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Abstract
Parkinson’s disease (PD) is a devastating neurodegenerative condition characterized primarily by the 
degeneration of the dopaminergic neurons in the substantia nigra, causing motor dysfunction and many 
non-motor symptoms. Available pharmacological treatments and therapies provide symptomatic relief but 
do not halt the progression of PD. Gene therapy has been recognized as a valuable therapeutic frontier, 
providing the possibility of disease modification by targeting the underlying molecular and cellular 
mechanisms of PD. The parts of the methodology used for gene therapy entail the delivery of genetic 
material into particular regions of the brain with the aid of viral vectors to improve the synthesis of 
dopamine, maintain the integrity of neurons, or control pathological pathways. Recent clinical trials have 
shown promising efficacy and safety profiles for many gene therapy methods, consisting of those targeting 
enzymes in the biosynthesis of dopamine [e.g., L-amino acid decarboxylase (AADC)], synuclein alpha 
pathology, and neurotrophic factors [e.g., growth-derived neurotrophic factor (GDNF)]. However, in spite of 
these developments, there are limitations in vector delivery and prolonged expression of genes, as well as 
patient-specific responses. This review highlights the present landscape of gene therapy in PD, discussing 
the latest successes, ongoing clinical trials, and future perspectives that could shape therapeutic paradigms 
for PD.
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Introduction
Parkinson’s disease (PD) is the second most prevalent neurological condition after dementia [1, 2]. 
According to an analysis by the Global Burden of Disease Study (2016), which was published in Lancet 
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Neurology two years later, the probability of having PD increases with aging, with rates ranging from 41 to 
100,000 in those in their 50s and up to 1,900 per 100,000 in those aged 80 and above [3]. Furthermore, it 
was reported that a prevalence percentage increase of 54.9% to 66.2% occurred from the year 1990 to 
2021 [4]. Within this chronic, severe neurodegenerative condition, which is recognized by a rapid 
degeneration of dopamine (DA)-associated neurons in the pars compacta of the substantia nigra par 
compacta (SNpc), an intracellular protein called synuclein alpha (SNCA) is broadly dispersed [5, 6].

PD is a complicated condition that is triggered by genetic, environmental, or age variables. Motor 
manifestations develop whenever DA within the basal ganglia is insufficient [7]. People with PD often 
exhibit olfactory impairment, rapid eye movement (REM) sleep behavioral disorder, and autonomic 
nervous system (ANS) problems such as orthostatic hypotension, bladder malfunction, and constipation, 
coupled with the usual motor warning signs of rigidity, resting tremor, bradykinesia, and gait 
abnormalities, as well as lack of postural stability [8].

PD normally progresses until it leaves its patients completely debilitated. The rate of progression and 
its course vary among patients. The course is relatively benign in some patients with little disability after 
twenty years, and may be more aggressive among others who may be severely disabled after ten years. 
Untreated PD worsens over the years, and it may lead to the deterioration of all brain functions and 
premature death.

According to [9], the breakdown of DA pathways that connect the SNpc with the striatum is thought to 
be caused by an aberrant buildup of fibrillar SNCA. This leads to a lack of DA and poor motor activity.

The gold standard for treating PD motor symptoms is levodopa (L-DOPA) [10, 11]. In order to increase 
L-DOPA availability in the brain, carbidopa functions as a decarboxylase inhibitor [12]. PD drugs have a lot 
of adverse effects (AEs). The most frequent AEs of the combination of L-DOPA and carbidopa are nausea, 
compulsive gambling, depression, low blood pressure, hallucinations, and irregular sleep patterns.

L-DOPA treatment-induced off symptoms and dyskinesia are still unsolved; according to one study, off 
symptoms and dyskinesia affect 55.9% and 13.5% of the study group, respectively [13]. It’s unclear how 
long-term L-DOPA medication causes dyskinesia [14]. It underscores the essential need to investigate novel 
therapeutic options for the medical management of PD. By suppressing or delaying DA-producing cell death 
within the brain, disease alteration and neural protection are key therapy options to reduce PD symptoms 
related to movement [15]. L-DOPA is one of the only short-term PD drugs currently on the market [16].

This review aims to explore the advancing role of gene therapy in PD treatment, with an emphasis on 
its ability to modify PD progression, tackle underlying molecular and genetic mechanisms, and surmount 
the challenges of current symptomatic treatments. The objective of this review is to highlight recent 
advancements, current methods and strategies, and future perspectives, coupled with the evaluation of the 
limitations, ethical concerns, and clinical outcomes associated with its uses in the management of PD.

Methodology of literature selection

The selection of literature was done systematically to identify relevant reviews, studies, and reports 
relating to the title. Major databases like Web of Science, Scopus, PubMed, and Google Scholar were 
searched to ensure comprehensive coverage of the existing literature. Other sources, including conference 
proceedings and institutional repositories, were also examined to minimize publication bias. The strategy 
used for searching involves the combination of keywords, like gene therapy, PD, preclinical, and clinical 
trials, which are relevant to the main concepts of the review. In order to optimize retrieval specificity and 
sensitivity, terms were modified for every database. The primary time frame for inclusion spanned from 
2015 to 2025; however, earlier studies were also considered in an appropriate situation. Inclusion criteria 
were studies published in English, peer-reviewed articles, and literature on gene therapy and PD. Exclusion 
criteria were duplicate records and non-English publications.
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PD pathogenesis and genetic patterns
The etiology of PD constitutes a cellular buildup of the SNCA gene in insoluble particles, which damages 
cells [17]. Depletion of dopaminergic neurons leads to SNCA assembly, disrupting several pathways in the 
SNpc that rely on the dopaminergic tone. Because of this imbalance, the striatal projections in the neural 
circuits that contribute to the Parkinsonian phenotype diverge. PD is mostly brought on by a mix of both 
external and genetic variables. Subsequently, it is considered that PD is multidimensional rather than the 
outcome of a single, unambiguous cause.

Genetics of PD

Genetic involvement in the development of PD is currently established by data from several genes and 
genetic risk factors [18]. Multiple research projects have suggested that genetics is the primary cause of PD 
risk, and several loci and related markers have been identified based on data from association studies and 
linkage analyses, respectively [19]. Many different kinds of disease-causing genes were found [18]. The 
phenotype of the important form of genes is remarkably comparable to that of sporadic PD. Conversely, 
recessive variants demonstrate a younger age of onset and thus are predictive of pure Parkinsonism in 
addition to other clinical characteristics.

More than 20 genes have been identified to cause autosomal dominant PD (AD-PD), autosomal 
recessive PD (AR-PD), and X-linked Parkinsonism, in addition to a variety of symptoms ranging from 
nonspecific PD-like to early indications of Parkinsonism. These traits may be simple or complex in terms of 
both non-motor and motor medical aspects [20].

As shown in Figure 1, AD-PD is caused by transmutations in the SNCA and leucine-rich repeat kinase 2 
(LRRK2) genes, while AR-PD is caused by transmutations in the PTEN-induced kinase 1 (PINK1), Parkin 
PBRE 3 ubiquitin protein ligase (PRKN), and Parkinson’s disease protein 7 (DJ-1) genes.

Figure 1. Gene mutations and autosomal dominant and autosomal recessive PD. PD: Parkinson’s disease; LRRK2: 
leucine-rich repeat kinase 2; SNCA: synuclein alpha; PRKN: Parkin PBRE 3 ubiquitin protein ligase; PINK1: PTEN-induced 
kinase 1; DJ-1: Parkinson’s disease protein 7.



Explor Neuroprot Ther. 2025;5:1004119 | https://doi.org/10.37349/ent.2025.1004119 Page 4

Current approved therapeutic approaches for PD
Pharmacotherapy and functional neurosurgery are the two categories of treatment for PD. There are two 
forms of pharmacotherapy: dopaminergic and non-dopaminergic methods. Varieties of dopaminergic 
treatments for PD include monoamine oxidase (MAO) inhibitors, DA receptor agonists, and catecholamine-
O-methyl transferase (COMT) inhibitors [11, 14] (Table 1). Patients’ motor fluctuations can be minimized 
by employing COMT and MAO inhibitors. The mainstay of modern therapy for PD consists of L-DOPA-based 
medications. L-DOPA-based medications work by replacing the DA that has been depleted in the striatum. 
Since L-DOPA, the precursor of DA, can cross the blood-brain barrier (BBB), it is employed for PD 
treatment. Following its passage through the BBB, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase 
transforms L-DOPA into DA. Serious motor impairments could arise from peripheral, extra-central 
conversion by the enzyme. MAO-B inhibitors selectively raise DA within synaptic clefts, block catabolism of 
DA, increase DA signaling, and decrease MAO-B activity in the brain. These drugs have inverse correlations 
with striatal dopaminergic activity. Dopaminergic activity rises as the MAO-B inhibiting enzyme diminishes. 
This family of drugs can occasionally be appropriate to ease initial symptoms of PD.

Table 1. Currently approved Parkinson’s disease treatments.

Classes/Types Examples of drugs Mechanisms of action

Levodopa-based 
therapy

Levodopa + carbidopa, levodopa 
+ benserazide

Levodopa is converted to dopamine in the brain; 
carbidopa/benserazide prevents peripheral disintegration

Dopamine agonists Pramipexole, ropinirole, and 
apomorphine

They mimic dopamine by direct activation of the dopamine receptor

COMT inhibitors Opicapone, tolcapone, and 
entacapone

They block COMT, prolonging the levodopa effect

MAO-B inhibitor Rasagiline, selegiline, and 
safinamide

They inhibit MAO-B, decreasing dopamine breakdown

Amantadine Amantadine NMDA receptor antagonist; enhances dopamine release and 
decreases reuptake

Anticholinergics Benztropine and trihexyphenidyl They block ACh receptors, restoring the balance of dopamine-ACh
Surgical therapy Deep brain stimulation Electrical stimulation of the basal ganglia
COMT: catecholamine-O-methyl transferase; MAO-B: monoamine oxidase-B; NMDA: N-methyl-D-aspartate; ACh: acetylcholine.

In PD, anticholinergic medications are also given. They function via non-dopaminergic pathways. 
Acetylcholine activity is decreased by anticholinergic medications. The main purpose of these medications 
is to alleviate moderate motor symptoms, particularly muscle stiffness and tremors. Also, amantadine, a 
non-dopaminergic medication that blocks the N-methyl-D-aspartate (NMDA) receptor, has some 
therapeutic advantages [21]. It was first developed mainly to treat flu, but it has also been used to treat a 
number of PD conditions with symptoms that include resting tremors and stiffness in particular. 
Amantadine is titrated up from a lower beginning dose, just like L-DOPA [22]. This medication causes 
headaches, sweating, nightmares, and insomnia as side effects. Clinical trials and animal experiments are 
still being conducted on other non-dopaminergic drugs, such as antagonists of metabotropic glutamate 
receptors.

Two surgical options for treating PD are subthalamotomy and subthalamic nucleus deep brain 
stimulation (DBS), as well as pallidotomy and globus pallidus internus DBS [23]. Functional neurosurgery 
was utilized for DBS and lesions in severe PD [24]. While globus pallidus internus surgery directly reduces 
dyskinesia, subthalamic nucleus DBS has the benefit of reducing the dosage of dopaminergic drugs [25].

Numerous drugs or therapies have exhibited clear neuroprotection in DA-producing neurons when 
tested in vitro as well as in vivo; yet, a number of them did not pass clinical trials [26]. Novel therapies have 
been developed as a result of the previously outlined flaws of the drugs that are already available. Gene 
therapy has been utilized in clinical investigations for ameliorating a range of disorders in the human brain, 
and it might provide an option for PD treatment. It is a very innovative technique for treating PD. Gene 
therapy is highly versatile, and its numerous approaches are being tested for curing PD. A lot of research 
studies were either finished or are currently in progress.
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PD gene therapy
In order to restore normal cellular function and provide therapeutic benefits, gene therapy attempts to 
replace or repair a damaged gene by injecting genetic material into specific cells [27]. By protecting and 
repairing dopaminergic neurons, gene therapy for PD seeks to slow or even reverse the course of the 
disease. The primary treatment for the motor symptoms of PD has been L-DOPA for about six decades. 
Despite being effective, this treatment may have a number of AEs, which may only be somewhat controlled 
by changing the drug’s formulation or taking it with other drugs that increase L-DOPA’s effectiveness and 
lessen its AEs.

DBS and continuous enteral or subcutaneous dopaminergic infusions are two alternate therapies that 
have been developed for the relief of symptoms of PD, although their efficacy is limited by their non-
physiological mechanisms of action. Furthermore, when neuron loss worsens, these treatments become less 
effective since they don’t address the underlying neurodegeneration. To considerably enhance people’s 
well-being, a treatment that slows down the progression of the condition and/or gives a robust, long-lasting 
functional benefit is still required.

Adeno-associated viruses (AAVs) are small viruses with single-stranded DNA, and they are members of 
the family Parvoviridae [28]. Despite their small size, they are the most promising gene therapy vehicle due 
to their ability to generate long-term transgene expression and their clinical safety and effectiveness in 
transduction of quiescent and proliferative cells [28]. Almost all PD gene therapy clinical trials have 
employed AAV-based vectors. Effective AAV-based gene therapy requires tissue tropism, biodistribution, 
and sensitivity to neutralizing antibodies, all of which are largely determined by AAV serotypes [29]. AAV2 
has also been used in a number of clinical trials. Due to its sustained expression in neurons and relative 
safety profile, it is presently considered a viable vector for gene treatment of neurodegenerative diseases 
like PD.

Targeting SNCA is considered one of the vital approaches in reducing the progression of PD. 
Furthermore, proteins in the DA synthesis pathway have been an obvious target for gene therapy. A gene 
therapy approach that enhances DA synthesis is promising for the treatment of PD. Also, targeting of 
trophic factor genes has been reported to result in the continuous production of trophic factors and 
increased DA turnover [30].

Gene therapy holds promise for a long-lasting impact that could not only enhance existing 
dopaminergic treatment but also change the progression of PD. Gene therapy’s main goal is to restore the 
synaptic function of the nigrostriatal dopaminergic pathway, which could help prevent long-term issues 
brought on by maladaptive brain remodeling and side effects from stimulation or medication. Figure 2 
shows the different methods of gene delivery for PD.

Recent developments in PD preclinical genetic therapy
AAVs have emerged as the most reliable vectors for central nervous system (CNS) gene therapy due to their 
ability to achieve long-term transgene expression, coupled with their established clinical safety and efficacy 
in transducing both quiescent and dividing cells. However, their use is constrained by the limited size of the 
therapeutic payload they can accommodate. Studies of PD gene therapy have primarily used AAV-based 
vectors.

Multiple genetic therapy techniques are currently being explored to restore the dopaminergic 
pathways [31]. AAV-L-amino acid decarboxylase (AADC), AAV-growth-derived neurotrophic factor (GDNF), 
AAV-glutamic acid decarboxylase (GAD), and striatal viral transduction have all been examined in studies in 
monkey models of PD [32, 33]. In non-human primates (NHPs), these studies demonstrated enhanced 
motor behavior, persistent gene transfer, robust expression, and regeneration of DA signaling in PD. AAV 
vector is the most commonly used vehicle in PD due to its biocompatibility, safety, delivery capability, and 
non-pathogenic characteristics. Although there are currently no active clinical studies or traditional medical 
treatments for PD, targeting microRNAs (miRNAs) seems to be a viable therapeutic strategy. One promising 
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Figure 2. Different gene delivery methods for Parkinson’s disease. AdV-hACE2: adenovirus-transduced human angiotensin 
converting enzyme 2. Created in BioRender. Ajibare, A. (2025) https://BioRender.com/r1r1qqt.

strategy appears to be the development of PD therapies using miRNAs that target and inhibit the 
production of SNCA. It has been demonstrated that in mice with sporadically produced SNCA, AAV-induced 
SN synthesis of short hairpin RNA (shRNA) targeting SNCA reduces neurological impairments [34].

Additionally, the SN of the adult male Lewis rats receives AAV-shRNA targeting SNCA, which lowers 
SNCA protein levels by roughly three-quarters and shields the animals from the toxicity of mitochondrial 
rotenone [35], as indicated in Table 2.

The efficacy of delivering the typical glucocerebrosidase 1 (GBA1) gene via an AAV vector to various 
animal experimental models of PD or PD-GBA has been shown by multiple independent researchers, as 
shown in Table 2. These studies include various genetic studies involving models with SNCA or GBA1 gene 
mutations [39, 40]. In the majority of these in vivo investigations, the AAV-GBA1 vector was injected into 
the mouse’s CNS. In these several PD models, it has been demonstrated that increasing GCas and its 
functionality via the administration of a GBA1 vector reduces irritation and aggregated SNCA formation. 
This research indicated improvements in motor behavior, secure transmission of genes, robust expression, 
and recovery of DA communication [43]. There aren’t any human trials for disease-modifying compounds 
that target DJ-1 at the moment. Nonetheless, some intriguing preclinical research could result in future 
clinical uses.

Several investigations using rat PD models have demonstrated the effectiveness of recombinant wild-
type DJ-1 in preserving dopaminergic neurons [44, 45]. It was observed that lower 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) toxicity was related to better behavior and less dopaminergic 
dysfunction as revealed in a hemi-Parkinsonian mouse model [46]. Finding medications that prevent the 
excessive oxidation of a crucial cysteine (Cys) that is still present at position 106 of the DJ-1 protein 
(Cys106) is a second crucial tactic. There are presently no known investigations focusing on PRKN or PINK1 
mutations or the associated metabolic pathways. Nonetheless, some promising preclinical research could 
result in future clinical uses. As was previously indicated, two essential hallmarks of PRKN, alongside 
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Table 2. Present developments in Parkinson’s disease preclinical gene therapy.

Animal models Targeted 
genes and 
vectors

Administration process Safety/Toxicity Outcome measures Follow-up and 
monitoring

Reference(s)

Adult male 
Sprague Dawley 
rats

SNCA, AAV-
shRNA

Bilateral injection into the SN Not safe: loss of striatal projecting 
dopamine neurons was evident in the 
vector injection site

Reduced behavioral deficiencies in rats and 
silenced ectopically expressed SNCA

Followed up 
on [35]

[36]

Adult male Lewis 
rats

SNCA, AAV-
shRNA

Unilateral injection into the SN No neurodegeneration or cell death Protected the SN against the neurotoxic 
mitochondrial rotenone and lowered SNCA 
protein levels by about 35%

[35]

Rhesus monkeys GDNF, AAV2-
GDNF

Bilateral injection of AAV2-GDNF 
in the putamen after MPTP-
lesioning

There was no adverse effect Bilaterally increased striatal metabolism, 
indicating increased dopaminergic activity in 
the nigrostriatal pathway

[37]

MPTP-lesioned 
macaque monkey

Aromatic 
AADC, AAV2-
hAADC

Unilateral injection into the 
striatum

Safe, minimal, or no side effects Positron emission tomography-verified 
increase in AADC activity after 2 years. 
Consistently higher L-DOPA sensitivity in 
the treatment group

Followed up 
for 8 years

[38, 39]

Mice GBA1, AAV-
GFP-micro 
RNA-GBA

Intracerebroventricular 
administration

Safe Slower progression of neurological 
complications and an increased lifespan

[40]

Mice GBA1, AAV-
PhP.B-GBA1

Tail vein injection It did not lead to evident dysfunction in 
the integrity and permeability of the BBB

Decreased SNCA pathology and attenuated 
behavioral deficits

[41]

Macaque monkeys 
(n = 4)

GDNF, AAV5-
GDNF

Unilateral administration into the 
putamen

No adverse effect At higher dosages, striatal and SN GDNF 
expression levels are greater

[32]

Unilaterally MPTP-
treated macaques 
(n = 15)

GDNF, AAV2-
GDNF

Bilateral delivery to the putamen 
following a lesion

The persistent high level of GDNF in the 
basal ganglia after AAV2-GDNF delivery 
to the putamen is well tolerated

Motor behavior significantly improved at 
24 months. Impact was proportionate to the 
lesion’s severity. A threefold rise in striatal 
dopamine

[42]

SNCA: synuclein alpha; AAV: adeno-associated virus; shRNA: short hairpin RNA; GDNF: growth-derived neurotrophic factor; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; AADC: L-
amino acid decarboxylase; L-DOPA: levodopa; hAADC: human AADC; GBA1: glucocerebrosidase 1; GFP: green fluorescent protein; SN: substantia nigra; BBB: blood-brain barrier.

PINK1-related PD, are mitophagy and mitochondrial dysfunction. Addressing the PINK1/Parkin route to restore normal mitophagy thus seems to be the most 
promising treatment approach [47]. In cell models, it has been shown that the matrix protein nipsnap homolog 1 (NIPSNAP1) affects this mitophagy pathway, 
indicating that it may restore PINK1-Parkin-dependent mitophagy in PINK1 phenotypes [48]. Reactive oxygen species (ROS) were shown to be elevated, and brain 
mitophagy decreased in zebrafish deficient in NIPSNAP1 [48].

Current or ongoing clinical trials pertaining to gene therapy for PD
Gene therapy has shown promising results in the preclinical models of PD in numerous studies, resulting in several clinical trials. Results from the clinical trials 
may at first seem somewhat disappointing, but they have shown that safe delivery of viral vectors into the brain is feasible.
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Table 3. Recent results of clinical studies on PD gene therapy.

Eligibility 
criteria

Targeted 
genes and 
vector

Administration process Safety/Toxicity/Efficacy Outcome measures Follow-up 
and 
monitoring

Clinical trials identifier and 
reference(s)

PD subjects AADC, 
AAV2-
hAADC

hAADC-expressing 
adeno-associated 
serotype 2 viral vectors 
were delivered by 
bilateral intra-putaminal 
infusions

Safe and tolerable, very few persons reported 
SAEs. Phase I studies

There was a significant 
improvement in putaminal uptake 
and AADC activity, and signs of 
dopamine signaling restoration. 
There is currently a clinical hold 
on the phase 2 VY-AADC02 
project

NCT03065192/NCT03562494 
[49]

PD patients 
with mild to 
moderate, and 
moderate to 
severe

AADC, LV-
GCH1-TH-
AADC

Bilateral administration 
into the putamen

Safe and tolerable, but there were 3 SAEs: 
dyskinesia, severe psychosis, and an 
unidentified nervous system disorder. Every 
dosing cohort has a comparable safety profile. 
After four and six years, two deaths were 
reported; these were deemed to be unconnected 
to the treatment

In all patients, an improvement in 
motor score was observed. 
Specifically, a remarkable 
improvement in mean UPDRS 
part III motor scores off 
medication was recorded in all 
patients at 6 months compared 
with baseline

6-month 
follow-up by 
Sio Gene 
Therapies

NCT00627588/NCT01856439

Early PD 
patients

Small 
molecular 
GBA gene

Oral administration of 
GZ/SAR402671

Safe and tolerable The phase I trial was ended since 
its primary and secondary 
objectives were not achieved

NCT02906020

Idiopathic PD 
patients

CERE-120 
(neurturin 
gene), 
AAV2-
neurturin

Administered bilaterally 
into the substantia nigra 
and putamen

It was well tolerated and safe, but also caused 
AEs

It failed to improve the patients’ 
conditions

NCT00985517/NCT00400634

Advanced-
stage PD 
patients

GAD genes, 
AAV-GAD

Surgical infusion into the 
subthalamic nucleus

It was safe and well-tolerated UPDRS showed significant 
improvements in motor function

NCT00195143 [50–52]

AADC: L-amino acid decarboxylase; AAV2-hAADC: adeno-associated virus 2-human AADC; PD: Parkinson’s disease; SAEs: serious adverse effects; LV-GCH1-TH-AADC: lentiviral-GTP 
cyclohydrolase 1-tyrosine hydroxylase-AADC; UPDRS: Unified Parkinson’s Disease Rating Scale; GBA: glucocerebrosidase; GAD: glutamic acid decarboxylase.

AAV2-hAADC (human AADC) and lentiviral-GTP cyclohydrolase 1-tyrosine hydroxylase (LV-GCH1-TH)-AADC are important clinical trials that are presently 
being conducted to evaluate safety, dose escalation, and efficacy in PD patients.

As indicated in Table 3, there were several enhancements in the off-state Unified Parkinson’s Disease Rating Scale (UPDRS)-III using gene therapy strategies 
that focused on DA restoration (AAV2-AADC and LV-GCH1-TH-AADC) or basal ganglia network neuromodulation (AAV2-GAD). With the gene therapy approach 
based on increasing the synthesis of neurotrophic factors (AAV2-GDNF), a varying degree of off-state UPDRS-III score reduction or stability was also noted.

In the AAV2-AADC and AAV2-GDNF studies, an increase in AADC activity or DA storage terminal capacity was validated by the use of neuroimaging 
biomarkers, primarily fecal microbiota transplantation (FMT) and 18F-DOPA positron emission tomography (PET) [53–56]. Following treatment, metabolic 
alterations by fludeoxyglucose-18 (FDG) PET demonstrated a functional reconfiguration of the pathways connecting the SN with cortical motor areas with AAV2-
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GAD [49]. Given its relative improvement, neuroimaging may prove to be a crucial goal for gene therapy 
research; nevertheless, there has been inconsistency and challenge in the correlation between clinical 
change and neuroimaging.

A plethora of clinical trials have investigated the preliminary efficacy and safety of gene therapy for PD 
using viral vectors [37, 49, 53–57]. Four of these investigations [37, 53, 54, 56] have reported their 
outcomes from similar patient cohorts. In this long-term observational extension experiment, individuals 
who have previously undergone AAV2-hAADC therapy are asked to take part (NCT03733496). Also, one 
completed research study and one ongoing investigation have used ProSavin, which expresses GCH1, TH, 
and AADC (LV-GCH1-TH-AADC) [58, 59]. As indicated in Table 4, there is a significant unmet need to find 
disease-modifying therapeutics for PD, and some active clinical trials are also looking into alternative viral 
vectors (AAV2) and recombinant genes. A number of PD gene therapy studies have demonstrated relative 
safety in a variety of clinical trials intended to improve the production of trophic factors (NCT04167540) or 
restore DA synthesis [37, 49, 53–57].

Table 4. Ongoing clinical trials on gene therapy for PD.

Eligibility criteria Targeted 
genes and 
vectors

Administration process Safety/Toxicity/Efficacy Outcome 
measures

Clinical trials 
identifier and 
reference

Phase 1/2a clinical 
trial of PR001 
(LY3884961) in 
patients with PD 
with at least one 
GBA1 mutation

Small 
molecular 
GBA gene, 
AAV9-
GBA1

Intra-cisterna infusion 
followed by 
methylprednisolone, 
sirolimus optional

Modified owing to SAEs in 
the first enrolled participant 
to receive active treatment

It is anticipated 
to be finished 
by 2029, but no 
data is 
provided

NCT04127578 
[60]

Mild to moderate, 
and moderate to 
severe PD patients

GDNF, 
AAV2-
GDNF

Intra-putaminal injection A robust safety profile Restoration of 
dopamine 
function. To be 
completed 
June 2026

NCT04167540

PD: Parkinson’s disease; GBA: glucocerebrosidase; AAV2-GDNF: adeno-associated virus 2-growth-derived neurotrophic factor; 
SAEs: serious adverse effects.

Unfortunately, some of the clinical trials on gene therapy for PD have been discontinued due to the 
inability to achieve the set objectives and the inability to produce the desired patient outcomes. The efficacy 
of gene therapy for PD can be affected by various factors, with the route and mode of administration being 
one of the most important. Intraparenchymal administration has been used in many PD trials to deliver the 
gene vector directly to the target area of the brain [37, 49, 53–57]. This approach significantly lowers the 
vector dose and the probability of off-target diffusion into peripheral tissues, both of which lower the 
potential immunogenicity [61]. Intracerebroventricular, intrathecal, subpial, and intracisternal infusions 
can also be employed when a broader delivery inside the CNS is required. These methods are limited by a 
more heterogeneous distribution, higher dose requirements, and lower target tissue levels of vector 
transduction.

Few studies look at the long-term safety profile, and no firm conclusions can be made regarding the 
long-term therapeutic efficacy, even if the follow-up period in PD gene therapy is sufficient to show the 
short-term safety profile for all examined medicines. Given that neurotrophic factors are anticipated to 
exhibit their neuroprotective effect over an extended period of time, this is extremely important.

Investigating the “disease-modifying” effect of gene therapy in PD was hampered by the preferred 
inclusion of advanced PD patients and the lack of cerebrospinal fluid biomarkers to track the course of PD. 
Current research is expected to yield more information by including a population of early PD patients, even 
though the absence of broadly accepted biomarkers of disease progression remains a barrier to evaluating 
the long-term expected impact of gene therapy in PD. Lastly, the ability to do a meta-analysis and a direct 
comparison between the various therapy options is limited by the variety of study designs.
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The most important developments in gene therapy are expected to come from advancements in 
molecular techniques for modifying gene expression and target specificity, as well as growing interest in a 
precision-medicine approach. These developments will likely be crucial for future clinical trials.

Advances in AAV and engineered capsids for CNS delivery

By delivering different transgenes, viral vectors like AAV have become a powerful tool for neuroscience 
since they allow for neural tracing and functional probing. A transgene, regulatory elements like enhancers 
or promoters that limit expression to particular cells or tissue types, and a capsid, an outer protein shell 
that encloses the genetic material and controls the vector’s tropism, or capacity to infect various cell types, 
make up viral vectors [62]. In the end, BBB-crossing AAVs’ enhanced effectiveness might be paired with 
other technologies to produce localized expression. However, a significant obstacle to effective gene 
delivery is getting beyond the BBB, which serves as a gatekeeper by keeping toxins and pathogens in the 
systemic circulation from accessing the CNS.

There are currently 13 different wild-type, or naturally occurring, AAV serotypes (AAV1–13) that have 
been found in humans and NHPs [63]. The capsid structure and, consequently, tropism of each of these 
serotypes vary [64]. AAV5 and AAV9 are the serotypes most frequently found in NHPs. Because AAV9 can 
pass the BBB, it has been extensively researched and used in a number of CNS-targeted gene treatments 
[65]. An AAV’s capsid is its main point of contact with host cell surface receptors, allowing the virus to be 
internalized and eventually transport its genetic material to the cell nucleus [66].

Since multiple permissive locations for logical and random amino acid changes and insertions have 
been identified, one method of changing an AAV’s tropism and efficacy is by capsid modification or 
engineering [66]. We can find new AAV serotypes with better BBB crossing characteristics and improve and 
hone AAV tropisms through capsid engineering.

Capsid engineering can be accomplished by controlled evolution or logical design. In order to 
systematically forecast and improve virus function, rational design makes use of the information of current 
AAV serotypes [67]. Conversely, directed evolution is a high-throughput method that creates variations 
with the desired characteristics, like tissue and cell-type tropism and/or antibody neutralization, through a 
selection process. Researchers have found novel capsid variations with a greater transduction effectiveness 
at lower titers or concentrations by repeatedly generating a large number of non-naturally occurring viral 
serotypes and choosing those with the necessary tropism for the subsequent evaluation round [68, 69]. The 
development of the AAV capsid has been significantly impacted by technological advancements. Viral 
vector-based gene therapy has upped the bar for what can be accomplished, not least in the CNS.

Genome editing and engineered AAVs are ideal for new clinical treatments. We anticipate that several 
of the capsids shown here will be moving to the clinic for a variety of diseases, including PD. Although there 
is still a long way to go, gene therapy has a bright future ahead of it, and many other capsids with much 
more promise will emerge.

Antisense oligonucleotides targeting SNCA

Since the toxic species of SNCA have not yet been identified, the therapeutic benefit of these approaches 
may be limited. Currently, a number of therapeutic strategies are being researched, such as antibodies and 
small-molecule approaches that target various forms and conformational states of SNCA [70]. Furthermore, 
tiny compounds and antibodies frequently exclusively target the protein’s extracellular pools, which may 
make these strategies less effective. The limitations of these methods may be addressed by antisense 
oligonucleotide (ASO) therapy, which targets SNCA RNA intracellularly to block SNCA formation and reduce 
SNCA protein in all its forms [71].

ASO-mediated suppression of SNCA in a primary cortical culture preformed fibril system decreased 
SNCA mRNA and reversed phospho-Ser129 (pSer129+) pathology and cellular dysfunction [72]. Cole et al. 
[73] show that ASO-mediated suppression of SNCA prevented and reversed the progression of alpha-
mediated pathology in rodent transmission models of PD, indicating the potential of ASOs as a therapy for 
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PD patients. Because ASOs are sequence-specific and can reach CNS targets by i.t. delivery, ASOs represent a 
therapeutic approach for directly lowering SNCA production. The ASO platform has become a therapeutic 
strategy for the treatment of CNS diseases, in part because of advancements in ASO design, which have 
improved stability, affinity, potency, and tolerability [71, 74].

In addition to having a long-lasting effect [75], ASOs have also been demonstrated to disperse 
extensively throughout the brain and spinal cord in the NHP [76, 77]. The ongoing studies for an LRRK2-
targeted ASO for PD (NCT03976349) and an SNCA-targeted ASO for synucleinopathy (NCT04165486) show 
the approach’s viability.

VY-AADC PD gene therapy
NBIb-1817, also known as VY-AADC, is an investigational recombinant AAV serotype 2 vector encoding the 
gene for hAADC, which is intended to help brain cells produce the AADC enzyme that converts L-DOPA to 
DA. In early 2019, Voyager Therapeutics and Neurocrine Biosciences entered into a strategic collaboration 
in an effort to combine Neurocrine Biosciences’ expertise in neuroscience, drug development, and 
commercialization with the creative gene therapy programs targeting severe neurological diseases 
established by Voyager [78]. Targeted delivery aided by magnetic resonance imaging (MRI) is used in 
conjunction with intraoperative monitoring.

The Food and Drug Administration (FDA) informed Neurocrine in December 2020 that it was putting a 
clinical hold on the phase 2 clinical trial of NBIb-1817, called RESTORE-1 (NCT03562494), after the data 
safety and monitoring board (DSMB) requested that dosing be stopped until it received information about 
MRI abnormalities seen in trial participants. The agency gave Neurocrine information so that it could 
respond fully to the FDA regarding the hold, including an assessment of any potential link between the 
agent and the negative findings, a plan to mitigate and manage those findings, and supporting 
documentation to demonstrate that there is a favorable benefit/risk profile. Before this, the medication 
seemed to be headed toward success in patients with advanced PD. According to 3-year data released in 
September 2020 from two cohorts, VY-AADC01 treatment led to stable or better motor function, quality of 
life, and a significant reduction in the demand for antiparkinsonian drugs. When compared to a second 
phase 1 open-label evaluation, the gene therapy and related administration method were generally well-
tolerated within the time frame and seemed to support further clinical development in this population [79]. 
Three cohorts of fifteen patients received bilateral intraoperative MRI-guided putaminal infusions of the 
drug. A dose of ≤ 7.5 × 1011 vg was given to Cohort 1, ≤ 1.5 × 1012 vg to Cohort 2, and ≤ 4.7 × 1012 vg to 
Cohort 3. There were no documented severe AEs associated with VY-AADC01. One person experienced 
atrial fibrillation and pulmonary embolism, while another experienced two small intestinal obstructions six 
days apart, 29 months after the treatment. These four nondrug-related significant adverse events were all 
eventually resolved. Headache (Cohort 1: n = 5; Cohort 2: n = 3; Cohort 3: n = 3) and hypoesthesia (Cohort 
1: n = 3; Cohort 2: n = 1; Cohort 3: n = 3) were the most frequently reported adverse events.

Genetic mutations in Parkinson’s and the CRISPR solution

Through the use of clustered regularly interspaced short palindromic repeats (CRISPR) screening, genes or 
genetic sequences that control particular morphological or physiological impacts can be found. 
Understanding the genes linked to PD processes and focusing future therapy on them depends on CRISPR 
editing.

It has long been known by scientists that certain neural cells are more vulnerable to 
neurodegeneration and aging-related damage. PD and other neurological disorders, including Alzheimer’s, 
have been linked to this phenomenon, which is sometimes referred to as selective neuronal vulnerability. 
Conventionally, gene expression investigations (transcriptome and proteome) have demonstrated the 
distinctions between vulnerable versus resilient neurons. To target pertinent genes therapeutically and 
comprehend the molecular pathways at a functional level, genetic editing is necessary.
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Gene function in neural cell models may be efficiently studied using CRISPR. The Hoffman lab at the 
University of Pittsburgh in Georgia provides a relevant example of one such study, which created 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX1, NOX2, and NOX4) knockout cell 
models for PD by utilizing Synthego’s genome editing capabilities [80]. The study showed how the NOX2 
enzyme contributes to oxidative stress-induced degeneration, which includes LRRK2 activation, SNCA 
buildup, and impaired protein import in mitochondria. Additionally, researchers created a rhesus macaque 
model that replicated the human Parkinson’s phenotype by using CRISPR-Cas9-mediated PINK1 deletion. 
Interestingly, scientists found that the SN region of the affected animals’ midbrain had lost neurons, which 
is a common finding in Parkinson’s patients. Different levels of PINK1 deletion were made possible by 
CRISPR-Cas9 mosaicism, which helped scientists comprehend the intricacy of the related phenotypes [81].

Current challenges and limitations in gene therapy for PD

There are still certain problems despite the promising preclinical and early clinical studies for gene therapy 
in PD. Accurately targeting and delivering genetic treatments to the impacted regions, such as the SN and 
striatum, is one of the most pressing issues, as when compared to backward transfer, anterograde delivery 
of GDNF to the SN is less successful than surgical repair [82]. Neuronal recovery has also been 
demonstrated by NRTN [83] and GDNF [84] following striatal injection of a rat 6-hydroxydopamine (6-
OHDA) model of PD. Furthermore, the BBB and the diverse nature of PD pathophysiology present 
significant challenges to effective gene delivery [85]. AAV vectors and gene delivery techniques need to be 
further improved in order to increase their specificity and efficacy. Also, there has been great development 
in gene editing techniques like CRISPR-Cas9, and an increasing understanding of genes responsible for PD 
is the key driver of the development of more effective, personalized, and precise therapies. There have been 
reports of potential efficacy and safety in early clinical trials. Despite encouraging initial findings, it is 
important to carefully assess the long-term implications of gene therapy on the progression of PD and off-
target effects. Other significant safety issues that need to be addressed are the immunological response to 
AAV vectors and the possibility of insertional mutagenesis. Despite these obstacles, gene therapy for PD 
treatment is advancing quickly thanks to finished and ongoing research.

Conclusions
Patients with PD can still benefit from gene therapy, which has the potential to significantly improve their 
quality of life. Despite the lack of approval, encouraging outcomes from completed and continuing clinical 
trials guide the development of gene therapy. For PD gene therapy trials to be successful, patient selection 
must take into account the mechanism of action of a specific vector design as well as its broad distribution 
in the targeted brain region. Longer observation periods and early participation are anticipated to be 
necessary to assess the growth factor-based gene therapy capacity to alter the course of the disease. 
Moreover, there is a need for combination strategies like the applications of both gene therapy and 
neuroprotective drugs, the development of efficient CNS-delivery vectors, better patient stratification 
(prodromal PD, genetic subtypes), and extensive testing to achieve adequate safety for the treatment of PD.
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