
positive interneurons, whereas in the cerebral cortex, hippocampus, and amygdala they are predominately, but 
not exclusively, expressed by cholecystokinin (CCK)-positive interneurons [165]; they can also be expressed 
by glutamatergic neurons [169]. CB2Rs are mostly expressed by immune cells in the periphery, but also by 
microglia in the brain [170]. However, there is evidence of neuronal expression in the postsynaptic neurons, 
where its activation could hyperpolarize cells and inhibit signal transmission [171, 172]. Their expression is 
much lower than that of CB1 and it can be increased by several stimuli [170, 173].

Stress exposure affects the eCB system in the brain. For instance, acute or chronic homotypic stress 
activate FAAH and reduce AEA levels; in contrast, 2-AG levels are increased [174]. Repeated homotypic 
stress potentiates these effects on eCB levels, and reduces the expression of CB1 in most brain areas, such 
as hippocampus and amygdala, whereas increases it in the PFC [174]. Impaired CB1 signaling by AEA 
result in a lack of adaptation to repeated stress and consequently, behavioral changes [175], and impaired 
CB2 signaling could contribute to neuroinflammation [173]. Data regarding heterotypic stressors on eCB 
levels are less consistent [176]. eCB tone also controls the HPA axis. For example, CB1 antagonists increase 
circulating levels of adrenocorticotropic hormone (ACTH) [176, 177].

The presence of eCB signaling in stress-sensitive nuclei, such as hypothalamic and upstream limbic 
structures (amygdala, hippocampus, and PFC) suggests it plays an essential role in regulating the stress’s 
neuroendocrine and behavioral effects [178]. The amygdala is one of the primary limbic structures 
involved in activating the HPA axis in response to stressful stimuli. In contrast, hippocampus and PFC 
have been identified as inhibitors of the HPA axis and are also involved in glucocorticoid-mediated 
negative feedback [179]. Consequently, adequate eCB signaling in the limbic system is essential to mitigate 
the consequences of aversive stressful situations, as extensively reported [29].

The interplay between eCB, stress, and the inflammatory system has gained much attention in the 
neuroimmune area. Several works support that the anti-stress effects of eCBs in animal models could 
involve the anti-inflammatory properties of these compounds [35–37, 167]. For instance, subchronic stress 
in mice induced an increase in the pro-inflammatory profile in the frontal cortex, which was attenuated 
by pharmacological activation or overexpression of CB1Rs or CB2Rs [35, 36]. Moreover, overactivation of 
microglial cells to LPS stimulation, the anxiogenic response, and sensitized conditioned fear response 
after repeated stress exposure in mice were attenuated or prevented by a non-selective CB1/CB2 agonist 
during stress [37]. Accordingly, eCBs can attenuate behavioral responses in stressful situations and limit 
the inflammatory response to different stimuli, acting as a buffer system against stressors [29, 39].
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Several data also support an interplay between cannabinoid receptors and the TLR4 
pathway [180–183]. For example, TLR4 and CB2 are colocalized in peritoneal macrophages; exposure 
to LPS or to a CB2 antagonist decreased their interaction, whereas 2-AG increased it, suggesting CB2 
activation by 2-AG could dampen TLR4 signaling [180]. Corroborating this idea, a recent study in mast 
cells indicated that persistent activation of TLR4 by LPS engages the eCB 2-AG, which activates CB2 and 
attenuates inflammatory response [181]. Moreover, several other in vitro studies demonstrated that 
inflammatory effects of TLR4 activation are attenuated by cannabinoid receptor agonists [181–183].

Altogether, the data mentioned above support the hypothesis that activation of the TLR4 pathway 
in microglia by stress mobilizes 2-AG, which would activate CB2 as a protective mechanism to attenuate 
further microglia activation and its consequences. However, considering that 2-AG is a full agonist at CBs 
receptors, exposure to increased 2-AG levels during repeated stress can result in CB1 downregulation, 
and decreased CB1 signaling impairs control of synaptic neurotransmission [174], resulting in behavioral 
changes. Moreover, we speculate if increased 2-AG during repeated stress could somehow impair neuronal 
CB2 signaling, contributing to impaired synaptic transmission.

Additional to CB1Rs/CB2Rs, behavioral, neuroprotective, and anti-inflammatory effects of eCBs 
in stress situations can be further mediated by nuclear PPARs, mainly PPARα and PPARγ [164]; the last 
one has the highest expression levels in the CNS, in different cell types [184]. PPARs act as transcription 
factors by binding to specific DNA regions and regulating gene expression [165]. PPARα KO mice did 
not demonstrate anxiety or depressive-like behaviors but showed increased fear learning [170]. Moreover, 
exposure to CUMS increased PPARα protein and mRNA in the hippocampus. It also induced behavioral 
changes, HPA axis activation, oxidative parameters, and reduced neurotrophic factors in the hippocampus. 
These changes were blocked by the eCB PEA in a dose-dependent manner, and the PEA effect was attenuated 
or prevented by an antagonist of PPARα, MK886 [169].

Corroborating a potential protective role also for PPARγ receptors, animals with PPARγ 
deletion in neurons show an exacerbated anxiogenic effect after acute stress, similar to 
a PPARγ antagonist [185]. Moreover, exposure to acute restraint stress (6 eCB) in rats increased the 
expression of PPARγ in the PFC [186, 187], and activation of these receptors attenuated stress-induced 
neuroinflammation, oxidative/nitrosative consequences in the PFC [167], and the anxiogenic 
effect [171]. Reduced NMDA signaling and increased glutamate uptake by glia could be involved in those 
effects [166]. Contrary to acute, repeated (4 days to 7 days) homotypic stress reduced PPARγ levels in the 
PFC [2] or amygdala [168]. These studies did not evaluate PPARα involvement, nor if eCBs attenuated the 
observed changes.

Interestingly, PPAR activation can interfere with proinflammatory actions of HMGB via NFκB 
inhibition and also inhibits HMGB transcription [188]. Therefore, PPAR could regulate and be regulated 
by TRL4 signaling. For instance, the reduced PPARγ levels in the PFC after repeated stress was not 
observed in TLR4 KO mice [2] and was attenuated by repeated treatment with a microglia inhibitor during 
stress [168]. Similarly, in macrophages, LPS inhibited PPARγ mRNA synthesis through a NFκB-dependent 
mechanism, which was not observed after TLR4 pharmacological inhibition or in TLR4 KO mice [189]. 
We suggest that increased PPARγ transcription levels by acute stressors could be a protective mechanism 
after TRL4 pathway activation, which could parallel the initial changes in the eCB signaling in the 
brain [176] to promote stress habituation (Figure 3A). However, after prolonged or repeated exposure 
to the same kind of stress, this mechanism would be dysregulated, with the intensification of changes in 
the eCB system [176], increased TLR4 signaling, and decreased levels of PPARγ, which could contribute 
to behavioral consequences of stress (Figure 3B). Although there are still few studies evidencing a 
direct relationship between stress, eCB system, and TLR4 in the brain, the in vitro and in vivo evidence 
of anti-inflammatory effects of eCBs mentioned above and others [190–192], including with potential 
involvement of TLR4 [2, 180, 181, 185], suggest that these mechanisms are important in stress-related 
disorders and their modulation could be beneficial in these disorders, such as MDD.
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Thus, our current working hypothesis is that TLR4 pathway activation by DAMPs after acute or 
repeated homotypic stress exposure differently impacts eCB signaling through CB1, CB2, and PPARγ 
effects, influencing behavioral response and stress habituation (Figure 3). A protective mechanism 
induced by TLR4 blockade after acute stress can be mediated by intensifying eCB signaling at PPARγ and 
CB1Rs/CB2Rs, contributing to stress habituation. After prolonged or repeated stress, TLR4 blockade 
could prevent impairment in PPARγ expression and limit increased levels of 2-AG during stress, 
potentially attenuating effects in the eCB signaling. The eCBs could then act via PPARγ, CB1, and CB2 
to counteract stress effects (Figure 3C). Considering that several studies evaluating neuroprotective 
and anti-inflammatory effects of cannabinoids, including AEA, 2-AG, PEA, OEA, synthetic agonists, and 
cannabidiol, in models of Alzheimer, multiple sclerosis, drug abuse, and cognition, for example, indicate that 
their effects are mediated by CB1/CB2 and PPAR receptors (for review, see [193]), adequate signaling via 
these receptors, and maybe others, can be essential for the overall anti-stress effects of eCBs in inflammatory 
conditions and psychiatric disorders.

In summary, dysfunctional eCB signaling under stressful situations can contribute to increased 
neuronal excitability and facilitation of the inflammatory effects of stress in neuronal circuits. Since there 
is a direct connection between eCB signaling during stress and the immune system, with crosstalk between 
TLR4 and eCB system, possibly involving different receptors, we propose that inhibiting TLR4 in microglia 

Figure 3. Schematic representation of TLR4 and eCB signaling interaction in the modulation of behavioral response to stress 
exposure. A) Short-term acute stress, including LPS, increase glutamate release (1) and release DAMPs (2), which can activate 
microglia. Microglia activation can result from the activation of TLR4 signaling. DAMPs such as HMGB activate TLR4 receptors 
(3) in brain areas, such as the PFC, resulting in NFκB activation (4), transcription of proinflammatory-related genes (5), and also 
PPARs (6). PPARs can be activated by fatty acids, including its derivatives, such as the eCBs 2-AG, PEA, and oleoylethanolamide 
(OEA, not shown). These mechanisms have opposite effects on oxidative stress and neuroinflammation induction, with immune 
mediators increasing them (7), whereas PPAR activation decreases it (8). Glutamate, also considered a DAMP, induces HPA 
axis activation (9), which consequently impacts the eCB signaling: CRH release increases FAAH activity (10) and decreases 
AEA levels (11), and glucocorticoid receptor (GR) activation by corticosterone could decrease MAGL activity (12) and increase 
2-AG levels (13) in the brain. 2-AG is a full agonist at CB receptors, whereas AEA is a partial agonist. 2-AG action at CB1 
and CB2 modulates neuronal excitability (14) and neuroinflammation (15), respectively, including by limiting TLR4 activation 
(16). AEA signaling is attenuated (17). The resultant expected effect would be transient behavioral changes, stress habituation, 
and coping behavior; B) under prolonged or repeated stress exposure, the TLR4 pathway activation and glutamate release are 
exacerbated. The proinflammatory profile is increased and PPARγ expression is suppressed, which contributes to increasing 
oxidative stress and neuroinflammation, contributing to increased neuronal excitability (1). The eCB changes induced by stress 
are also exacerbated, with even lower levels of AEA and higher levels of 2-AG. Persistent TLR4 activation also recruits 2-AG (2). 
High levels of 2-AG can contribute to the downregulation of CB1Rs (3), impairing the control of neuronal excitability via CB1 (4a), 
but maintaining activation of microglia CB2Rs (4b). CB2R could be downregulated in neurons (no literature report about that), 
contributing to neuronal excitability (?). The higher oxidative stress/neuroinflammation (5) resultant from high TLR4 activation and 
decreased PPAR (6), along with impaired neuronal CB1 signaling (4) could contribute to higher neuronal excitability, impaired 
coping, and behavioral dysfunction; C) after pharmacological or genetic blockade of TLR4, the impact on eCB signaling and 
PPARγ expression could be restored. TLR4 blockade can prevent impairment in microglia PPARs signaling by decreasing the 
NFκB pathway, and decreasing oxidative damage and neuroinflammation. This blockade can contribute to decreasing the impact 
on the eCB signaling, which can now control the neuroimmune response by activating PPARs and CB2 or buffer the neuronal 
activity by acting on neuronal CB receptors
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would facilitate stress adaptation by decreasing the TLR4 pathway activation itself, but could also do so by 
regulating the eCB synthesis and signaling in microglia and neurons. These eCBs would act on microglia 
receptors, contributing to decreasing neuroinflammation, but could also regulate neuronal excitability 
by activating neuronal receptors. Therefore, the possible beneficial effects of inhibiting TLR4 signaling in 
stress could be, in part, through the facilitation of eCB signaling, mainly by CB1, CB2, and PPARs.

Conclusions
The current available therapy to treat neuropsychiatric disorders still faces a lack of efficacy or 
refractoriness. These problems are probably related to the complex neurobiology of these disorders. For 
instance, several pieces of evidence indicate that some, but not all, individuals suffering from psychiatric 
disorders have a proinflammatory profile. Some data indicate that this profile is related to symptom severity 
and could predict resistance to conventional antidepressant treatment [88, 194–196]. Moreover, several 
data show the antidepressant effects of anti-inflammatory drugs (for review, see [196]). Therefore, targeting 
immune system mechanisms could improve symptoms, allowing some patients to respond to treatment.

Based on the evidence discussed in this review, the overactivation of the TLR4 pathway by 
stress exposure and signs of its alteration in psychiatric patients indicate that it could contribute to 
neuropsychiatric disorders. Modulating the TLR4 pathway is expected to decrease the NFκB activation 
and the NLRP3 inflammasome pathway, attenuating the expression of proinflammatory cytokines. 
Therefore, the imbalance in this system can trigger deleterious processes in the body by increasing the 
inflammatory response. Accordingly, modulation of this pathway could be a promising therapeutic strategy 
for those diseases.

Despite several studies proposing the modulation of this pathway to counteract stress effects, as 
discussed in this review, many aspects related to neuroinflammation remain unclear, and it is unlikely 
that one singular mechanism would promote clinically relevant effects. However, considering the potential 
relationship between the TLR4 pathway activation and eCB system actions, modulation of the TLR4 
pathway could directly modulate its pathway and implicate eCB signaling, amplifying its potential effects.
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