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Abstract
The glymphatic system (GS) consists of a paravascular fluid-exchange network that regulates cerebrospinal 
and interstitial fluid dynamics, clears metabolic waste, and modulates neuroinflammation. Aquaporin-4 
(AQP-4), expressed in astrocytic end-feet, is central to GS function and blood-brain barrier integrity, but in 
cerebral ischemia (CI), GS disruption and AQP-4 mislocalization drive cytotoxic edema, inflammation, and 
vascular dysfunction, worsening outcomes. This review aimed to examine the role of the GS in CI, focusing 
on pathophysiology and potential therapeutic targets. A PubMed-based literature review was conducted, 
selecting 51 studies from 115 screened that addressed GS, AQP-4, and ischemic stroke. Evidence suggests 
that modulating GS flow, through strategies such as enhancing arterial pulsations or regulating AQP-4, may 
reduce edema and neuroinflammation, although selectively targeting AQP-4 without impairing waste 
clearance remains a key challenge. The GS represents a promising therapeutic target in ischemic stroke, and 
a deeper understanding of its physiology may guide the development of neuroprotective interventions; 
future research should refine pharmacological strategies to optimize glymphatic function and improve 
recovery in CI patients.
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Introduction
Cerebral ischemia (CI), or ischemic stroke, is a leading cause of disability and cognitive decline, accounting 
for over 10.7% of global deaths in 2021 [1]. CI results from intravascular thrombosis, causing tissue 
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hypoxia and neuronal necrosis. About 50% of ischemic strokes are due to rupture of arteriosclerotic 
plaques, 20% to cardiogenic cerebral infarction, 25% to lacunar infarcts of small vessels, and the remaining 
5% to vasculitis or other rare causes [2]. Acute ischemic stroke is a heterogeneous disease; distinguishing 
subtypes such as cardioembolic, lacunar, and atherothrombotic infarcts is essential because they differ in 
pathophysiology, severity, and outcomes. Patients with cardioembolic or atherothrombotic strokes have 
worse short-term prognosis and higher mortality, underscoring the need for tailored research and 
treatment strategies [3].

In the peripheral system, the lymphatic network clears metabolic waste and excess interstitial fluid 
(ISF), maintaining fluid balance and homeostasis. The brain lacks identifiable lymphatic vessels [4–6]; 
instead, the glymphatic system (GS) serves as its waste-removal pathway. Evidence shows that glymphatic 
dysfunction after CI promotes toxic metabolite accumulation and secondary injury, including cytotoxic 
edema and neuroinflammation [5]. Impaired glymphatic flow, documented in preclinical and clinical stroke 
studies, worsens neuronal injury and functional recovery [6, 7]. Moreover, mislocalization and loss of 
aquaporin-4 (AQP-4) polarity disrupt glymphatic clearance, aggravating edema and pro-inflammatory 
responses [7].

Animal and human studies consistently link glymphatic impairment to poor waste clearance and long-
term cognitive decline [1]. Diffusion tensor imaging along perivascular spaces provides direct clinical 
evidence of glymphatic dysfunction in acute CI [8]. At the molecular level, dystrophin-71 (DP71) deficiency 
impairs ionic balance, water flux, and astrocytic response, worsening post-ischemic edema [5]. Similarly, 
recent neuroimaging shows that increased extracellular water in small vessel disease correlates with 
perivascular space dilation and other structural changes, supporting the link between disrupted brain fluid 
exchange and disease progression [9]. Furthermore, cardioembolic and atherothrombotic strokes carry 
higher short-term mortality, highlighting the need for targeted research and therapies [10]. This highlights 
the importance of specific research and therapeutic strategies [11].

Overall, these findings highlight the GS as a promising therapeutic target to improve outcomes after CI.

Methods
A structured literature search was performed in the PubMed database to identify studies exploring the role 
of the GS and AQP-4 in CI. The search strategy combined the terms “aquaporin-4 (AQP-4), glymphatic 
system, ischemia, and ischemic stroke”. Boolean operators (“AND,” “OR”) were used to refine the query and 
include variations of these keywords. The search covered the last five years (January 2019–May 2025) to 
ensure up-to-date evidence, but highly relevant older articles describing key concepts of CI 
pathophysiology or AQP-4 function were also included. Inclusion criteria were: (1) English-language 
original or review articles; (2) studies on AQP-4 and GS function in ischemia; (3) publication between 
January 2019 and May 2025. As seen in Figure 1.

Exclusion criteria: (1) case reports, (2) conference abstracts, (3) studies not involving CI, (4) non-peer-
reviewed material. Two independent reviewers screened 115 records, retaining 51 for qualitative 
synthesis.

Only English-language original research articles and systematic reviews were considered. Conference 
abstracts, editorials, case reports, and non-peer-reviewed sources were excluded. Two independent 
reviewers screened titles and abstracts for relevance, followed by full-text assessment to confirm the 
article’s contribution to understanding glymphatic function and AQP-4 dynamics in CI.

The initial search yielded 115 articles. After applying the eligibility criteria, 51 studies (including both 
experimental and clinical investigations) were retained for qualitative synthesis and critical analysis in this 
review.



Explor Neuroprot Ther. 2025;5:1004123 | https://doi.org/10.37349/ent.2025.1004123 Page 3

Figure 1. PRISMA diagram. The initial search contained 115 records. After removing 8 duplicates and 35 records for other 
reasons, 72 records were screened. Of these, 9 were excluded at the title/abstract screening stage. The full text of 63 articles 
was evaluated for eligibility, leading to the exclusion of 12 articles (7 for being off-topic and 5 for being non-English). A total of 
51 articles were included in the final review. Adapted from https://www.prisma-statement.org/. Accessed August 1, 2025. © 
2024–2025 the PRISMA Executive. Licensed under CC BY 4.0.

GS
In the central nervous system (CNS), the blood-brain barrier (BBB) tightly regulates the entry of proteins, 
ions, and fluids. However, metabolic waste from the brain’s high energy demand can accumulate in the 
interstitial space. Because the CNS lacks conventional lymphatic vessels [7], it has evolved specialized 
mechanisms to maintain fluid balance and remove waste.

The GS provides a brain-wide perivascular pathway for fluid exchange and clearance. It drives 
cerebrospinal fluid (CSF) influx along periarterial spaces and ISF efflux toward the meninges and cervical 
lymphatics [8]. CSF is produced by the choroid plexus epithelium and enters the subarachnoid space before 
moving into the brain parenchyma [9]. Experimental studies show that CSF and ISF flow in opposite 
directions within distinct perivascular spaces—some specialized for CSF influx, others for ISF efflux [4]. CSF 
travels along periarterial channels, exchanges with ISF in the parenchyma, and ultimately drains along 
perivenous pathways back to the subarachnoid space [12].

Although details of paravascular CSF–ISF recirculation remain debated, AQP-4 channels at astrocytic 
endfeet play a key role [13, 14]. AQP-4 supports glymphatic water transport and helps preserve BBB glial 
integrity [15]. Waste products from CSF–ISF exchange exit via paravenous routes and cervical lymphatics, a 
process driven by vascular and respiratory pulsations [16]. Notably, AQP-4 knockout, CSF depletion, or 
even posture changes can suppress glymphatic flow and raise brain lactate levels [17].

https://www.prisma-statement.org/
https://www.prisma-statement.org/
https://www.prisma-statement.org/
https://www.prisma-statement.org/
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These findings suggest that glymphatic dysfunction contributes to neurodegeneration and other CNS 
injuries, including CI (Figure 2).

Figure 2. Glymphatic function in normal and ischemic brain. The glymphatic system (GS) regulates cerebrospinal fluid 
(CSF) influx into the interstitial space (ISF) and mediates the clearance of metabolic waste through aquaporin-4 (AQP-4) 
channels located in astrocytic endfeet along perivascular pathways. Under physiological conditions, AQP-4 is highly polarized 
toward the perivascular endfeet, which facilitates efficient solute exchange and directs waste removal toward venous and 
lymphatic drainage routes. During CI, however, this polarization is disrupted, leading to AQP-4 mislocalization within astrocytes. 
Concurrently, arterial pulsations that normally drive glymphatic flow are diminished, further reducing fluid exchange. The 
combined effect of these alterations results in interstitial fluid accumulation, astrocytic swelling, and impaired clearance of 
neurotoxic molecules, thereby exacerbating cerebral edema, neuroinflammation, and secondary neuronal injury. Created in 
BioRender. Moreno, E. (2025) https://BioRender.com/9ozdmlr.

The GS plays a key role in the delivery of nutrients across the brain and the astrocytic paracrine 
signaling with lipid molecules [18]. However, its metabolite clearance capacities are equally crucial. Studies 
have shown that amyloid-β peptide (Aβ) and accumulated lactate are among the waste products cleared by 
the GS [19]. This further supports its role in neurodegenerative diseases, such as Alzheimer’s Disease, 
where its dysfunction is implicated in pathological progression. In the context of cerebrovascular disease, 
impaired GS function leads to reduced clearance of cortical interstitial solutes, which have been associated 
with motor and cognitive neurologic decline. Current and future research on the GS is focused on the 
identification of mechanisms that regulate blood flow through this pathway with the goal of treating 
diseases characterized by toxic extracellular solute accumulation [7].

CI
CI is a type of stroke that damages brain tissue and neurons, leading to structural lesions, functional 
deficits, and potentially death [3]. Clinically, CI often causes motor and cognitive impairments, particularly 
when associated with arteriolosclerosis, cerebral amyloid angiopathy, and microinfarcts [20].

Neuronal injury in CI arises from three main mechanisms: direct ischemic cell death, reactive oxygen 
species (ROS)—mediated damage causing functional deficits, and an inflammatory response triggered by 
immune activation [3]. BBB disruption, observed in both animal models and stroke patients, drives this 
pathological cascade [21]. Post-stroke inflammation involves elevated cytokines, chemokines, and 
infiltration of immune cells. Activated neutrophils release proteases that damage the extracellular matrix 
and increase BBB permeability, amplifying inflammation and worsening clinical outcomes [22].

Current treatment focuses on thrombolytic therapy, such as alteplase, tenecteplase, urokinase, 
recombinant tissue plasminogen activator (r-tPA), or desmoteplase, to recanalize occluded vessels [23]. 
However, these drugs are effective only within 4.5 hours of stroke onset, and many patients are ineligible. 
Importantly, no therapies currently promote neurological recovery after CI [24].

CI also disrupts the GS by causing metabolite and excitatory neurotransmitter accumulation in the 
parenchyma [25]. This impairs cytokine clearance, exacerbates neuroinflammation, and promotes cell 
death. Some authors propose that restoring glymphatic perfusion could improve outcomes in stroke 
patients [26].

https://BioRender.com/9ozdmlr
https://BioRender.com/9ozdmlr
https://BioRender.com/9ozdmlr
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Neuroinflammation and brain edema
After cerebral blood flow is interrupted, cerebral edema develops, increasing disability and mortality in 
ischemic stroke [27]. Capillary dysfunction after CI disrupts the BBB, reducing its ability to retain ions, 
water, proteins, and blood components [28]. In early CI, cytotoxic edema is the main driver of 
neuroinflammation: astrocytes take up sodium from the ISF, which pulls in anions and water [29]. This 
causes cellular swelling and sodium depletion, creating a gradient that drives sodium—and consequently 
water—from the vasculature into the brain parenchyma. These shifts contribute to vasogenic edema in 
later stages, further increasing brain volume [30].

Brain edema increases intracranial pressure and reduces blood flow, potentially leading to herniation. 
Its severity determines stroke outcomes and remains a major therapeutic target [31]. Clinically, cerebral 
edema is treated with hyperosmotic agents such as mannitol, but evidence guiding fluid management and 
optimal ICP monitoring remains limited [32].

AQP-4 plays a pivotal role in edema formation. Located in astrocytes, AQP-4 mediates water influx 
during cytotoxic edema [33]. Its presence worsens edema after ischemic stroke, while its absence reduces 
BBB permeability and water entry into the parenchyma. Consequently, AQP-4 inhibition is considered a 
potential therapy for cytotoxic swelling [34]. However, its effect varies: AQP-4 aggravates edema in 
ischemia, water intoxication, and meningitis, but appears protective in edema caused by tumors, abscesses, 
or subarachnoid hemorrhage [35].

After cerebral infarction, AQP-4 becomes mislocalized from perivascular astrocytic endfeet to the 
soma, losing its normal polarity. This impairs metabolite and cytokine clearance, worsening inflammation, 
cognitive decline, and neuronal loss. Consistent with this, Weng et al. [36] demonstrated that 
microinfarction-induced vascular dysfunction disrupts waste clearance and promotes neuroinflammation, 
contributing to progressive cognitive impairment in mice. Proper AQP-4 polarization depends on the 
dystrophin-associated protein complex (DAPC), including DP71 [37]. Yang et al. [5] showed that DP71 
anchors DAPC to AQP-4; its degradation disrupts AQP-4 localization, impairs fluid outflow, and aggravates 
edema (Table 1). These findings suggest DP71 as a potential therapeutic target to restore glymphatic 
function and reduce edema in CI. Supporting this, Mestre et al. [38] reported that AQP-4 knockout mice 
failed to develop cerebral edema during the first 15 minutes after middle cerebral artery occlusion.

Table 1. Experimental evidence on the role of AQP-4 in cerebral ischemia and edema.

Study/Author Model Intervention Main findings Clinical implication

Kato et al. 
[43]

Cerebral 
infarction in 
mice

Observation of 
AQP-4 
localization

AQP-4 shifts from 
perivascular end-feet to 
astrocytic soma; it reduces 
metabolite and cytokine 
clearance.

Loss of AQP-4 polarity worsens inflammation 
and neuronal damage. However, being an 
observational study, it does not provide direct 
evidence on therapeutic interventions.

Yang et al. [5] Cerebral 
ischemia in 
mice

DP71 analysis DP71 stabilizes AQP-4 
anchorage; its degradation 
alters localization and 
outflow.

DP71 as a potential therapeutic target. 
Provides mechanistic insight into scaffolding 
proteins regulating AQP-4. Suggests that 
protecting DP71 could indirectly preserve 
glymphatic flow.

Mestre et al. 
[38]

MCA 
occlusion in 
mice

AQP-4 
knockout

No cerebral edema in the 
first 15 min.

AQP-4 is essential for early cytotoxic edema. 
Reinforces the importance of timing: benefits 
are evident only in acute stages.

Li et al. [44] Ischemia-
reperfusion in 
mice

TGN-020 Reduces inflammation and 
apoptosis via GS and 
ERK1/2.

AQP-4 inhibition may modulate 
neuroinflammation.

AQP-4: aquaporin-4; DP71: dystrophin-71; MCA: middle cerebral artery; TGN-020: N-(1,3,4-thiadiazol-2-yl) pyridine-3-
carboxamide dihydrochloride.

The studies in Table 1 consistently show that AQP-4 is a central mediator of edema and 
neuroinflammation in CI. Weng et al. [36] demonstrated that AQP-4 mislocalization impairs cytokine and 
metabolite clearance, amplifying tissue damage. Similarly, Yang et al. [5] identified DP71 as essential for 
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maintaining AQP-4 polarity; its degradation worsens edema and suggests a potential therapeutic target. 
Mestre et al. [38] further showed that AQP-4 knockout mice did not develop early edema after middle 
cerebral artery occlusion. Collectively, these findings highlight AQP-4 as a promising therapeutic target, 
though the optimal timing for its modulation remains uncertain.

Role of the GS in ischemia and neuroinflammation
Arterial pulsations drive glymphatic flow, and enhancing them may improve system efficiency. Persistent 
glymphatic failure contributes to several CNS disorders, including CI. Prolonged GS failure in perivascular 
drainage contributes to CNS pathologies, including CI [39]. In a human model, β1-adrenergic agents such as 
dobutamine increased mean arterial pressure and promoted clearance of metabolic waste and cytokines, 
but their hypertensive effects limit clinical use [40]. Cao et al. [12] studied digoxin, a cardiac glycoside that 
improves cardiac output without raising blood pressure (BP) and observed improved vascular pulsations 
and cognitive outcomes. However, whether these benefits stem from direct effects on cerebral blood flow or 
arterial pulsation remains unclear.

Given its central role in edema and fluid dynamics, AQP-4 is also a promising therapeutic target. 
Inhibiting AQP-4 at perivascular astrocytic endfeet may reduce water and ion influx into the parenchyma, 
helping limit post-stroke edema [41, 42]. Yet, complete AQP-4 blockade would also suppress venous 
glymphatic outflow, impairing waste clearance and posing serious risks [43, 44]. Selective targeting is 
challenging because the AQP-4 structure is identical on the arterial and venous sides of the GS. Melatonin, 
however, has shown potential to preserve glymphatic function by enhancing AQP-4 and α-syntrophin 
interaction and reducing cyclin-dependent kinase 5 activity in neonatal hypoxic-ischemic models [45].

Timing of AQP-4 modulation is critical. Pre-ischemic AQP-4 inhibition reduces edema in animal models, 
but Kato et al. [43] first tested post-ischemia inhibition. A single dose of TGN-020, 15 minutes after middle 
cerebral artery occlusion, decreased acute edema by blocking water influx along glial basement 
membranes. However, TGN-020 is not glymphatic-specific and may alter AQP-4 expression and 
polarization; its role in inflammation and apoptosis remains uncertain [46]. Further research is needed to 
define the therapeutic window and clarify effects on ISF and solute clearance before translation to humans. 
Given the projected global rise in ischemic stroke incidence and mortality [47], identifying interventions 
that enhance glymphatic clearance and stabilize AQP-4 polarity becomes increasingly urgent.

BP control has also been linked to GS and AQP-4 regulation. Oxidative stress can disrupt the BBB and 
upregulate AQP-4. He et al. (2020) [46] found that in CI patients treated with rt-PA, strict systolic BP 
control reduced early neurological deterioration, likely by mitigating oxidative stress and AQP-4 
upregulation [48, 49].

Non-pharmacological interventions may complement drug therapy. The GS is influenced by circadian 
rhythm and posture; adequate sleep and a lateral sleeping position have been shown to improve glymphatic 
clearance [48]. MRI studies in neonates demonstrate that hypoxic-ischemic injury reduces glymphatic 
function [49], and sex differences may also influence CSF flow and outcomes after stroke [13].

As summarized in Table 2, both pharmacological (dobutamine, digoxin, TGN-020, melatonin) and non-
pharmacological strategies (BP control, sleep optimization, lateral positioning) show potential to modulate 
glymphatic function after ischemia [39–55]. Yet, no single approach effectively reduces post-ischemic 
cerebral edema while maintaining safe and efficient waste clearance. Multi-modal strategies and precise 
therapeutic timing remain key research priorities.

Table 2. Proposed interventions to modulate the glymphatic system in cerebral ischemia.

Strategy Proposed 
mechanism

Experimental evidence Limitations Analytic considerations

Arterial pulsation 
stimulation 
(dobutamine)

Increase glymphatic 
flow and metabolite 
clearance

Improves clearance in 
the human brain [40]

Hypertension 
prevents humans 
from using

While animal studies suggest 
improved metabolic clearance, clinical 
application is limited by cardiovascular 
risk.
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Table 2. Proposed interventions to modulate the glymphatic system in cerebral ischemia. (continued)

Strategy Proposed 
mechanism

Experimental evidence Limitations Analytic considerations

Digoxin Increase cardiac 
output without 
raising blood 
pressure

Improves vascular 
pulsations and 
glymphatic function in 
chronic hypoperfusion 
[12]

Unclear if the 
effect is direct on 
cerebral blood 
flow

Potential benefits might be indirect, 
related to improved cardiac function 
rather than direct cerebral effects.

AQP-4 inhibition 
(TGN-020)

Reduce water and 
ion influx into 
parenchyma

Decreases early 
cytotoxic edema [44]

Non-selective; 
may impair 
venous clearance

Promising in early ischemia, but 
prolonged inhibition could compromise 
physiological drainage. Future 
research should focus on transient or 
more selective modulators of AQP-4.

Strict blood 
pressure control

Possible reduction 
of oxidative stress-
induced AQP-4 
upregulation

Less neurological 
deterioration [46]

Lack of direct 
evidence on GS

Strict blood pressure control is already 
standard in clinical care, but its direct 
impact on glymphatic clearance 
remains uncertain.

AQP-4: aquaporin-4; TGN-020: N-(1,3,4-thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride.

Following CI, AQP-4 loses polarization and becomes mislocalized within the astrocytic soma. This 
disruption impairs glymphatic transport, exacerbates cerebral edema, and contributes to 
neuroinflammation following the ischemic insult. Several experimental studies have shown that 
interventions targeting AQP-4 polarization can improve glymphatic function and reduce secondary insult 
after ischemic insult [52]. Moreover, clinical and translational studies highlight that aim at preserving or 
restoring AQP-4 polarization, such as stabilizing astrocytic scaffolding proteins, modulating endothelial 
function, or using pharmacological agents. Several pharmacological strategies have been investigated to 
modulate AQP-4 polarization. Melatonin has been shown to enhance AQP-4-alpha-syntrophin interactions 
by inhibiting cyclin-dependent kinase 5 activity, therefore preserving AQP-4 polarization and maintaining 
glymphatic clearance in ischemic models [45]. In addition, agents acting directly on AQP-4 have emerged as 
another approach; dobutamine increases arterial pulsations and improves glymphatic transport in 
experimental models; however, its hypertensive effects limit clinical applicability in the context of 
thrombolization and ischemic stroke [40]. Selective modulation of AQP-4 remains challenging due to its 
dual role in clearance and edema control, especially considering the different subtypes of stroke [55, 56]. In 
contrast, digoxin enhances myocardial contractility and boosts cerebral vascular pulsations without 
hypertensive effect, resulting in improved glymphatic function in hypoperfusion models after initial 
ischemic insults [39].

Conclusions
In CI, glymphatic disruption and AQP-4 mislocalization lead to edema, BBB failure, and poor recovery. 
Rather than simply describing these associations, recent experimental and clinical evidence positions the 
GS as a modulatable therapeutic axis in ischemic stroke.

Future progress will depend on translating this mechanistic understanding into safe, targeted 
interventions. One priority is the selective modulation of AQP-4—limiting harmful water influx during 
acute edema while preserving its critical role in waste clearance. This requires deeper structural insights 
into AQP-4 isoforms and regulators, such as the DAPC, to design precision modulators. Another promising 
avenue is the controlled enhancement of vascular pulsatility, potentially through cardiac output support or 
neuromodulatory agents that increase glymphatic perfusion without causing systemic hypertension.

Non-invasive imaging tools (e.g., advanced diffusion MRI) should be used to define the temporal 
dynamics of GS impairment and identify the therapeutic window for glymphatic-targeted therapy. 
Comparative studies across stroke subtypes—particularly lacunar versus non-lacunar infarcts—are 
essential to determine whether glymphatic dysfunction is universal or subtype-specific, which would 
inform patient selection for targeted treatments.
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Finally, combining vascular, glial, and hemodynamic modulation with reperfusion therapy may 
transform glymphatic research into actionable neuroprotective strategies.

Limitations

This review has the following limitations: First, the majority of the studies included were preclinical, and 
their direct translation to human pathophysiology is uncertain. Second, clinical evidence is still limited, and 
the available imaging approaches require further validation. Third, experimental models analyzed were 
heterogenous, thus the comparability of the results could be influenced by the nature of each study.
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