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Abstract
The investigations pertaining to the effectiveness of natural products in novel drug development for the 
prevention of a myriad of neurodegenerative diseases are offering encouraging prospects in novel drug 
development. This review endeavors to offer a comprehensive insight into the neuroprotective effects of 
baicalein (BE) and baicalin (BI), bioactive flavonoids found in Scutellaria baicalensis, primarily from the 
perspective of Alzheimer’s disease (AD). It systematically encompasses the scientifically pertinent 
investigations on BE’s prospective benefits in AD models, highlighting its mechanistic approaches and 
impending therapeutic applications in the amelioration of AD. The multifaceted pharmacological 
interventions offered by these bioactives, including antioxidant, anti-inflammatory, and immunomodulation 
effects, reinforce the scientific evidence supporting them as promising candidates for anti-AD agents and 
for preventing and managing other allied neurodegenerative disorders. These findings suggest that BE and 
BI, along with other nutraceuticals, may offer a valuable therapeutic strategy for improving symptoms and 
slowing disease progression in neurodegenerative disorders. Thus, the review intends to offer 
comprehensive illustrations warranting further investigation to corroborate the safety and efficacy of these 
bioactives in clinical settings. The researchers are progressively entrusting nature’s own compounds for the 
treatment of neurodegeneration. Conclusively, this manuscript could aptly serve as an insight to embark 
upon the remarkable pharmacological actions of these bioactives, which might be harnessed to prevent and 
manage AD. Nevertheless, the findings so far are promising; still, further investigations are incumbent to 
establish their safety and efficacy in humans, as BE and BI may offer novel modalities to circumvent this 
devastating disease.
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Introduction
Dementia and other neurodegenerative diseases represent a rapidly escalating global health crisis. The 
number of people with dementia is projected to soar from 57 million in 2021 to 81.1 million by 2040 and 
ultimately to 139 million by 2050. Dementia is a leading cause of disability and death, disproportionately 
affecting women. As the most prevalent form of dementia, Alzheimer’s disease (AD) cases are expected to 
nearly double in the U.S. by 2060. This crisis carries an immense economic burden, with global costs 
projected to reach $2.8 trillion by 2030. Despite the scale, persistent stigma leads many to view dementia as 
a normal part of aging, hindering crucial early diagnosis and support [1–5].

AD is a complex brain disorder first documented in 1906. While decades of research have led to eight 
FDA-approved drugs, with the efficacy of recent antibody-based drugs still debated [6, 7], a cure remains 
elusive. Current treatments have limited efficacy, often due to the difficulty of drugs to cross the blood-
brain barrier (BBB) and also due to their significant side effects [8, 9]. The disease’s pathology is 
multifaceted, with several leading hypotheses (Figure 1). The amyloid hypothesis suggests that plaques 
formed by amyloid-beta (Aβ) proteins are a hallmark cause [10, 11]. The tau hyperphosphorylation 
hypothesis indicates that neurofibrillary tangles (NFTs) disrupt brain cell function [12]. The cholinergic 
hypothesis links AD to a deficiency in acetylcholine, a neurotransmitter crucial for memory [13]. 
Additionally, factors like neuroinflammation [14], mitochondrial dysfunction [15], oxidative stress [16], 
vascular dysfunction [17], insulin signaling abnormalities [18], cholesterol [19], cell cycle deregulation [20], 
and gut microbiota dysbiosis [21, 22] are also being explored. Genetically, mutations in the PSEN genes are 
also known to cause the disease [23], which is clinically defined by a progressive decline in memory, 
cognitive function, emotional changes, and even psychiatric symptoms [24].

Figure 1. Pathological pathways of Alzheimer’s disease. APP: amyloid precursor protein; AChE: acetylcholinesterase; Aβ: 
amyloid-beta; ROS: reactive oxygen species; NFTs: neurofibrillary tangles. Adapted with permission from [142]. © 2025 
Springer Nature. APP icon reprinted from https://en.wikipedia.org/wiki/Amyloid_beta. Accessed July 22, 2025. CC BY-SA 3.0. 
Tau protein icon reprinted from https://en.wikipedia.org/wiki/Tau-protein_kinase. Accessed July 22, 2025. CC BY-SA 4.0. Aβ-
plaques icon reprinted from https://en.wikipedia.org/wiki/File:Neuritic_Abeta_plaques_stained_with_NF-PAS;_Bar%3D20_
microns.jpg. Accessed July 22, 2025. CC BY-SA 4.0.

Current research seeks safe, effective therapies for AD. Oxidative stress is a key factor linking various 
pathogenic mechanisms and thus leading to the exploration of natural flavonoids with antioxidant 
properties, a focus of study. These compounds offer promising outcomes by inhibiting Aβ aggregation, tau 
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hyperphosphorylation, and promoting mitochondrial autophagy [25]. Complementary and alternative 
medicine (CAM) is also gaining attention for preventing neurodegenerative diseases. However, more 
research, including advances in genomics and proteomics, is needed to validate their quality, safety, and 
efficacy, and to understand their mechanisms and potential drug interactions [26, 27].

Search strategy and methods

This narrative review is an attempt to provide an insight into the neuroprotective effects of baicalein (BE) 
and baicalin (BI), bioflavones obtained from Scutellaria baicalensis. It compiles current research on their 
neuroprotective mechanisms offered by both bioactive components. The search strategy for this review 
encompassed a systematic approach wherein databases such as PubMed, Web of Science, Scopus, Science 
Direct, Embase, Medline, Cochrane Library, and ClinicalTrials.gov were searched from inception to June 
2025. The keywords and terms used included “baicalein,” “baicalin,” “Scutellaria,” “Scutellaria baicalensis,” 
“Alzheimer’s disease,” “neuroprotection,” “amyloid-beta,” “tau pathology,” “oxidative stress,” and 
“neuroinflammation”. The eligible studies included peer-reviewed research, review articles, book chapters, 
and books, including in vitro, in vivo, and clinical research in English focusing on BI/BE in AD or related 
mechanisms, while case reports, conference abstracts, and studies with drug combinations were mainly 
excluded, except for a few remarkable ones. Initially, 256 articles were selected, and finally, 170 were used 
in the present article. The authors have interpreted the scientific evidence, which supports the 
establishment of both components as a potential and effective therapy for AD, and advocate for further 
clinical investigations to confirm their safety and efficacy.

Sources, chemistry, and properties of baicalein and baicalin
BI (7.98%) and BE (0.1–1.5%) are flavonoids found in the roots of the Chinese herb Scutellaria baicalensis 
Georgi (Huangqin or Ogon), a plant grown in several European countries and native to several East Asian 
countries, including the Russian Federation [28–31]. These compounds are also present in other Scutellaria 
species, including S. lateriflora, S. galericulata, and S. rivularia Wall, Oroxylum indicum (L.), the fungus 
Trametes versicolor, Astragalus membranaceus, and Taxus chinensis fruit (TCF) [28, 32–42].

BI (BE-7-O-β-D-glucuronic acid) must first be hydrolyzed by gut microbiota’s β-glucuronidase enzymes 
to yield BE for absorption. This conversion is a crucial, rate-limiting step [43, 44]. After absorption, BE can 
be reconverted to BI in the liver, leading to enterohepatic circulation that prolongs its effects [45]. BE 
(C15H10O5), the aglycone form derived from chrysin, has a unique molecular structure that gives it diverse 
biological activities [43] (Figure 2). While highly permeable, its poor aqueous solubility and rapid, extensive 
metabolism through glucuronidation limit its oral bioavailability (13–23% in monkeys). It is quickly 
converted to BI and other conjugated metabolites in the liver and intestines, meaning that oral BE 
administration results in low concentrations of the parent compound in the blood [46]. It has shown no 
toxic effects in human clinical trials at doses up to 2,800 mg [47]. Thus, key differences in the chemical 
structure of both moieties and the way they are processed by the body impart them distinct 
pharmacological profiles, which have significant implications for human therapy [48]. The distinct 
metabolic pathways of these two compounds have significant clinical implications. BI’s effectiveness 
depends heavily on an individual’s gut microbiome composition for its conversion to BE [49]. Conversely, 
BE’s poor bioavailability makes it less ideal for oral delivery, prompting research into advanced delivery 
systems to improve its absorption and therapeutic potential. The interplay between these two forms and 
their metabolism is vital to comprehend their neuroprotective and other pharmacological roles. Thus, for a 
detailed PK/PD overview of both moieties, a comparative table of PK/PD is provided in Table S1.

Experimental Alzheimer’s disease models
Experimental models for AD provide a comprehensive framework for drug development and are crucial for 
understanding its mechanisms. These are categorized into three types (Figure 3).
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Figure 2. Structure of baicalein and baicalin.

Figure 3. Experimental models for Alzheimer’s disease (AD).

In vitro models use cell lines like neuroblastoma (SHSY-5Y) [50–53], neuroblast (N2a), microglia 
(SIM-A9) [54], along with yeast cells [55, 56]. These in vitro models, such as cell lines and yeast, are 
cost-effective for high-throughput screening [56] and identifying therapeutic targets [50, 51]. 
However, they lack a full physiological context, failing to replicate the brain’s complex environment.

i.

In vivo models, primarily transgenic mice (e.g., APP/PS1, 3Tg-AD) [57–61] and zebra fish [62], are 
used to replicate core AD pathologies like Aβ plaques and tau tangles and cognitive decline [57, 58], 
and allow for investigation of systemic effects like neuroinflammation [59–61]. Their limitations 
include biological differences from humans and the fact that they often require genetic engineering 
to show pathology, potentially leading to translational failures [59].

ii.

In silico models utilize computational tools to simulate molecular interactions and predict drug 
efficacy [63–68]. These models tend to provide versatile and cost-effective simulations of AD 
pathology and can accelerate drug discovery by screening compounds and predicting disease 
progression [64, 67], and simulate processes like Aβ aggregation [63, 65] and whole-brain 
dynamics [68]. However, their accuracy depends on the quality of existing data and requires 
experimental validation [63].

iii.

Since no single model can fully capture the complexity of AD, a multi-model approach is essential. 
Combining in vitro, in vivo, and in silico methods allows researchers to overcome individual limitations, 
creating a more comprehensive understanding of the disease and increasing the potential for successful 
treatment development.
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Multifaceted pharmacological actions of baicalein and baicalin
BE and BI, prominent bioflavonoids primarily derived from Scutellaria baicalensis (commonly known as 
Chinese skullcap or Huang-Qin), exhibit a wide array of pharmacological properties. These compounds are 
promising candidates for treating and preventing various chronic ailments. Their extensively investigated 
properties include anti-cancer activities, liver protection (hepatoprotection), broad-spectrum antibacterial 
and antiviral effects, powerful antioxidant capabilities, and significant anticonvulsant and neuroprotective 
benefits [29, 49, 69–73]. They have been extensively utilized in traditional medicine, particularly in China 
and South Korea, for anti-inflammatory and cancer disorders [74, 75].

Both BE and BI exhibit similar pharmacological effects, but with differences in potency and specific 
mechanisms [76]. BE is often considered more potent in certain contexts, such as inhibiting inflammatory 
mediators like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) [77]. In terms of anticancer 
activity, both compounds induce apoptosis and inhibit proliferation, but their specific efficacy can vary 
depending on the cancer type and the signaling pathways involved. Some research suggests BE has a 
stronger antiproliferative effect on cancer cells [78]. These differences have significant implications for 
human therapy. BE’s higher potency could make it a better choice for conditions requiring a rapid, strong 
anti-inflammatory response, provided its low bioavailability is addressed. Conversely, the enterohepatic 
circulation of BI and its metabolites might be more suitable for therapeutic applications requiring 
sustained, long-term effects. The choice between the two, or using a combination, must be tailored to the 
specific disease and desired biological outcome [79].

It is interesting to note that BE and BI achieve their dual neuroprotective and anticancer effects by 
modulating a common set of critical signaling pathways (PI3K/AkT, NF-κB, Nrf2, MAPK) as given in 
Figure 4. Their distinct outcomes are determined by the cellular context; they can be anti-inflammatory and 
cytoprotective in normal and neuronal cells, but pro-apoptotic and antiproliferative in cancer cells. The 
difference in their chemical structure and metabolism also impacts their potency, with BE often showing 
more potent effects in direct cellular assays due to its higher bioavailability.

Figure 4. Dual role of baicalein and baicalin in neuroprotection and cancer. The following subsections provide selected 
literature reports mentioning various other actions of baicalein and baicalin. Icons are designed by Freepik (http://www.freepik.
com/).

Anti-inflammatory effects

BE and BI have shown efficacy in various inflammatory conditions, including respiratory ailments like 
pulmonary fibrosis and pulmonary artery hypertension, by influencing pathways such as TGF-β/smad, 
ERK1/2, P38 MAPK, and NF-κB. Their anti-inflammatory action also extends to arthritis (reducing joint 
swelling and inhibiting inflammatory cascades), type-2 diabetes and obesity (reducing body weight, fatty 
acids, and cholesterol through AMPK activation), neurodegenerative diseases (protecting against 
neurotoxicity and reducing apoptosis), and microbial infections (suppressing inflammatory markers) [80].

http://www.freepik.com/
http://www.freepik.com/
http://www.freepik.com/
http://www.freepik.com/
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Anticancer effects

Both flavonoids BE and BI induce programmed cell death (apoptosis) in various tumor types via both 
extrinsic and intrinsic pathways, triggering apoptosis by influencing calcium influx, reactive oxygen species 
(ROS) production, and the activation of caspases. They also suppress cancer metastasis by inhibiting 
epithelial-mesenchymal transition (EMT), down-regulating matrix metalloproteinases (MMPs), and 
interfering with angiogenesis. Additionally, they can induce autophagy and cause cell cycle arrest at 
different checkpoints, further contributing to their anticancer properties [80].

Anti-apoptotic and antioxidant

According to [81], BI can inhibit Aβ-induced microglial activation by regulating the JAK2/STAT3 signaling 
pathway. Furthermore, Ding et al. (2019) [82] studied BI’s effects in an AD rat model, where they found that 
it has anti-apoptotic effects by regulating mitochondrial membrane potential, the Bax/Bcl-2 ratio, 
cytochrome-c release, and caspase-9/-3 activation. The researchers also reported that BI enhances 
antioxidant capacity by restoring the activity and gene expression of key antioxidant enzymes, an effect 
associated with Nrf2 activation [73]. These findings, along with recent research on mitochondria, highlight 
BI’s potential in treating Aβ toxicity [83].

A team of researchers investigated BE’s protective effects on PC12 cells exposed to Aβ25–35, a toxic 
amyloid peptide associated with AD. It inhibited Aβ aggregation, reduced apoptosis, and restored 
mitochondrial function by improving membrane potential, ATP levels, and mitochondrial complex I activity. 
It also decreased intracellular ROS and NO levels, indicating strong antioxidant activity. LC-MS 
metabolomics identified BE-induced regulation of five metabolites linked to arginine/proline and 
nicotinate/nicotinamide pathways. These metabolic corrections underline BE’s ability to modulate energy 
metabolism and oxidative balance. The study confirmed BE’s multifaceted neuroprotection through anti-
apoptotic and metabolic regulatory mechanisms [84].

A study explored the role of BE in protecting rat cortical neurons from Aβ25–35-induced apoptosis. BE, a 
12-lipoxygenase inhibitor, significantly reduced neuronal cell death and suppressed c-jun protein 
overexpression, a key regulator in apoptosis pathways. Interestingly, other lipoxygenase inhibitors, 
including nordihydroguaiaretic acid and caffeic acid, showed no protective effect. These results suggested 
that 12-lipoxygenase plays a critical role in Aβ-induced neurotoxicity via the c-jun-dependent pathway, and 
selective inhibition by BE may offer a therapeutic strategy in AD. This work highlighted the significance of 
lipid-mediated oxidative pathways in Aβ-induced neuronal damage [85].

Anti-hypertensive effects

A study revealed for the first time that BI lowers blood pressure by relaxing blood vessels through its ability 
to regulate intracellular calcium (Ca2+) and was found to be partially dependent on the activation of KATP 
channels. These findings provide new scientific support for BI’s potential as a therapeutic agent for 
hypertension, validating its long-standing use in traditional Chinese medicine (TCM) [86].

Anti-SARS-CoV-2 and anti-inflammatory action

Both BE and its metabolite BI demonstrate promising anti-SARS-CoV-2 and anti-inflammatory effects. They 
show antiviral action, primarily by inhibiting crucial SARS-CoV-2 enzymes like the 3C-like protease 
(3CLpro/Mpro) and RNA-dependent RNA polymerase (RdRp), which are essential for viral replication. 
They may also interfere with viral entry into host cells by affecting the spike protein-ACE2 receptor 
interaction. Regarding anti-inflammatory properties, these compounds suppress the NF-κB signaling 
pathway, a key regulator of inflammation, leading to reduced production of pro-inflammatory cytokines 
(e.g., TNF-α, IL-1β, IL-6) and mediators (e.g., NO, PGE2). They also exhibit antioxidant activity, modulate 
immune cell polarization towards a neuroprotective state (M2 phenotype), and can regulate the NLRP3 
inflammasome, which triggers strong inflammatory responses. Overall, their multi-targeted mechanisms 
highlight BE and BI as valuable candidates for further research in treating viral infections and inflammatory 
conditions like COVID-19 [87].
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Hepatoprotective activity

A review explored recent advancements in understanding BE’s hepatoprotective action against different 
toxicities, both in vitro and in vivo models (acetaminophen, cisplatin, doxorubicin, CCL4, monocrotaline, 
and d-galactosamine), and concluded that it exhibited hepatoprotective potential due to its antioxidant, 
anti-inflammatory, and anti-apoptotic properties [88].

Antidiabetic activity

In another study, mice treated with BE with type-2 diabetes improved glucose tolerance and blood insulin 
levels. BE (5 mM) also advocated viability and enhanced glucose-stimulated insulin secretion in both 
insulin-secreting pancreatic cells and islets’ human cells [80].

Neuroprotective roles

BE showed promise for treating neurodegenerative disorders beyond AD. Studies demonstrated its ability 
to improve cognitive function by reducing oxidative stress and inflammation. It worked by influencing key 
cellular pathways, such as the PI3K/AkT/NF-κB signaling. BE also protected neurons and reduced levels of 
proteins associated with cell death and neurodegeneration. Its neuroprotective effects were independent of 
estrogenic activity, making it a strong candidate for new drug development [89–91].

BI’s neuroprotective mechanism is multifaceted, involving a range of biological effects. It acts as a 
powerful antioxidant and anti-inflammatory agent, which helps protect the brain from damage caused by 
oxidative stress and chronic inflammation. BI also exhibited antiapoptotic effects, preventing programmed 
cell death in neurons [92]. It further supported brain health by upregulating neurotrophic factors and 
providing mitochondrial protection, which enhanced cellular energy production and survival [92–94]. 
Additionally, BI promoted vasodilation and improved cerebral blood flow, contributing to its effectiveness 
in conditions like ischemic stroke [92]. Its interaction with the gut-brain axis also played a role in its broad 
therapeutic benefits for neurological well-being [95]. These combined actions underscore its potential as a 
therapeutic agent for various neurological and neuropsychiatric disorders [83, 94].

Clinical studies

Several clinical trials have demonstrated the potential of BE and BI in different conditions, with the 
following key findings. Pang and co-workers [96] conducted two Phase I clinical trials on BE, which showed 
that oral BE tablets were safe and well-tolerated in healthy Chinese adults. A study by Hang et al. [97] found 
that BI reduced blood lipids and inflammation in patients with coronary heart disease and rheumatoid 
arthritis. Yet another finding by scientists indicated that BI affects innate immunity and apoptosis in 
children with acute lymphocytic leukemia [98] while Yu et al. [99] demonstrated that BI can balance 
immune function and ease inflammation in patients with ulcerative colitis. Additionally, BI has been studied 
for its use in patients with photodamaged skin [100] and in non-surgical periodontal therapy and post-
surgical tooth removal [101, 102]. While these studies highlight the therapeutic promise of BE and BI, there 
is a notable absence of targeted clinical research specifically investigating their effects on 
neurodegenerative disorders.

To advance their potential, future efforts should concentrate on:

Clinical trials for neurodegenerative diseases: Conducting trials to assess the efficacy of BI and 
BE specifically in patients with neurodegenerative diseases.

i.

Mechanism of action: Further research is needed to identify their precise molecular targets or 
receptors, which is crucial for understanding how they work, improving drug design, and advancing 
their development.

ii.

Delivery systems: Due to the limited solubility of BI and BE, innovative delivery methods like 
nanoparticles will be essential to enhance their bioactivity, improve their ability to cross the BBB, 
and ultimately increase their effectiveness [71].

iii.
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Neuroprotective mechanisms and effects of baicalein and baicalin against 
Alzheimer’s disease
Our understanding of AD evolved to recognize it as a complex, multifactorial disorder, and the need for 
therapeutic agents that could simultaneously target multiple pathological pathways became paramount. BE 
and BI emerged as promising candidates in this regard, exhibiting broad neuroprotective effects against AD 
through a wide array of mechanisms (Figure 5). Preclinical studies consistently showed that these 
compounds ameliorated memory deficits, reduced amyloid plaques, and modulated tau phosphorylation in 
various AD models (Table 1). Both BE and BI improved mitochondrial function, synaptic plasticity, and 
neuronal survival, ultimately preventing cell death and enhancing cognition [103–112].

Figure 5. Neuroprotective mechanism of baicalein and baicalin in Alzheimer’s disease. ROS: reactive oxygen species; 
APP: amyloid precursor protein; ACHE: acetylcholinesterase; ILs: interleukins.

Recent research leveraging advanced modalities such as network pharmacology, bioinformatics, 
molecular simulations, and metabolomics further elucidated the multifaceted mechanisms through which 
these flavonoids exert their neuroprotective effects. The following subsections present a comprehensive 
detail of the various investigations that illuminated the multifaceted neuroprotective mechanisms and 
effects of BE and BI, incorporating the key findings from literature reports.

Modulation of key pathophysiological hallmarks of Alzheimer’s disease
Combating amyloid-beta pathology

Aβ accumulation is a central event in AD progression. BE and BI demonstrated significant potential in 
inhibiting Aβ aggregation and mitigating its toxicity. A study utilizing molecular dynamics simulations 
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provided valuable insights into how BE disrupts the early-stage, beta-sheet-rich structure of Aβ42 
protofibrils, a key therapeutic strategy for preventing the formation of toxic oligomers [113]. Furthermore, 
BE showed protection against membrane damage induced by Aβ42 oligomers, a critical step in the 
neurodegenerative cascade [114, 115].

A study also supported BI’s therapeutic potential to mitigate Aβ-induced neuronal cytotoxicity. BI, 
identified as a novel Aβ aggregation inhibitor, protected SH-SY5Y cells by both inhibiting Aβ1–42 aggregation 
and reducing hydrogen peroxide (H2O2)-mediated oxidative stress. Recognizing that metal ions (e.g., 
copper) contributed to Aβ aggregation and ROS production in AD, the study found BI directly interacts with 
copper and inhibits Aβ1–42 aggregation, both with and without copper [51].

Beyond its direct effects on Aβ structure, BE is also a potent dual-target inhibitor. It can inhibit both 
Aβ1–42 aggregation and acetylcholinesterase (AChE) activity, a mechanism that addresses two major aspects 
of AD pathology [111]. This dual-action approach has inspired the development of novel compounds, such 
as a hybrid of BE and donepezil, which demonstrated superior inhibitory effects on AChE and better BBB 
penetration than either parent compound [109]. Another study highlighted BE’s dual action against protein 
aggregation, specifically involving both Aβ42 and alpha-synuclein (α-syn). It not only prevented the 
formation of new α-syn fibrils but could also disassemble existing mature α-syn fibrils in a dose-dependent 
manner. This could be partly attributed to a covalent modification of α-syn by BE quinone, a derivative of 
BE, which formed a Schiff base with a lysine side chain [51, 116].

The presence of α-syn pathology has been reported in a significant portion of AD cases, highlighting a 
potential overlap between AD and other neurodegenerative diseases [117–121]. Therefore, BE’s ability to 
inhibit both Aβ and α-syn aggregation positioned it as a promising therapeutic agent for addressing the 
complex proteinopathy often observed in AD patients [122].

Inhibiting tau hyperphosphorylation and aggregation

Tau protein hyperphosphorylation and subsequent aggregation into NFTs is another hallmark of AD. In 
vitro techniques showed that BE exhibited significant inhibitory properties against repeat tau aggregation 
by dissolving preformed tau oligomers and mature fibrils [123]. Similarly, BI was found to inhibit paired 
helical filaments (PHFs) and in vitro tau aggregation by promoting the formation of non-toxic tau 
oligomers, thus acting as a lead molecule against tau pathology [124].

A study on AD model rats revealed that flavonoids from Scutellaria baicalensis stems and leaves (SSFs) 
had a protective effect against AD by directly regulating and reducing the hyperphosphorylation of tau 
protein at crucial sites in the hippocampus and cerebral cortex. This mechanism could prevent the 
formation of NFTs, reduce neuronal toxicity, and thereby ameliorate the cognitive deficits associated with 
AD [108]. Furthermore, long-term oral administration of BE in mice inhibited the activity of glycogen 
synthase kinase 3β (GSK-3β), an enzyme responsible for tau hyperphosphorylation, further contributing to 
its anti-tau effects [125].

Modulating cellular and molecular signaling pathways
Alleviating oxidative stress and mitochondrial dysfunction

Oxidative stress, an imbalance between ROS production and antioxidant defenses, is a key contributor to 
neuronal damage in AD. BE and BI are potent antioxidants that directly scavenge free radicals at rates 
comparable to vitamin C [126]. A study on H2O2-induced cell death demonstrated that BE effectively 
blocked pro-apoptotic events by preventing the activation of the JNK/ERK pathways and maintaining 
healthy levels of glutathione (GSH), a crucial antioxidant [127].

BE also addresses mitochondrial dysfunction, a common feature in AD. A study on J20 AD transgenic 
mice demonstrated that chronic administration of BE restored cerebral blood flow, normalized metabolic 
pathways, and alleviated mitochondrial dysfunction, thereby improving cognitive function and reducing 
hyperactivity [107]. Another investigation showed that BE protects against endoplasmic reticulum (ER) 
stress-induced apoptotic death in neuronal cells by inhibiting ROS production and mitochondrial 
membrane potential reduction [128].
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An investigation by Ding et al. (2015) [86] demonstrated that BI significantly mitigated cognitive 
impairments induced by Aβ1–42 in a rat model of AD. It alleviated hippocampal damage, reduced 
malondialdehyde (MDA) levels, and restored antioxidant enzyme activities (SOD, CAT, GPx). Notably, its 
antioxidant effect was mediated through the activation of the Nrf2 signaling pathway.

Mitigating neuroinflammation and glial activation

Neuroinflammation, characterized by the activation of glial cells, is a major driver of AD pathology. BE and 
BI have been shown to be effective in mitigating this inflammation.

Inhibition of astrocytic gamma-aminobutyric acid (GABA) synthesis: An ethanolic extract of 
Scutellaria baicalensis and its constituent compounds, BI and BE, were found to inhibit monoamine 
oxidase B (MAO-B), a key enzyme for astrocytic GABA synthesis. This action reduced astrocyte 
reactivity and reversed aberrant neuronal tonic inhibition in a lipopolysaccharide (LPS)-induced 
neuroinflammation mouse model [129].

i.

Shifting microglial polarization: BE can shift microglial polarization from the pro-inflammatory 
M1 phenotype to the neuroprotective M2 phenotype, thereby supporting neuronal survival and 
improving cognitive function [130]. Similar findings reported that this shift in microglial 
polarization, which alleviated neuronal injury and inflammation, was achieved through targeting 
HMOX1/PDE4D [131]. Another evaluation on the 3Tg-AD mice model revealed that BE promoted 
M2 polarization by inhibiting the CX3CR1/NF-κB signaling pathway, which ultimately reduced 
neuroinflammation and improved learning and memory [132].

ii.

Enhancing synaptic plasticity and neurotransmission

Synaptic dysfunction is an early event in AD that correlates strongly with cognitive decline. BE has been 
shown to protect synaptic function and enhance neuroplasticity. An in vivo study demonstrated that BE 
prevented damage to long-term potentiation (LTP), a measure of synaptic strength, that was caused by Aβ42 
oligomers. It achieved this by activating AkT phosphorylation and inhibiting key enzymes like 12/15-
lipoxygenase and GSK-3β. Furthermore, BE restored normal dendritic spine density, a critical factor for 
synaptic connections, and reversed memory deficits in AD model mice [125].

A study investigating an Aβ oligomer (AβO)-induced model discerned that BI improved memory by 
enhancing synaptic plasticity (increasing synaptophysin, PSD95, and MAP-2), mitigating mitochondrial 
fragmentation, and rescuing mitochondrial dysfunction. This action is linked to PDE4 inhibition, leading to 
pDrp1S637 activation, and restored levels of key mitochondrial components (SDHB, COXI) [93].

The ability of BE to improve memory and cognitive function is also linked to its modulation of the 
cAMP/cGMP-pCREB-BDNF pathway, a crucial pathway for neuronal survival and plasticity [133]. A 
proteomic approach further revealed that BE treatment significantly ameliorated Aβ-induced cognitive 
dysfunction by influencing the expression levels of 24 proteins, many of which are involved in energy 
metabolism and neurotransmission [112]. Another study using a novel screening system found that BE not 
only inhibits Aβ-induced neuronal depolarization but also acts as an antagonist for both AMPA and 
NR2B/NMDA receptors, suggesting a new therapeutic avenue for AD treatment [110].

Comprehensive and integrated mechanistic insights

Recent advancements in computational and systems biology approaches have provided a more integrated 
view of the neuroprotective mechanisms of BE and BI.

Network pharmacology and bioinformatics

An integrated approach involving network pharmacology, molecular docking, and experimental verification 
revealed that active ingredients of Scutellaria baicalensis protect against AD by inhibiting the 
PIK3R1/SRC/STAT3 pathway in N2a cells, providing strong evidence for its therapeutic potential [134]. 
Another study used a combined network pharmacology, bioinformatics, and animal model approach to 
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identify AD-related target genes (e.g., APP, PIK3R1, CALM1) and confirm the involvement of the cAMP-PKA-
CREB signaling pathway in SSF’s neuroprotective effects [135].

Metabolomics and molecular docking

A study on AD transgenic mice explored the underlying mechanisms of BE’s efficacy through behavioral 
tests, metabolomics, and molecular docking. It demonstrated that BE restored cerebral blood flow, 
normalized metabolic pathways, and reduced oxidative stress and neuroinflammation, thereby restoring 
cognitive function [107]. Computational studies have also corroborated BE’s ability to inhibit key AD 
targets such as BACE1 and AChE, highlighting its potential as a multi-functional therapeutic candidate [111, 
136]. Their findings showed that BE forms a stable, reversible competitive inhibitor complex with AChE 
through hydrogen bonding and hydrophobic interactions, exhibiting a strong binding affinity [107].

Exploring novel and adjunctive mechanisms
Gut-brain axis modulation

Recent findings have indicated that alterations in the gut microbiota and their by-products can play a role 
in the development of AD through the gut-brain axis. Research suggests that BE may enhance cognitive 
function by positively modulating these gut bacteria. It could restore gut microbiota balance, strengthen the 
gut barrier to prevent the leakage of inflammatory and neurotoxic substances, and modulate the production 
of beneficial microbial metabolites like short-chain fatty acids (SCFAs) [103].

Alleviation of myelin sheath degeneration

Myelin sheath degeneration is increasingly recognized as a contributing factor to AD-related 
neurodegeneration. A study concluded that SSFs could effectively alleviate myelin sheath degeneration in 
AD model rats by increasing the expression of crucial myelin proteins (Claudin 11, MOG, MAG, MBP) and 
positively regulating enzymes involved in sphingomyelin metabolism (SMS1 and SMPD2) [137]. This 
suggests a novel approach to addressing AD pathology.

Indoleamine dioxygenase 1 inhibitory activity

A study highlighted the potential of flavonoids like BE to modulate indoleamine dioxygenase 1 (IDO-1) 
activity, which is associated with immune suppression and neurodegenerative diseases. BE exhibited 
potent IDO-1 inhibitory activity and promoted neurite outgrowth in human neural stem cells (hNSCs), 
suggesting it could provide therapeutic options for managing neurodegenerative diseases like AD [138].

Synergistic effects with other compounds

The combination of BE with other neuroprotective agents has shown promising results. An in vitro study 
found that a combination of trans-chalcone and BE synergistically reduced both ROS and Aβ42 levels in 
yeast cells, suggesting a multi-targeted therapeutic strategy [56]. Combining BE with daidzein enhanced 
both their estrogenic and neuroprotective effects by inhibiting Aβ aggregation and cytotoxicity [139]. 
Another combination of BE and wogonin protected neuronal cells from apoptosis and inflammation 
induced by Aβ25–35 [140]. Furthermore, a study showed that BE in combination with memantine provided 
significant improvement in behavioral and biochemical parameters in an AD rat model [141].

Thus BE and BI are not merely symptomatic treatments but are emerging as powerful, multi-target 
therapeutic agents against AD. Their ability to address the core pathological features of the disease namely 
Aβ aggregation, tau hyperphosphorylation, oxidative stress, and neuroinflammation positions them as a 
promising alternative to current FDA-approved drugs, which primarily offer temporary relief. The 
comprehensive evidences supported by advanced research modalities, underscores their potential to 
prevent and treat AD. The low toxicity and synergistic potential of these compounds further strengthen the 
case for their development as a proactive strategy for early intervention in neurodegenerative conditions, 
offering a path towards a more holistic and effective approach to AD therapy.
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Table 1. Neuroprotective role of baicalein and baicalin in Alzheimer’s disease.

Mechanism/Effect Major outcomes Model/Method Reference(s)

Baicalein
ER stress inhibition Inhibited ROS, CHOP induction, mitochondrial 

depolarization
HT22 cells, 
thapsigargin & brefeldin 
A-induced stress

[128]

H2O2-induced oxidative 
stress

Blocked JNK/ERK pathways, restored GSH, reduced 
ROS

PC12 cells [127]

Aβ toxicity & antioxidant 
action

Antioxidant activity > vitamin C, protected PC12 cells PC12, Aβ-induced [126]

Gut-brain axis modulation Improved cognition via microbiota modulation AD mouse model [103]
Tau aggregation inhibition Dissolved preformed tau fibrils In vitro, MALDI-TOF [123]
Paired helical filament 
inhibition

Promoted non-toxic tau oligomers In vitro [105]

Reversed Aβ-induced 
memory loss

Regulated cAMP/cGMP-pCREB-BDNF pathway Aβ-injected mice [133]

Synaptic protection & 
memory rescue

Restored spine density, inhibited Aβ & tau pathology AD mouse model [125]

Anxiety & memory deficits Reduced AChE activity, improved anxiety in zebrafish Scopolamine-induced 
model

[104]

Memory improvement Enhanced ChAT neurons, reduced microglia Ibotenic acid rat model [105]
Aβ25–35-induced amnesia Prevented & reversed memory loss Passive avoidance test [106]
Neuroplasticity regulation Restored CaM-CamkIV-CREB signaling Composite AD rat model [107]
Tau hyperphosphorylation 
reduction

Reduced tau pathology in the hippocampus/cortex AD rat model [108]

Myelin sheath 
degeneration reversal

Upregulated myelin proteins, modulated sphingomyelin 
metabolism

AD rat model [137]

Inhibits astrocytic GABA 
synthesis

Inhibited MAO-B, reversed tonic inhibition LPS mouse model [129]

Microglial M2 polarization Reduced neuroinflammation, improved cognition 3Tg-AD mice [130–132]
Dual inhibition of Aβ & 
AChE

Aryl-coumarin derivative is more potent than donepezil Zebrafish AD model [109]

α-syn & Aβ aggregation 
inhibition

Prevented/Disaggregated α-syn & AβOs In vitro, cell lines [51, 116, 
122]

Inhibits Aβ42 membrane 
permeabilization

The flavone scaffold is effective in membrane protection Liposome assay [114, 115]

IDO-1 inhibition Inhibited IDO-1, promoted neurite outgrowth in hNSCs In vitro [138]
Aβ/AMPA/NMDA 
depolarization reversal

Inhibited receptor-induced depolarization DiBAC4(3) dye, cortical 
neurons

[110]

BACE1 & AChE inhibition Strong dual inhibition with good docking affinity In vitro, in silico [111]
Lipoxygenase & GSK3β 
inhibition

Lowered BACE1 & Aβ levels Hippocampal slices [125]

Proteomic alterations Altered proteins linked to metabolism & signaling AD rat model, 
proteomics

[112]

With trans-chalcone Reduced ROS & Aβ42 more effectively Yeast model [56]
With daidzein Synergistic estrogenic & neuroprotective activity PC12 cells [139]
With wogonin Reduced TNF-α, NO, and apoptosis PC12 cells, Aβ25–35 [140]
With memantine Decreased plaques, increased BDNF Wistar rats, AD model [141]
Baicalin
Aβ Aggregation Inhibition Inhibits Aβ aggregation (± Cu2+), reduces oxidative 

stress, and H2O2-induced toxicity.
SH-SY5Y cell line [51]

Anti-apoptotic effect Inhibits NO, TNF-α, and PGE2 in PC12 cells In vitro [143]
Anti-apoptotic and 
antioxidant effect

Improves cognition, reduces oxidative stress markers, 
restores antioxidant enzymes, and prevents 
mitochondrial damage via the Nrf2 pathway.

Aβ1–42-induced rat model [86]

Anti-neuroinflammatory Reduces TNF-α, IL-6, and glial activation; improves 
memory

Aβ1–42 mouse model [144]

Microglial modulation Suppresses TLR4/NF-κB and NLRP3 inflammasome, 
reduces microglia-mediated inflammation, and improves 
cognition.

APP/PS1 mice, BV2 
microglial cells

[143]
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Table 1. Neuroprotective role of baicalein and baicalin in Alzheimer’s disease. (continued)

Mechanism/Effect Major outcomes Model/Method Reference(s)

Mitochondrial plasticity Improves synaptic proteins, inhibits PDE4 & 
mitochondrial fission

AβO-induced model [83]

Neural regeneration Enhances spatial learning, hippocampal neurogenesis, 
and regulates NPTX-1/2 and CRP levels.

AD rat model [145]

Synaptic & mitochondrial 
protection

Increases synaptic proteins (PSD95, MAP-2), reduces 
mitochondrial fragmentation and dysfunction via PDE4 
inhibition.

AβO-induced model [83]

ER: endoplasmic reticulum; ROS: reactive oxygen species; CHOP: C/EBP homologous protein; GSH: glutathione; Aβ: amyloid-
beta; AD: Alzheimer’s disease; MALDI-TOF: matrix-assisted laser desorption/ionization-time of flight; AChE: 
acetylcholinesterase; ChAT: choline acetyltransferase; GABA: gamma-aminobutyric acid; MAO-B: monoamine oxidase B; LPS: 
lipopolysaccharide; α-syn: alpha-synuclein; IDO-1: indoleamine dioxygenase 1; hNSCs: human neural stem cells; TNF-α: tumor 
necrosis factor-alpha; IL-6: interleukin-6; AβO: Aβ oligomer; CRP: C-reactive protein.

Conclusions
This review lays a foundation for future research on the bioactive flavonoids BE and BI from Scutellaria 
baicalensis, exploring their applications and mechanisms for neuroprotection, particularly against AD. 
These compounds demonstrate vital antioxidant, anti-inflammatory, and neuroprotective properties, 
suggesting significant preclinical promise in mitigating AD pathology.

However, despite this potential, their therapeutic utility has been significantly challenged by 
limitations in solubility and brain delivery. To overcome these hurdles, innovative formulation strategies 
are crucial. These range from TCM decoctions, which leverage synergistic herbal interactions, to modern 
nanocarriers like liposomes and solid lipid nanoparticles. These advanced delivery systems are essential for 
enhancing the bioavailability, stability, and brain targeting of BE and BI, thereby maximizing their 
therapeutic potential for AD.

While preclinical studies consistently show promising results and a good safety profile, the full clinical 
relevance, especially regarding efficacy, safety, and appropriate dosages in humans, remains to be 
established. The clinical application of BE and BI is currently limited by insufficient human data. Therefore, 
comprehensive human clinical trials are imperative to fully understand their therapeutic utility and confirm 
their safety profile before they can be recommended for AD treatment. This review’s insights can serve as a 
guide for future research to define disease markers and optimize dosing, emphasizing therapeutic drug 
monitoring. Furthermore, studies on their interaction with various signaling pathways, including ADME 
processes, are crucial. Continued interdisciplinary research in pharmaceutical science and neuroscience, 
incorporating modern approaches like transcriptomics, systems biology, and metabolomics, should guide 
the design of novel formulations, enhance bioavailability via varied routes for maximum efficacy, 
investigate drug interactions, and establish long-term toxicity, pharmacokinetic, and pharmacodynamic 
profiles of these phytocompounds, both alone and in combination with other drugs.
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