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Abstract
Background: High-intensity training (HIT) increases walking speed for individuals with chronic stroke. 
Several recent studies have examined its application for those in the subacute phase following a stroke. This 
systematic review examines the application of HIT in the subacute phase following a stroke.
Methods: A systematic search for studies that compared HIT (defined as 60–84% heart rate reserve or 
77–93% heart rate maximum) to lower-intensity training, conventional physical therapy, placebo, or no 
intervention in adults 0–6 months post stroke. Randomized or quasi-randomized controlled trials, cohort 
studies, and case-controlled studies published in peer-reviewed journals in English were included. The 
primary outcome of interest was walking speed; the secondary outcome was walking endurance. Two 
independent evaluators performed literature selection, data extraction, and assessed study quality using 
the revised Cochrane risk-of-bias tool. Reporting followed PRISMA guidelines.
Results: Of 1,642 studies initially retrieved, 10 studies with a total of 677 participants were included. All 
experimental groups showed an average positive change in self-selected walking speed (range: 0.20–0.56 
m/s). HIT resulted in statistically significant improvements in walking speed versus comparison 
interventions in 4 studies. Eight studies that measured walking endurance found an average increase of 60 
to 197 m following HIT.
Discussion: HIT demonstrated superior outcomes in self-selected walking speed and walking endurance 
for individuals in the subacute phase post stroke, both immediately following intervention and at follow-up. 
These findings align with the clinical practice guideline (CPG) for chronic stroke patients. Further 
randomized clinical trials are needed to strengthen the evidence.
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Introduction
Impairments caused by stroke are a severe public health problem with broad social and economic 
consequences worldwide [1]. Due largely to impaired motor control [2] at one-month poststroke, only 40% 
of people walk with minimal or no assistance [3]. Even 12 weeks after a stroke, 36% of survivors continue 
to experience dependence on an assistive device or another person for walking [4]. Therefore, practical and 
effective methods for recovery of walking stand to improve stroke survivors’ quality of life and have 
economic implications for communities and society.

For ambulatory people in the chronic phase poststroke, a clinical practice guideline (CPG) provides 
strong evidence that moderate to high-intensity training (HIT) achieved by increasing walking speed or the 
load of work to reach 60–80% of heart rate reserve (HRR) or 70–85% of heart rate maximum (HRmax), or 
virtual reality walking training at similar intensities, improves walking speed and walking endurance [5]. In 
addition to walking speed and distance, high-intensity walking training [6–13] and high-intensity cycle 
ergometry [14–16] improve other walking parameters in the chronic poststroke population.

Optimizing rehabilitation during the subacute phase, defined as 7 days–6 months [17] poststroke, is 
desirable due to the unique milieu of enhanced brain plasticity [17]. During this sensitive neuroplastic 
period, spontaneous and intervention-mediated functional recovery is accelerated [18]. Some suggest that 
current practice in neurorehabilitation does not adequately capitalize on this plastic period [18]. 
Leveraging early poststroke plasticity, a few researchers have studied high-intensity interventions in the 
acute and subacute phases poststroke. However, no systematic review has synthesized the outcomes of HIT 
methods in which walking was the primary intervention method for people in the subacute phase 
poststroke.

This review synthesizes evidence for HIT on the outcomes of walking speed and endurance for people 
during the subacute phase poststroke. Considering the relevance of critical periods for brain plasticity and 
their associated impact on neuromotor recovery, it is necessary to analyze the scope of this intervention in 
the early phase in those patients with control perform HIT. Randomized or quasi-randomized controlled 
trials or cohort studies that compared HIT to lower intensity training, conventional physical therapy, 
placebo, or no intervention in the subacute phase poststroke were included.

We used best practices for the completion of this systematic review [19], including providing a bias-
reduced summary of its application to the rehabilitation of walking function for those in the subacute phase 
of stroke. Additional objectives were to ensure the safety of HIT for this population, advance knowledge 
translation of the method, and contribute to future practice guidelines and healthcare policy 
recommendations for this population.

Materials and methods
A systematic search for studies that compared HIT to lower-intensity training, conventional physical 
therapy, placebo, or no intervention in adults 0–6 months post stroke was completed. This systematic 
review was registered a priori, in PROSPERO (ID: CRD42022315900) and was conducted following PRISMA 
guidelines [20]. The literature search was performed in Web of Science (WOS), Scopus, and PubMed Central 
databases between the dates of January 1st, 2010, to March 24th, 2022. Search terms included the following 
medical subject headings: 1) Population: stroke, acute stroke, subacute stroke, early stroke, very early 
stroke, cerebrovascular. 2) Intervention: locomotor training, locomotor gait training, HIT, high-intensity 
interval training (HIIT), high-intensity stepping training, treadmill training, walk training. 3) Comparison: 
conventional physical therapy, low-intensity or moderate-intensity training. 4) Outcome: gait speed, 
walking speed. Example code: (stroke OR acute stroke OR subacute stroke OR early stroke OR very early 
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stroke OR cerebrovascular) AND (locomotor training OR locomotor gait training OR HIT OR HIIT OR high-
intensity stepping training OR treadmill training OR walk training) AND (gait speed OR walking speed). 
EndNote software version 21 was used for bibliographic data management. This review relies on existing 
published research, no new data were generated or analyzed. Data supporting the findings are available in 
the reviewed articles and in some cases, the supplementary materials.

Inclusion criteria

The following inclusion criteria guided study selection: 1) Randomized or quasi-randomized controlled 
trials, cohort studies, or case-controlled studies published in peer-reviewed journals in English between 
January 1st, 2010 to March 24th, 2022; 2) study participants were 0–6 months poststroke (acute and 
subacute phases) with reduced walking function; 3) high-intensity gait training (defined as 60–84% of the 
reserve HR or 77–93% of the maximum HR) [21] was compared with low-intensity training, conventional 
physical therapy, placebo or no intervention; 4) outcomes included gait speed in meters per second (m/s).

Data extraction

One author screened all titles and abstracts to identify studies that met the inclusion criteria and deleted 
duplicates. A second author verified this process using the same procedure. One author extracted data 
elements from the studies, and a second author verified the information. Extracted data included: study 
design, sample demographics, intervention type and description, self-selected and fastest-safe gait speed 
(m/s), and 6-minute walk test results, in meters, as a measure of walking endurance.

Risk of bias assessment

Two reviewers assessed the methodological quality of each study across all five domains of the revised 
Cochrane risk-of-bias tool (RoB2) [22]. Disagreements about the ratings were discussed until a consensus 
was reached for each rating.

Results
The study selection process is shown in Figure 1. The initial search yielded 1,642 articles, 674 from 
PubMed, 69 from Scopus, and 899 from the Web of Science (WOS). After removing duplicates, screening 
records titles and abstracts, and reviewing reference lists, 117 were assessed for eligibility. After a full-text 
review, 107 studies failed to meet the inclusion criteria. Finally, ten studies were included for qualitative 
synthesis. Five studies were randomized-controlled trials, three were pilot studies, one was a retrospective 
cohort, and one was a quasi-experimental/historical cohort.

Characteristics of studies and participants

Studies included in this review were conducted in Australia (n = 1), the Netherlands (n = 1), Norway (n = 1), 
the United States (n = 5), and Canada (n = 2). Across the studies, there were 677 participants, 64% of whom 
were male. Most participants (508) were in an experimental group, they ranged from 12 to 257 
participants. The average age of the participants was 60 and 61 years in the experimental and control 
groups, respectively. Across studies, the average age of participants ranged from 52 [23] to 74 years [24]. 
The mean number of days between stroke and study intervention was 53 ± 26 days. Notably, in two studies 
[24, 25], the mean number of days before intervention was much lower, 13 days for the experimental 
group. All the studies were conducted in outpatient settings. All participants had a walking impairment, and 
only a small number of participants could not walk without assistance. Table 1 summarizes participant 
characteristics.

Risk-of-bias

Four studies were classified as good quality and low risk [26–29]. Additional results of the risk-of-bias 
assessment are shown in Figure 2.
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Figure 1. Study selection process for review. WOS: Web of Science; HR: heart rate; HRR: heart rate reserve

Adverse events

The most common adverse events reported were falls (between 6 and 8 falls were reported in 3 different 
studies) [23, 24, 30]. Cardiovascular function-related events were reported in 3 different studies [23, 28, 
29]. Other minor adverse events that were reported included skin breakdown, seizures, and pain. The 
authors described adverse events to be unrelated to the intervention and found they occurred at similar 
rates in the control and experimental groups. Thus, HIT did not appear to increase the likelihood of adverse 
events when compared to conventional or lower-intensity therapies.

Intervention characteristics

Across studies, the average HIT intervention duration was 6 weeks, the range was 4–12 weeks. The average 
number of sessions was 28, the range was 12–40. The average session duration was 45 minutes, the range 
was 30–60 minutes. In one study, one subgroup, determining optimal poststroke exercise 2 (DOSE2), 
trained for 120 minutes per session [29]. Some authors reported the number of steps per therapy session; 
these details and other characteristics of the interventions are found in Table 2.
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Table 1. Participants characteristics

Study Country n Group Participants Sex 
(male/female)

Age (SD)—years Mean (SD)—
days 
poststroke at 
start of 
intervention

C 21 17/4 56 (9) 24 (8)Outermans 
et al. 2010 
[26]

Netherlands 43
E 22 19/3 57 (9) 23 (8)

C 26 14/12 59 (13) 23 (4)MacKay-
Lyons et al. 
2013 [27]

Canada 50
E 24 15/9 62 (15) 23 (6)

Holleran et 
al. 2014 [23]

USA 12 E 12 8/4 52 (13) 96 (54) *

C 12 8/4 61 (10) 89 (40)Leddy et al. 
2016 [30]

USA 24
E 12 9/3 55 (12) 108 (57)
C 17 12/5 60 (9.2) 89 (44)Hornby et al. 

2016 [28]
USA 32

E 15 12/3 57 (12) 114 (56)
C 13 9/4 61 (9.3) 88 (41)Mahtani et 

al. 2017 [41]
USA 36

E 23 16/7 54 (12) 106 (57)
C 56 29/27 74 (14) 15 (11)Moore et al. 

2020 [24]
Norway 110

E 54 35/19 73 (10) 13 (10)
Henderson 
et al. 2022 
[25]

USA 257 E 257 158/99 62 (9.5) ** 13 (9) **

C 24 14/10 58 (13) 26 (11)Klassen et 
al. 2020 [29]

Canada 73
E 49 30/19 57 (11) 28 (10)

Brauer et al. 
2021 [40]

Australia 40 E 40 27/13 68 (13) 27 (24)

C 169Total 677
E 508

432/245 mean = 60 (11) mean = 53 (26)

C: control group; E: experimental group; SD: standard deviation; (*): converted from months; (**): converted from a range

Effect on walking speed

Table 3 presents outcomes on the effect of HIT on gait speed from all 10 studies reviewed here. Seven 
studies had a comparison group, and 4 compared outcomes between HIT and the comparison group 
statistically. Six studies included outcomes from one or two follow-up timepoints between 2 and 12 months 
post-intervention. Also shown are the outcomes of HIT on fastest safe gait speed, which was reported by 3 
of the 10 studies reviewed. The minimal clinically important difference (MCID) in self-selected gait speed 
for people with pathology, 0.10 to 0.20 m/s, is provided for reference [31].

Effect on walking endurance

Table 3 also presents outcomes of the 6-minute walk test from the 8 studies in which it was reported. Of the 
8 studies, 5 had a comparison group, and 4 compared outcomes between HIT and the comparison group 
statistically. Five studies included outcomes from one or two follow-up timepoints between 2 and 
12 months post-intervention. The clinically significant threshold for change in walking endurance, 50 
meters [32], is provided for reference.

Discussion
Across ten studies, the effects of HIT on self-selected gait speed were consistently positive, with the mean 
difference after treatment ranging from 0.2 to 0.56 m/s. There were seven comparisons of HIT to a control 
condition; in each comparison, HIT resulted in superior self-selected walking speed. Six studies followed up 
with participants between 2 and 12 months. In 5 of the 6 studies, self-selected walking speed was 
maintained or had increased at follow-up. This is the first systematic review to synthesize the findings of 
HIT where the primary method was walking training for people in the subacute phase poststroke.
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Figure 2. Risk-of-bias assessment results. Outermans et al. 2010 [26]; MacKay-Lyons et al. 2013 [27]; Holleran et al. 2014 
[23]; Leddy et al. 2016 [30]; Hornby et al. 2016 [28]; Mahtani et al. 2017 [41]; Moore et al. 2020 [24]; Henderson et al. 2022 [25]; 
Klassen et al. 2020 [29]; Brauer et al. 2021 [40]

Study participants were, on average, 60 years old, and participated in the intervention a mean of 
53 days after their event. The HIT intervention was typically about 28 sessions of 45 minutes in 6 weeks. 
Regarding safety, no studies concluded that HIT was unsafe for participants. Authors described adverse 
events as unrelated to the intervention and found they occurred at similar rates in the control and 
experimental groups. Thus, HIT did not appear to increase the likelihood of adverse events when compared 
to conventional or lower-intensity therapies. It is important to consider that selection bias and participant 
heterogeneity, if present in the studies reviewed, would contribute to an overestimation of the safety of the 
intervention.

The results of this review mirror evidence for the use of HIT in the chronic stroke population. A review 
published in 2019, HIIT produced significant improvements in gait speed and walking endurance compared 
to baseline, and the effect of HIIT was superior to moderate intensity exercise for improvements in gait 
speed, similar for walking endurance [33]. In a systematic review and meta-analysis, also published in 2019 
[34], high-intensity exercise resulted in meaningful differences in walking endurance and comfortable gait 
speed. Because only 14% of the participants in this review were in the subacute phase, the conclusions may 
not generalize to this population. In 2020, a locomotor CPG presented strong evidence that moderate to 
high-intensity walking training or virtual reality walking training improves gait speed and walking 
endurance in the chronic phase poststroke. The locomotor CPG recommended further research with this 
method for the subacute population [5]. After the locomotor CPG was published, another study [35] also 
demonstrated a magnitude of improvement with HIIT of 0.15 m/s in gait speed in a chronic stroke 
population.

The fastest safe gait speed is a less common outcome in studies of HIT; only three of ten studies 
reported it. All three reported a positive mean difference in fastest safe gait speed immediately following 
HIT, the range was 0.36–0.53 m/s.
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Table 2. Intervention characteristics, comparison condition, and outcomes reported

Intervention characteristicsStudy

HR/HRR Times/week Sessions Time 
(minutes)

Program

Comparison Outcomes

Outermans 
et al. 2010 
[26]

70–80% 
HRR

3 12 45 10 stations (2.5 min) Low-intensity 10MWT/6MWT

Mackay-
Lyons et al. 
2013 [27]

60–75% 
HR

3–5 48 60 12 weeks. Assisted by 1–2 
therapists. 25–30 min on 
treadmill

Conventional 
therapy

10MWT/6MWT

Holleran et 
al. 2014 [23]

70% 
HRR

5 36 60 10 weeks. Assisted by 1–5 
therapists. Treadmill, 
overground, and upstairs 
training with different 
challenges on task 
walking. Steps per 
session: 2,887 ± 780

None Gait speed 
(GaitMat II)/6MWT

Leddy et al. 
2016 [30]

70–80% 
HRR 
(73% 
peak)

NR 34–40 40–60 10 weeks. Treadmill, 
overground, and upstairs 
training with different 
challenges on task 
walking. Steps per 
session: 2,641 ± 727

Conventional 
therapy

Gait speed 
(Walking plataform- 
Equitest, Inc., 
Chalfont, 
PA)/6MWT

Hornby et 
al. 2016 [28]

70–80% 
HRR 
(74% 
peak)

4–5 34 40–60 10 weeks. Treadmill, 
overground, and upstairs 
training with different 
challenges on task 
walking, assisted by 1–5 
therapists. Steps per 
session: 2,358 ± 860

Conventional 
therapy

Gait speed 
(GaitMat)/6MWT

Mahtani et 
al. 2017 [41]

70–80% 
HRR

4–5 40 40–60 4 weeks. Treadmill, 
overground, and upstairs 
training with different 
challenges on task 
walking, assisted by 1–5 
therapists

Conventional 
therapy

Gait speed (Motion 
Analysis Corp., 
Santa Rosa, 
California)

Moore et al. 
2020 [24]

HR 66% 
(79% HR 
peak)

NR 21 45–60 3 weeks. Two subgroups, 
self-selected speed (SSS) 
and fastest speed (FS). 
Steps per session: 1,866 ± 
653

Conventional 
therapy

10MWT/6MWT

Henderson 
et al. 2022 
[25]

70–85% 
HRmax

NR 33 NR 30 days. Treadmill, 
overground, and upstairs 
training with different 
challenges on task 
walking. Steps per 
session: 2,641 ± 727

None 10MWT/6MWT

Klassen et 
al. 2020 [29]

60% 
HRR

5 20 60–120 4 weeks. Two subgroups: 
DOSE1, 60 minutes per 
session, and DOSE2; an 
additional 60 more minutes 
for training, weight-bearing 
exercises, straightening, 
and balance exercises. 
Steps per session: 2,169 ± 
1106

Conventional 
therapy

5MWT/6MWT

Brauer et al. 
2021 [40]

40–60% 
HRR

3 24 30 8 weeks. Treadmill training 
and self-management 
based on the health action 
process approach (HAPA), 
5–10 minutes per session, 
3× a week

None 10MWT/6MWT

HR: heart rate; HRR: heart rate reserve; HRmax: heart rate maximum; 10MWT: 10-meter walk test; 6MWT: six-minute walk test; 
NR: not reported; DOSE: determining optimal poststroke exercise; 5MWT: 5-meter walk test
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Initial improvements in motor control following stroke are thought to be due to spontaneous neural 
adaptation, a stimulating environment, and the opportunity for training [18]. Among the studies reviewed 
here, those that start their intervention during the first month (13, 23, 27 and 28 days) poststroke reported 
benefits in self-selected gait speed and walking endurance, however, they were no higher than those 
achieved in the studies in which they began their intervention after the third month; 106, 108 and 114 days 
poststroke. Regarding walking endurance, the studies with the greatest post-intervention difference: 197, 
177–178, and 135 m, started treatment with a mean of 13, 28, and 13 days poststroke, respectively. This 
may be evidence of a synergistic effect of HIT with the early neural adaptation in walking distance 
outcomes [36–39]. The consistent short-term benefits of HIT support its early use in rehabilitation.

At follow time frames of 6 to 12 months walking endurance changes were minimal and not greater, on 
average, than the clinically significant threshold for change in walking endurance of 50 meters, the 
exception of Klassen et al. (2020) [29] who found an increase of 70–94 m at 12 months following the 
intervention. Additionally, some studies did not collect follow-up data, and some presented this information 
in a limited time between 2–12 months. Taken together, the evidence in this review is not sufficient to 
understand the effects of the intervention in the long term.

This review focused on walking outcomes, however, there is evidence that HIT results in 
improvements in non-locomotor outcomes as well. In one study, activities of daily living, as measured by 
the Barthel index, improved, although not statistically significantly, compared to conventional therapy [24]. 
Significant improvement in functional independence, especially among those who were able to walk 
without assistance at discharge from inpatient care, has been documented [25]. Quality of life (EQ-5D-5L 
index score) demonstrated significant improvements that were sustained in the medium term [29]. 
Improvements in activities and participation in the community [Impact on Participation and Autonomy 
Questionnaire (IPAC)] were observed, but no significant differences were found between experimental a 
control groups [40]. The non-locomotor outcomes of HIT could be the subject of a future review.

Some limitations of this review should be considered. There was considerable heterogeneity in the HIT 
interventions in the studies reviewed here. For example, the cardiovascular intensity targets ranged from 
40% to 80% of HRR, or 60 to 85% HRmax. The dose of HIT also varied across study protocols. While typical 
sessions lasted 60 minutes, protocols ranged from 12–40 sessions across 3 to 10 weeks. Additionally, the 
selection of activities, such as overground or treadmill walking or stair climbing, among other modalities, 
was variable. Heterogeneity in HIT intensity, session duration, and frequency, as well as the time point it 
was administered during the subacute phase post stroke, should be standardized to improve study quality 
and future clinical translation. Only studies published in English were included, which may have introduced 
bias; this reduces the generalizability of findings by excluding relevant evidence. Six of ten studies were 
categorized as having a high risk of bias in one or more domains of the RoB2 tool. This suggests the need for 
improvement in study quality.

In summary, this systematic review provides encouraging evidence that HIT, particularly walking-
based HIT, can significantly improve self-selected gait speed and walking endurance in individuals during 
the subacute phase poststroke. These improvements appear consistent across studies, with sustained 
benefits observed in the majority of follow-ups. While HIT did not increase the risk of adverse events, 
limitations such as study heterogeneity, potential selection bias, and high risk of bias in several studies 
highlight the need for more rigorous and standardized research. Although the evidence aligns with findings 
from chronic stroke populations and supports early implementation of HIT, the long-term effects and 
potential benefits on non-locomotor outcomes remain unclear. Future studies should aim to standardize 
HIT protocols and investigate its broader impact on recovery and quality of life to fully establish its value in 
subacute stroke rehabilitation.
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Table 3. The effect of HIT on walking speed and walking endurance

Gait speed 6-minute walk testAuthor (year) Group Condition

Walking speed 
pre/post (m/s)

Mean difference 
(m/s)

P-value Walking speed at follow-
up (m/s)

Walking endurance 
pre/post (m)

Mean 
difference (m)

P-value Walking endurance 
at follow-up (m)

C SS 1.4 ± 0.5/1.4 ± 0.4 0 401 ± 132/422 ± 
128

21Outermans et al. 
(2010) [26]

E SS 1.5 ± 0.5/1.7 ± 0.5 0.2

0.03 None

459 ± 146/519 ± 
165

60

0.02 No follow-up

C SS 0.56 ± 0.19/0.71 ± 
0.20

0.15 6 months = 0.73 ± 0.20

12 months = 0.74 ± 0.17

195 ± 78/232 ± 80 37 6 months = 239 ± 89

12 months = 242 ± 81

MacKay-Lyons et 
al. (2013) [27]

E SS 0.52 ± 0.21/0.75 ± 
0.22

0.23

None

6 months = 0.76 ± 0.19 
12months = 0.78 ± 0.22

189 ± 82/279 ± 89 90

None

6 months = 282 ± 99

12 months = 287 ± 88
SS 0.33 ± 0.27/0.66 ± 

0.35
0.33 3 months = 0.65 ± 0.36Holleran et al. 

(2014) [23]
E

FS 0.47 ± 0.41/1.00 ± 
0.67

0.53

N/A

3 months = 0.95 ± 0.62

119 ± 94/263 ± 170 144 N/A 3 months = 260 ± 169

C SS 0.47 ± 0.28/0.58 ± 
0.25

0.11 2–3 months = 0.63 ± 0.29Leddy et al., (2016) 
[30]

E SS 0.35 ± 0.18/0.76 ± 
0.36

0.39

None

2–3 months = 0.78 ± 0.38

Not collected

C SS 0.35 ± 0.24/0.43 ± 
0.27

0.08 2 months = 0.47 ± 0.35 131 ± 108/160 ± 
111

29 2 months = 169 ± 121

E SS 0.32 ± 0.25/0.59 ± 
0.37

0.27

< 0.05

2 months = 0.65 ± 0.42 116 ± 88/232 ± 149 116

< 0.05

2 months = 227 ± 160

C FS 0.46 ± 0.35/0.57 ± 
0.43

0.11 2 months = 0.60 ± 0.43

Hornby et al. (2016) 
[28]

E FS 0.48 ± 0.37/0.84 ± 
0.60

0.36

None

2 months = 0.85 ± 062

N/A

C SS 0.62 ± 0.31/0.75 ± 
0.33

0.13Mahtani et al. 
(2017) [41]

E SS 0.54 ± 0.32/1.00 ± 
0.47

0.56

< 0.01 None Not collected

C SS 0.62 ± 0.34/0.79 ± 
0.34

0.17 243 ± 138/303 ± 
130

60

E SS 0.64 ± 0.33/1.00 ± 
0.40

0.36

< 
0.001

None

243 ± 141/378 ± 
156

135

< 
0.001

No follow-up

C FS 0.85 ± 0.49/1.00 ± 
0.49

0.15

Moore et al. (2020) 
[24]

E FS 0.89 ± 0.49/1.37 ± 
0.52

0.48

< 
0.001

None N/A
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Table 3. The effect of HIT on walking speed and walking endurance (continued)

Gait speed 6-minute walk testAuthor (year) Group Condition

Walking speed 
pre/post (m/s)

Mean difference 
(m/s)

P-value Walking speed at follow-
up (m/s)

Walking endurance 
pre/post (m)

Mean 
difference (m)

P-value Walking endurance 
at follow-up (m)

Henderson et al. 
(2022) [25]

E-LoA > 
5

SS 0.08 (0–0.23)/0.63 
(0.38–0.95)

0.55 N/A None 16 (6–44)/213 
(117–317)

197 N/A No follow-up

C SS 0.39 ± 0.22/0.74 ± 
0.37

0.35 6 months = 1.0 ±  0.50
12 months = 1.07 ± 0.60

129 ± 77.6/246 ± 
138

137 6 months = 328 ± 144
12 months = 351 ± 
180

E -
DOSE1

SS 0.44 ± 0.25/0.90 ± 
0.31

0.46

None

6 months = 1.02 ± 0.24
12 months = 1.04 ± 0.23

129 ± 97.3/307 ± 
118

178

0.02

6 months = 358 ± 125
12 months = 401 ± 
146

C SS 0.39 ± 0.22/0.74 ± 
0.37

0.35 6 months = 1.0 ± 0.50

12 months = 1.07 ± 0.60

129 ± 77.6/246 ± 
138

137 6 months = 328 ± 144

12 months = 351 ± 
180

Klassen et al. 
(2020) [29]

E-
DOSE2

SS 0.42 ± 0.25/0.97 ± 
0.40

0.55

None

6 months = 1.02 ± 0.44

12 months = 1.11 ± 0.43

138 ± 95.5/315 ± 
142

177

0.03

6 months = 355 ± 149

12 months = 375 ± 
147

Brauer et al. (2021) 
[40]

E SS 0.72 ± 0.29/0.99 ± 
0.36

0.27 N/A 26 weeks = 1.01 ± 0.33 277 ± 142/368 ± 
144

91 N/A 26 weeks = 402 ± 
141

C: control group; SS: self-select speed; E: experimental group; None: not reported; N/A: does not apply; FS: fastest speed; LoA: level of assistance; DOSE: determining optimal poststroke 
exercise. Variability is noted as standard deviation or range

Abbreviations
CPG: clinical practice guideline

DOSE: determining optimal poststroke exercise

HIIT: high-intensity interval training

HIT: high-intensity training

HR: heart rate

HRmax: heart rate maximum

HRR: heart rate reserve

LoA: level of assistance

MCID: minimal clinically important difference
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